コード例 #1
0
def gen_bars(data, headers, datasets, methods):
    """
    Description:
    Inputs:
    Outputs:
    """
    width = 0.5
    x = np.arange(0, 16, 2)
    
    labels_x = datasets.copy()
    labels_x.insert(0,"") 
    
    fig, ax = plt.subplots()
    bar1 = ax.bar(x - (0.3 + width/2), data[0,:], width, label = methods[0])
    add_labels(ax, bar1)

    if (len(methods) > 1):
        bar2 = ax.bar(x , data[1,:], width, label = methods[1])
        add_labels(ax, bar2)
    
        if (len(methods) > 2):
            bar3 = ax.bar(x + (0.3 + width/2), data[1,:], width, label = methods[2])
            add_labels(ax, bar3)

    ax.set_ylabel(metric)
    ax.set_xlabel("Dataset")
    
    ax.set_xticklabels(labels_x)
    ax.set_title(metric + " Across Datasets")
    ax.legend(bbox_to_anchor=(1, 1.15), fancybox=True, framealpha=0.5)
コード例 #2
0
def plotmeshval(val,ixmin=None,ixmax=None,iymin=None,iymax=None,
          r_min=None,r_max=None,z_min=None,z_max=None,title=None,units=None,
          block=True):
   """
   plotmeshval(val,ixmin=<int>,ixmax=<int>,iymin=<int>,iymax=<int>
            title=<string>,units=<string>,block=<True|False>)
      Display 2-D quantity using polyfill.
      where ixmin, ixmax, iymin, and iymax are integer variables or
      expressions used to plot a portion of the grid. title is used as
      both the title and the figure name. Units are displayed in the
      side colorbar. Block default is True.

      The plot axis limits may be specified with r_rmin,r_max,z_min,z_max.
   """
   if ixmin == None: ixmin = com.nxomit
   if ixmax == None: ixmax = (com.nxm-1)
   if iymin == None: iymin = 0
   if iymax == None: iymax = (com.ny-1)
   if r_min == None: r_min = com.rm.min()
   if r_max == None: r_max = com.rm.max()
   if z_min == None: z_min = com.zm.min()
   if z_max == None: z_max = com.zm.max()
   rcdefaults()
   if title == None:
    title='Uedge'
   fig, ax = plt.subplots()

   verts = np.array([])
   z = np.array([])
   for ix in range(ixmax-ixmin+1):
       for iy in range(iymax-iymin+1):
           v = []
           v.append([com.rm[ix,iy,1],com.zm[ix,iy,1]])
           v.append([com.rm[ix,iy,2],com.zm[ix,iy,2]])
           v.append([com.rm[ix,iy,4],com.zm[ix,iy,4]])
           v.append([com.rm[ix,iy,3],com.zm[ix,iy,3]])
           verts = np.append(verts,v)
           z = np.append(z,val[ix,iy])
   verts = verts.reshape(len(z),4,2)
   ax.set_title(title)
   ax.set_ylabel('Z (m)')
   ax.set_xlabel('R (m)')
   ax.set_aspect('equal')

   coll = PolyCollection(verts,array=z,cmap=cm.jet,edgecolors='face')
   ax.add_collection(coll)
   ax.autoscale_view()
   cbar = fig.colorbar(coll,ax=ax)
   #if units != None: cbar.ax.set_ylabel(units,rotation=-90,va='bottom')
   if units != None: cbar.ax.set_ylabel(units,va='bottom')
   plt.ylim(z_min,z_max)
   plt.xlim(r_min,r_max)

   #plt.show(block=block)
   plt.ion()
   plt.show()
   plt.pause(0.001)
コード例 #3
0
def club_tags(unencoded_clubs_list):
    """
    Creates a bar graph showing of the number of occurrances of each possible club tag.
    
    By using a dictionary to count club tag occurrances, the function then creates a 
    matplotlib bar graph using numpy representations of the dictionary information.
    The graph is formatted and pushed as a Response type for view on the server.
    
