def cplsvfig(LLS,NNS,X,projval,x_label,y_label,z_label,Title_fnc,save_fnc): surf=ax.plot_surface(1e9*LS,NS,X,rstride=1,cstride=1,alpha=0.7,cmap=cm.bone,linewidth = 0.05, antialiased = True, shade = False) CS = contour(1e9*LLS,NNS,X, colors = 'k', linewidth = 0.5) cbar = pl.colorbar(surf) #cbar.ax.set_ylabel(r'$\mathcal{A}^{(0)}_{[9,3]}\,\,\,[zJ]$', size = 14) cbar.add_lines(CS) cset = ax.contour(1e9*LLS,NNS,X,zdir='z',offset = projval ,cmap = cm.Blues) return 0
def plsvfig(LLS,NNS,X,projval,x_label,y_label,z_label,Title_fnc,save_fnc): fig = pl.figure() ax = fig.gca(projection = '3d') surf=ax.plot_surface(1e9*LS,NS,X,rstride=1,cstride=1,alpha=0.7,cmap=cm.winter,linewidth = 0.05, antialiased = True, shade = False) CS = contour(1e9*LLS,NNS,X, colors = 'k', linewidth = 0.5) cbar = pl.colorbar(surf) #cbar.ax.set_ylabel(r'$\mathcal{A}^{(0)}_{[9,3]}\,\,\,[zJ]$', size = 14) cbar.add_lines(CS) cset = ax.contour(1e9*LLS,NNS,X,zdir='z',offset = projval ,cmap = cm.Blues) ax.set_xlabel(x_label) ax.set_ylabel(y_label) ax.set_zlabel(z_label) pl.title(Title_fnc) #pl.title(r'$\rm{Gradient\, \mathcal{A}^{(0)}\, for \,[9,3]\, in\,water}$',size = 21) ax.view_init(elev = 17, azim = 150) savefig(save_fnc)#'plots/grad_A0_93_0.png')#, dpi = 300) #pl.show() return 0
pl.clabel(CS, inline =1,fmt = '%1.5f', fontsize = 18,color = 'k')#, manual = man_loc) pl.xlabel(r'$Angle\,\,\mathrm{[radians]}$', size = 20) pl.ylabel(r'$Separation\,\,\mathrm{[m]}$', size = 20) pl.title(r'$\mathrm{-Log(G),\,retarded,\,skewed\,cyls\,in\,water}$', size = 20)#uas a function of separation and angle') cbar = pl.colorbar(CS, shrink = 0.8, extend = 'both') cbar.ax.set_ylabel(r'$-Log(G(\mathcal{\ell},\theta))\,\,[k_{B}T]$', size = 14) cbar.add_lines(CS) ##pl.axis([0,1.0,0,1.0]) #pl.grid() pl.savefig('plots/skew_ret_water/logG_contour.pdf') show() fig = pl.figure() ax = fig.gca(projection = '3d') #ax.text(-7, 6, 0.7, r'$\zeta/\omega_{0}$', zdir = (-1,1,-3), size = 21) surf = ax.plot_surface(X,Y, G_l_t_dt, rstride = 1, cstride = 1,alpha = 0.2, linewidth = 0.3)#edgecolor = 'none',antialiased = True, shade = False, norm = norm, linewidth = 0.3) #surf = ax.plot_surface(X,Y, G_l_t_dt, rstride = 20, cstride = 20,alpha = 0.2)#, cmap = cm.gnuplot, linewidth = 0.5)#gray)#coolwarm)#bone)#hot, linewidth = 0.01, antialiased = True, shade = False)# True)#, cmap = hot() #colorbar(surf) #cbar.ax.set_ylabel(r'$\frac{\xi}{\omega_{0}}$', size = 24) #cset = ax.contour(X,Y,h, zdir = 'z', offset = 0, cmap = cm.jet) #cset = ax.contour(X,Y,h, zdir = 'x', offset = 5, cmap = cm.jet) #cset = ax.contourf(X,Y,h, zdir = 'y', offset = 6, cmap = cm.jet)# puts plot of max xi vs discrete r values at r=0 plane #ax.view_init(elev = 19, azim = -112) #zlabel(r'$\xi/\omega_{0}$', size = 21) #ylabel(r'$r$', size = 24) #xlabel(r'$(\epsilon(0) -1)$', size = 24) #text = Axes.text(self, x, y, s, **kwargs) #art3d.text_2d_to_3d(text, z, zdir) #return text #pl.text(6,0, 0, r'$\xi/\omega_{0}$',size = 21 ,rotation = 'horizontal') #ax.text(r'$\xi/\omega_{0}$',6,0, 0, size = 21 ,rotation = 'horizontal')