    Returns:
    --------
    Response
        The graph
    """

    club_dict = {}
    for clubs in unencoded_clubs_list:
        for tag in clubs.get_category():
            if tag in club_dict:
                club_dict[tag] = club_dict[tag] + 1
            else:
                club_dict[tag] = 1
    x = np.zeros(len(club_dict))
    index_counter = 0
    for tag in club_dict:
        x[index_counter] = club_dict.get(tag)
        index_counter = index_counter + 1

    fig = plt.figure()
    ax = fig.add_subplot()
    bar = ax.bar(np.arange(len(club_dict)), x)
    labels = club_dict.keys()
    ax.set_xticks(np.arange(len(club_dict)))
    ax.set_xticklabels(labels, rotation='45', ha='right')
    ax.set_xlabel('Club Tags')
    ax.set_ylabel('Number of Occurrances')
    ax.set_title('Number of Club Tag Occurrances')
    for rect in bar:
        height = rect.get_height()
        ax.annotate('{}'.format(height),
                    xy=(rect.get_x() + rect.get_width() / 2, height),
                    xytext=(0, 3),
                    textcoords="offset points",
                    ha='center',
                    va='bottom')

    plt.tight_layout()
    output = io.BytesIO()
    FigureCanvas(fig).print_png(output)
    return Response(output.getvalue(), mimetype='image/png')
コード例 #4
0
    def draw(self, ax, output_mode):

        self.colorize_default_lines()
        for p in self.plots:
            p.draw(ax)
        if self.show_legend:
            leg = ax.legend(**self.legend_kwargs)
            if output_mode == "png":  #latex output doesn't support alpha
                leg.get_frame().set_alpha(0.5)
            plt.setp(leg.get_texts(), fontsize='small')

        ax.xaxis.set_label_text(self.x_axis_desc.label)
        ax.yaxis.set_label_text(self.y_axis_desc.label)
        ax.set_ybound(self.y_axis_desc.range_min, self.y_axis_desc.range_max)
        ax.set_xbound(self.x_axis_desc.range_min, self.x_axis_desc.range_max)

        ax.set_title(self.title)
コード例 #5
0
ファイル: Graphs.py プロジェクト: stefanneumann/marss
	def draw(self,ax,output_mode):

		self.colorize_default_lines()
		for p in self.plots:
			p.draw(ax);
		if self.show_legend:
			leg=ax.legend(**self.legend_kwargs)
			if output_mode == "png": #latex output doesn't support alpha
				leg.get_frame().set_alpha(0.5);
			plt.setp(leg.get_texts(), fontsize='small')

		ax.xaxis.set_label_text(self.x_axis_desc.label)
		ax.yaxis.set_label_text(self.y_axis_desc.label)
		ax.set_ybound(self.y_axis_desc.range_min,self.y_axis_desc.range_max)
		ax.set_xbound(self.x_axis_desc.range_min,self.x_axis_desc.range_max)

		ax.set_title(self.title)
コード例 #6
0
def clubs_per_user(user_list):
    """
    Creates a bar graph of the number of clubs per user. 
    
    Using a dictionary to gather each user's name and the number of club each 
    user is in, numpy representations of the data is used to create a matplotlib
    bar graph. The graph is then formatted and pushed for view on the server.
    
    Returns:
    --------
    Response
        The graph
    """
    user_club_dict = {}
    for user in user_list:
        name = user.get_user_name()
        user_club_dict[name] = len(user.get_user_clubs())

    x = np.zeros(len(user_club_dict))
    index_counter = 0
    for user in user_club_dict:
        x[index_counter] = user_club_dict.get(user)
        index_counter = index_counter + 1

    fig = plt.figure()
    ax = fig.add_subplot()
    bar = ax.bar(np.arange(len(user_club_dict)), x)
    labels = user_club_dict.keys()
    ax.set_xticks(np.arange(len(user_club_dict)))
    ax.set_xticklabels(labels, rotation='45', ha='right')
    ax.set_xlabel('User Name')
    ax.set_ylabel('Number of Clubs')
    ax.set_title('Number of Clubs per User')
    for rect in bar:
        height = rect.get_height()
        ax.annotate('{}'.format(height),
                    xy=(rect.get_x() + rect.get_width() / 2, height),
                    xytext=(0, 3),
                    textcoords="offset points",
                    ha='center',
                    va='bottom')

    plt.tight_layout()
    output = io.BytesIO()
    FigureCanvas(fig).print_png(output)
    return Response(output.getvalue(), mimetype='image/png')
コード例 #7
0
def plot_graph(train_history, label_col, mode):