cplsvfig(LS,NS,X_65, proj_val(X_65[:, 25] ), x_labels,y_labels,z_labels,title('6','5'), svfig('65')) cplsvfig(LS,NS,X_91, proj_val(X_91[:, 25] ), x_labels,y_labels,z_labels,title('9','1'), svfig('91')) cplsvfig(LS,NS,X_93, proj_val(X_93[:, 25] ), x_labels,y_labels,z_labels,title('9','3'), svfig('93')) cplsvfig(LS,NS,X_290,proj_val(X_290[:,25]),x_labels,y_labels,z_labels,title('29','0'),svfig('290')) #ax.set_xlabel(x_label) #ax.set_ylabel(y_label) #ax.set_zlabel(z_label) #pl.title(Title_fnc) ##pl.title(r'$\rm{Gradient\, \mathcal{A}^{(0)}\, for \,[9,3]\, in\,water}$',size = 21) ax.view_init(elev = 17, azim = 150) savefig('plots/combo_contour.png')#'plots/grad_A0_93_0.png')#, dpi = 300) #pl.show() fig = pl.figure() ax = fig.gca(projection = '3d') surf=ax.plot_surface(1e9*LS,NS,X_65,rstride=1,cstride=1, alpha=0.5,cmap=cm.Blues,linewidth = 0.05, antialiased = True, shade = False) surf=ax.plot_surface(1e9*LS,NS,X_91,rstride=1,cstride=1, alpha=0.5,cmap=cm.Greens,linewidth = 0.05, antialiased = True, shade = False) surf=ax.plot_surface(1e9*LS,NS,X_93,rstride=1,cstride=1, alpha=0.5,cmap=cm.Reds,linewidth = 0.05, antialiased = True, shade = False) surf=ax.plot_surface(1e9*LS,NS,X_290,rstride=1,cstride=1,alpha=0.5,cmap=cm.hot,linewidth = 0.05, antialiased = True, shade = False) #cbar.ax.set_ylabel(r'$\mathcal{A}^{(0)}_{[9,3]}\,\,\,[zJ]$', size = 14) #pl.title(r'$\rm{Gradient\, \mathcal{A}^{(0)}\, for \,[9,3]\, in\,water}$',size = 21) ax.view_init(elev = 17, azim = 150) #fig = pl.figure() #ax = fig.gca(projection = '3d') #surf=ax.plot_surface(1e9*LS,NS,X,rstride=1,cstride=1,alpha=0.7,cmap=cm.winter,linewidth = 0.05, antialiased = True, shade = False) #CS = contour(1e9*LS,NS,X, colors = 'k', linewidth = 0.5) #cbar = pl.colorbar(surf) #cbar.ax.set_ylabel(r'$\mathcal{A}^{(0)}_{[9,3]}\,\,\,[zJ]$', size = 14) #cbar.add_lines(CS) #cset = ax.contour(1e9*LS,NS,X,zdir='z',offset = -0.25,cmap = cm.Blues) ax.set_xlabel(r'$\rm{separation}\,\,\,\ell\,\,[nm]$', size = 18)