    # Obtain scores from history
    loss = train_history.history['loss'] #List
    val_loss = train_history.history['val_loss']

    #Check if binary or multiclass problem to obtain correct metrics
    if mode == 0:
        acc = train_history.history['binary_accuracy']
        val_acc = train_history.history['val_binary_accuracy']
    else:
        acc = train_history.history['categorical_accuracy']
        val_acc = train_history.history['val_categorical_accuracy']

    # Plot loss scores
    sns.set_style("whitegrid")
    fig, ax = plt.subplots(1, 1)
    ax.plot(loss, label = "Loss")
    ax.plot(val_loss, label = "Validation Loss")
    ax.set_title('Model Loss')
    ax.legend(loc = "upper right")
    ax.set_xlim([0, 100])
    ax.set_ylabel("Loss")
    ax.set_xlabel("Epochs")
    ax.minorticks_on()
    ax.grid(b=True, which='major')
    ax.grid(b=True, which='minor')
    plt.savefig(results_dir + '/' + label_col + '_loss.png')
    plt.show()

    # Plot accuracy scores
    fig, ax = plt.subplots(1, 1)
    ax.plot(acc, label = "Accuracy")
    ax.plot(val_acc, label = "Validation Accuracy")
    ax.set_title('Model Accuracy')
    ax.legend(loc = "lower right")
    ax.set_xlim([0, 100])
    ax.grid(b=True, which='major')
    ax.grid(b=True, which='minor')
    ax.set_ylabel("Accuracy")
    ax.set_xlabel("Epochs")
    ax.minorticks_on()
    plt.savefig(results_dir + '/' + label_col + '_acc.png')
    plt.show()
    return 0
コード例 #8
0
    dict['sdl'] = social_distancing_level

    return dict


# --------------------------------MAIN CODE------------------------------------

os.system('clear')

settings = setup()

title = settings['title']
social_distancing = settings['sd']
social_distancing_lvl = settings['sdl']

ax.set_title(title)

people = []  # people is a global variable
for i in range(0, 100):
    if social_distancing == True:
        if i % social_distancing_lvl == 0:
            bool = True
        else:
            bool = False

    else:
        bool = False

    person = Person(i, bool)
    person.init_draw()
    people.append(person)
コード例 #9
0
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.axes as ax
import pylab

# change to proper directory
os.chdir('C:\Users\Matt\Desktop\Python Projects\Exploratory Data Analysis')

# load file, select proper date range, convert row to numeric dtypes
hpc = pd.read_csv('household_power_consumption.txt',
                  sep=';',
                  index_col=['Date'],
                  usecols=['Global_active_power', 'Date'])
hpc = hpc['1/2/2007':'2/2/2007'].convert_objects(convert_numeric=True)

# create plotting variables
y = pd.value_counts(hpc.Global_active_power,
                    bins=np.arange(0, 8, 0.5),
                    sort=False)
index = y.index

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.bar(index, y, width=0.5, color='r')
ax.set_xlabel('Global Active Power (kilowatts)')
ax.set_ylabel('Frequency')
ax.set_title('Global Active Power')
pylab.show()

# hpc[hpc['Global_active_power'] > 4]
コード例 #10
0
# import needed libraries
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.axes as ax
import pylab

# change to proper directory
os.chdir('C:\Users\Matt\Desktop\Python Projects\Exploratory Data Analysis')

# load file, select proper date range, convert row to numeric dtypes
hpc = pd.read_csv('household_power_consumption.txt', sep=';', index_col=['Date'], usecols=['Global_active_power', 'Date'])
hpc = hpc['1/2/2007':'2/2/2007'].convert_objects(convert_numeric=True)

# create plotting variables
y = pd.value_counts(hpc.Global_active_power, bins=np.arange(0, 8, 0.5), sort=False)
index = y.index

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.bar(index, y, width=0.5, color='r')
ax.set_xlabel('Global Active Power (kilowatts)')
ax.set_ylabel('Frequency')
ax.set_title('Global Active Power')
pylab.show()


# hpc[hpc['Global_active_power'] > 4]
コード例 #11
0
ファイル: optimization_stats.py プロジェクト: ICB-DCM/pyPESTO
def optimization_run_property_per_multistart(
    results: Union[Result, Sequence[Result]],
    opt_run_property: str,
    axes: Optional[matplotlib.axes.Axes] = None,
    size: Tuple[float, float] = (18.5, 10.5),
    start_indices: Optional[Union[int, Iterable[int]]] = None,
    colors: Optional[Union[List[float], List[List[float]]]] = None,
    legends: Optional[Union[str, List[str]]] = None,
    plot_type: str = 'line',
) -> matplotlib.axes.Axes:
    """
    Plot stats for an optimization run property specified by opt_run_property.

    It is possible to plot a histogram or a line plot. In a line plot,
    on the x axis are the numbers of the multistarts, where the multistarts are
    ordered with respect to a function value. On the y axis of the line plot
    the value of the corresponding parameter for each multistart is displayed.

    Parameters
    ----------
    opt_run_property:
        optimization run property to plot.
        One of the 'time', 'n_fval', 'n_grad', 'n_hess', 'n_res', 'n_sres'
    results:
        Optimization result obtained by 'optimize.py' or list of those
    axes:
        Axes object to use
    size:
        Figure size (width, height) in inches. Is only applied when no ax
        object is specified
    start_indices:
        List of integers specifying the multistarts to be plotted or
        int specifying up to which start index should be plotted
    colors:
        List of RGBA colors (one color per result in results),
        or single RGBA color. If not set and one result, clustering is done
        and colors are assigned automatically
    legends:
        Labels for line plots, one label per result object
    plot_type:
        Specifies plot type. Possible values: 'line', 'hist', 'both'

    Returns
    -------
    ax:
        The plot axes.
    """
    supported_properties = {
        'time': 'Wall-clock time (seconds)',
        'n_fval': 'Number of function evaluations',
        'n_grad': 'Number of gradient evaluations',
        'n_hess': 'Number of Hessian evaluations',
        'n_res': 'Number of residuals evaluations',
        'n_sres': 'Number of residual sensitivity evaluations',
    }

    if opt_run_property not in supported_properties:
        raise ValueError("Wrong value of opt_run_property. Only the following "
                         "values are allowed: 'time', 'n_fval', 'n_grad', "
                         "'n_hess', 'n_res', 'n_sres'")

    # parse input
    (results, colors, legends) = process_result_list(results, colors, legends)

    # axes
    if axes is None:
        ncols = 2 if plot_type == 'both' else 1
        fig, axes = plt.subplots(1, ncols)
        fig.set_size_inches(*size)
        fig.suptitle(
            f'{supported_properties[opt_run_property]} per optimizer run')
    else:
        axes.set_title(
            f'{supported_properties[opt_run_property]} per optimizer run')

    # loop over results
    for j, result in enumerate(results):
        if plot_type == 'both':
            axes[0] = stats_lowlevel(
                result,
                opt_run_property,
                supported_properties[opt_run_property],
                axes[0],
                start_indices,
                colors[j],
                legends[j],
            )

            axes[1] = stats_lowlevel(
                result,
                opt_run_property,
                supported_properties[opt_run_property],
                axes[1],
                start_indices,
                colors[j],
                legends[j],
                plot_type='hist',
            )
        else:
            axes = stats_lowlevel(
                result,
                opt_run_property,
                supported_properties[opt_run_property],
                axes,
                start_indices,
                colors[j],
                legends[j],
                plot_type,
            )

    if sum((legend is not None for legend in legends)) > 0:
        if plot_type == 'both':
            for ax in axes:
                ax.legend()
        else:
            axes.legend()

    return axes
コード例 #12
0
# #### After 25 days there are dozens more bees present, and they tend to cluster around the queen and the newly born workers. Social behaviors are normal.

# In[30]:


t=25 #25 days, more bees!
D=0.1
def u(x,y,t):
    return (1/(4*np.pi*D*t)*np.exp(-(x**2+y**2)/(4*D*t)))
x=np.linspace(-7, 7, 100)
y=np.linspace(-5, 5, 100)
X, Y = np.meshgrid (x, y)
Z=u(X,Y,t)
figu=plt.figure()
ax=plt.axes(projection='3d')
ax.set_title("Concentration of thermal energy")
ax.plot_surface(X,Y,Z,color='m')


# # Thermal energy distribution in a mature colony under neonicotinoid exposure 
# 
# #### We're going to see a sparser distribution of bees in the center; there will be more individuals clustered at the edges of the space due to neonicotinoids' impact on bees' social behavior. The difference from normal colonies is even more pronounced in the evening.