A0_065_theta = A0_065 * np.cos(0.*Y) A0_091_theta = A0_091 * np.cos(0.*Y) A0_290_theta = A0_290 * np.cos(0.*Y) A2_065_theta = A2_065 * np.cos(2.*Y) A2_091_theta = A2_091 * np.cos(2.*Y) A2_290_theta = A2_290 * np.cos(2.*Y) ##### A_2 PLOT S###### fig = figure() #subplot(111, axisbg='darkslategray') ax = fig.gca(projection = '3d') #ax = fig.gca(projection = '3d', axisbg='darkslategray') surf_065_0 = ax.plot_surface(1e9*X,Y,1e21*A0_065_theta, rstride = 5, cstride =5,alpha=0.7,cmap=cm.Blues, linewidth = 0.05, antialiased = True, shade = False)# True)#, cmap = hot() surf_091_0 = ax.plot_surface(1e9*X,Y,1e21*A0_091_theta, rstride = 5, cstride =5,alpha=0.7,cmap=cm.Greens, linewidth = 0.05, antialiased = True, shade = False)# True)#, cmap = hot() surf_290_0 = ax.plot_surface(1e9*X,Y,1e21*A0_290_theta, rstride = 5, cstride =5,alpha=0.7,cmap=cm.Reds, linewidth = 0.05, antialiased = True, shade = False)# True)#, cmap = hot() CS_065_0 = contour(1e9*X,Y,1e21*A0_065_theta, colors = 'k', linewidth = 1.5) CS_091_0 = contour(1e9*X,Y,1e21*A0_091_theta, colors = 'k', linewidth = 1.5) CS_290_0 = contour(1e9*X,Y,1e21*A0_290_theta, colors = 'k', linewidth = 1.5) cbar_065_0 = pl.colorbar(surf_065_0) cbar_065_0.ax.set_ylabel(r'$\mathcal{A}^{(0)}_{[6,5]}\,\,\,[zJ]$', size = 14) cbar_065_0.add_lines(CS_065_0) cbar_091_0 = pl.colorbar(surf_091_0) cbar_091_0.ax.set_ylabel(r'$\mathcal{A}^{(0)}_{[9,1]}\,\,\,[zJ]$', size = 14)
import matplotlib.pyplot as plt c = loadtxt('output/130807_3D_A_dep.txt', unpack=True, usecols = [0]) C = (numpy.pi/2)*c r = loadtxt('output/130807_3D_A_rho.txt', unpack=True, usecols = [0]) h = loadtxt('output/130807_3D_height.txt')#, unpack=True, usecols = [0,1]) X,Y=meshgrid(C,r) h = numpy.nan_to_num(h) fig = figure() ax = fig.gca(projection = '3d') ax.text(-7, 6, 0.7, r'$\zeta/\omega_{0}$', zdir = (-1,1,-3), size = 21) figure() #contourf(X,Y,h, 1000, cmap = hot()) surf = ax.plot_surface(X,Y,h, rstride = 20, cstride = 20,alpha = 0.2, cmap = cm.gnuplot, linewidth = 0.5)#gray)#coolwarm)#bone)#hot, linewidth = 0.01, antialiased = True, shade = False)# True)#, cmap = hot() #surf = ax.plot_wireframe(X,Y,h, rstride = 20, cstride = 20,color = 'k')#True)# cmap = hot, shade = True)#,alpha = 0.9, cmap = cm.hot, linewidth = 0.01, antialiased = True, shade = False)# True)#, cmap = hot() #colorbar(surf) #cbar.ax.set_ylabel(r'$\frac{\xi}{\omega_{0}}$', size = 24) #cset = ax.contour(X,Y,h, zdir = 'z', offset = 0, cmap = cm.jet) #cset = ax.contour(X,Y,h, zdir = 'x', offset = 5, cmap = cm.jet) #cset = ax.contourf(X,Y,h, zdir = 'y', offset = 6, cmap = cm.jet)# puts plot of max xi vs discrete r values at r=0 plane #CS = contour(X,Y,h)#, colors = 'k') #man_loc = [(1,1),(2,2),(3,3),(4,4)] #clabel(CS, inline =1,fmt = '%1.1f', fontsize = 18,color = 'k', manual = man_loc) #ax.grid(on = True) ax.view_init(elev = 19, azim = -112) #zlabel(r'$\xi/\omega_{0}$', size = 21) #ylabel(r'$r$', size = 24) #xlabel(r'$(\epsilon(0) -1)$', size = 24) #text = Axes.text(self, x, y, s, **kwargs)
#A0[A0>1e6]= np.nan #NOTE: remove me later #A2[A2>1e6]= np.nan #NOTE: remove me later #A0[i,0] = 0.#(1./2) * delta[0]*delta[0]*Ft0_term0 #A2[i,0] = 0.#(1./2) * delta[0]*delta[0]*Ft2_term0 NS,LS = np.meshgrid(ns,Ls) from pylab import * from matplotlib import axis as ax from matplotlib.ticker import MultipleLocator#, FormatStrFormatter from mpl_toolkits.mplot3d import Axes3D fig = pl.figure() ax = fig.gca(projection = '3d') #ax.text(-7, 6, 0.7, r'$\zeta/\omega_{0}$', zdir = (-1,1,-3), size = 21) #pl.figure() #contourf(X,Y,h, 1000, cmap = hot()) surf=ax.plot_surface(1e9*LS,NS,np.log(1e21*A0),rstride=1,cstride=1,alpha=0.7,cmap=cm.winter,linewidth = 0.05, antialiased = True, shade = False) CS = contour(1e9*LS,NS,np.log(1e21*A0), colors = 'k', linewidth = 0.5) pl.show() X,Y = gradient(A0) fig = pl.figure() ax = fig.gca(projection = '3d') #ax.text(-7, 6, 0.7, r'$\zeta/\omega_{0}$', zdir = (-1,1,-3), size = 21) #pl.figure() #contourf(X,Y,h, 1000, cmap = hot()) surf=ax.plot_surface(1e9*LS,NS,X,rstride=1,cstride=1,alpha=0.7,cmap=cm.winter,linewidth = 0.05, antialiased = True, shade = False) CS = contour(1e9*LS,NS,X, colors = 'k', linewidth = 0.5) pl.show() fig = pl.figure() ax = fig.gca(projection = '3d') #ax.text(-7, 6, 0.7, r'$\zeta/\omega_{0}$', zdir = (-1,1,-3), size = 21)
import matplotlib.pyplot as plt c = loadtxt('output/130807_3D_A_dep.txt', unpack=True, usecols = [0]) C = (numpy.pi/2)*c r = loadtxt('output/130807_3D_A_rho.txt', unpack=True, usecols = [0]) h = loadtxt('output/130807_3D_height.txt')#, unpack=True, usecols = [0,1]) X,Y=meshgrid(C,r) h = numpy.nan_to_num(h) fig = figure() ax = fig.gca(projection = '3d') ax.text(-7, 6, 0.7, r'$\zeta/\omega_{0}$', zdir = (-1,1,-3), size = 21) #figure() #contourf(X,Y,h, 1000, cmap = hot()) surf = ax.plot_surface(X,Y,h, rstride = 1, cstride = 1,alpha = 0.9, cmap = cm.hot, linewidth = 0.01, antialiased = True, shade = False)# True)#, cmap = hot() colorbar(surf) #cbar.ax.set_ylabel(r'$\frac{\xi}{\omega_{0}}$', size = 24) ##cset = ax.contour(X,Y,h, zdir = 'z', offset = 0, cmap = cm.jet) #cset = ax.contour(X,Y,h, zdir = 'x', offset = 20, cmap = cm.jet) ##cset = ax.contour(X,Y,h, zdir = 'y', offset = 0, cmap = cm.jet)# puts plot of max xi vs discrete r values at r=0 plane #CS = contour(X,Y,h, colors = 'k') #man_loc = [(1,1),(2,2),(3,3),(4,4)] #clabel(CS, inline =1,fmt = '%1.1f', fontsize = 18,color = 'k', manual = man_loc) #ax.grid(on = True) ax.view_init(elev = 34, azim = -135) #zlabel(r'$\xi/\omega_{0}$', size = 21) #ylabel(r'$r$', size = 24) #xlabel(r'$(\epsilon(0) -1)$', size = 24) #text = Axes.text(self, x, y, s, **kwargs) #art3d.text_2d_to_3d(text, z, zdir)