# In[49]:


t=25 #days
def f(x, y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))

x = np.linspace(-7, 7, 30)
コード例 #13
0
ファイル: cbtworkspace.py プロジェクト: benlynch-zz/cbt
def create_bar_graph(data=[[[1, 2], [10, 20]]],
                     semilog=False,
                     add_bar_labels=True,
                     title='Insert Fancy Title',
                     add_legend=False,
                     bar_colors=[],
                     legend_labels=[]):
    import matplotlib.patches as mpatches
    from collections import deque
    if not bar_colors:
        bar_color_deque = deque([
            '#1395ba', '#a2b86c', '#ebc844', '#f16c20', '#c02e1d', '#0d3c55',
            '#ecaa38', '#117899', '#d94e1f', '#5ca793', '#ef8b2c', '#0f5b78'
        ])
    else:
        bar_color_deque = deque(bar_colors)
    width = 0.33
    xs = data[0][0]
    legend_labels_queue = deque(legend_labels)
    handles = []
    if len(data) > 1:
        width = 0.33 * 2 / len(data)
        #plot comparison from multiple archives
        all_unique_x = {}
        for series in data:
            for size in series[0]:
                all_unique_x[size] = True
        ind = np.arange(len(all_unique_x.keys()))
        rect_refs = []
        fig, ax = plt.subplots()
        bar_shift = width / 2
        #plot individual bars to allow for sparse data plots
        for series in data:
            if len(series) > 2:
                label = series[2]
            color = bar_color_deque.popleft()
            if legend_labels:
                legend_label = legend_labels_queue.popleft()
            else:
                legend_label = label
            handles.append(mpatches.Patch(color=color, label=legend_label))
            index = 0
            labeled_yet = False
            for ex in sorted(all_unique_x.keys()):
                for i in range(0, len(series[0])):
                    if series[0][i] == ex:
                        if 'label' in locals() and not labeled_yet:
                            rects = ax.bar(index + bar_shift,
                                           series[1][i],
                                           width,
                                           color=color,
                                           label=label)
                            labeled_yet = True
                        else:
                            rects = ax.bar(index + bar_shift,
                                           series[1][i],
                                           width,
                                           color=color)
                        rect_refs.append(rects[0])
                        if add_bar_labels:
                            bar_label(ax, rects, semilog)
                index += 1
            bar_shift += width
        if semilog:
            ax.set_yscale('log')
        ax.set_xticks(ind + 0.59 - 0.045 * len(data))
        if add_legend:
            plt.legend(handles=handles, loc=2)
    else:
        color = bar_color_deque.popleft()
        ys = data[0][1]
        ind = np.arange(len(xs))
        fig, ax = plt.subplots()
        rects = ax.bar(ind + width, ys, color=color)
        ax.set_xticks(ind + width * 2)
        if semilog:
            ax.set_yscale('log')
        if add_bar_labels:
            bar_label(ax, rects, semilog)
    fig.set_size_inches(15, 8)
    ax.set_xticklabels(xs, rotation=0)
    ax.set_title(title)
    ax.set_xlabel("Object Size (Bytes)")
    ax.set_ylabel('MB/s')
    plt.show()
    plt.savefig('foo.png')
    return
import mglearn as ml
import matplotlib.pyplot as plt
import matplotlib.axes as ax
from sklearn.neighbors import KNeighborsClassifier


x,y = ml.datasets.make_forge()


fig,axes = plt.subplots(1,3,figsize=(10,3))

for n_neighbors , ax in zip([1,3,9],axes):
	
	clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(x,y)
	
	ml.plots.plot_2d_separator(clf , x , fill=True , eps=0.5 , ax=ax , alpha=.4)
	
	ax.scatter(x[:,0] , x[:,1] , c=y , s=60 , cmap=ml.cm2)
	
	ax.set_title("%d neighbor(s) " % n_neighbors)

plt.show()