#from matplotlib.backends.backend_pdf import PdfPages #pp = PdfPages('plots/130814_Hopkins_contour_xiMax_of_r_A.pdf') from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt c = loadtxt('output/130807_3D_A_dep.txt', unpack=True, usecols = [0]) C = (numpy.pi/2)*c r = loadtxt('output/130807_3D_A_rho.txt', unpack=True, usecols = [0]) h = loadtxt('output/130807_3D_height.txt')#, unpack=True, usecols = [0,1]) X,Y=meshgrid(C,r) h = numpy.nan_to_num(h) fig = figure() ax = fig.gca(projection = '3d') ax.text(-7, 6, 0.7, r'$\zeta/\omega_{0}$', zdir = (-1,1,-3), size = 21) figure() #contourf(X,Y,h, 1000, cmap = hot()) surf = ax.plot_surface(X,Y,h, rstride = 20, cstride = 20,alpha = 0.2, cmap = cm.gnuplot, linewidth = 0.5)#gray)#coolwarm)#bone)#hot, linewidth = 0.01, antialiased = True, shade = False)# True)#, cmap = hot() #surf = ax.plot_wireframe(X,Y,h, rstride = 20, cstride = 20,color = 'k')#True)# cmap = hot, shade = True)#,alpha = 0.9, cmap = cm.hot, linewidth = 0.01, antialiased = True, shade = False)# True)#, cmap = hot() #colorbar(surf) #cbar.ax.set_ylabel(r'$\frac{\xi}{\omega_{0}}$', size = 24) #cset = ax.contour(X,Y,h, zdir = 'z', offset = 0, cmap = cm.jet) #cset = ax.contour(X,Y,h, zdir = 'x', offset = 5, cmap = cm.jet) #cset = ax.contourf(X,Y,h, zdir = 'y', offset = 6, cmap = cm.jet)# puts plot of max xi vs discrete r values at r=0 plane #CS = contour(X,Y,h)#, colors = 'k') #man_loc = [(1,1),(2,2),(3,3),(4,4)] #clabel(CS, inline =1,fmt = '%1.1f', fontsize = 18,color = 'k', manual = man_loc) #ax.grid(on = True) ax.view_init(elev = 19, azim = -112) #zlabel(r'$\xi/\omega_{0}$', size = 21)
def drawmatrix_channels(in_m, channel_names=None, fig=None, x_tick_rot=0, size=None, cmap=plt.cm.RdBu_r, colorbar=True, color_anchor=None, title=None): r"""Creates a lower-triangle of the matrix of an nxn set of values. This is the typical format to show a symmetrical bivariate quantity (such as correlation or coherence between two different ROIs). Parameters ---------- in_m: nxn array with values of relationships between two sets of rois or channels channel_names (optional): list of strings with the labels to be applied to the channels in the input. Defaults to '0','1','2', etc. fig (optional): a matplotlib figure cmap (optional): a matplotlib colormap to be used for displaying the values of the connections on the graph title (optional): string to title the figure (can be like '$\alpha$') color_anchor (optional): determine the mapping from values to colormap if None, min and max of colormap correspond to min and max of in_m if 0, min and max of colormap correspond to max of abs(in_m) if (a,b), min and max of colormap correspond to (a,b) Returns ------- fig: a figure object """ N = in_m.shape[0] ind = np.arange(N) # the evenly spaced plot indices def channel_formatter(x, pos=None): thisind = np.clip(int(x), 0, N - 1) return channel_names[thisind] if fig is None: fig = plt.figure() if size is not None: fig.set_figwidth(size[0]) fig.set_figheight(size[1]) w = fig.get_figwidth() h = fig.get_figheight() ax_im = fig.add_subplot(1, 1, 1) # If you want to draw the colorbar: if colorbar: divider = make_axes_locatable(ax_im) ax_cb = divider.new_vertical(size="10%", pad=0.1, pack_start=True) fig.add_axes(ax_cb) # Make a copy of the input, so that you don't make changes to the original # data provided m = in_m.copy() # Null the upper triangle, so that you don't get the redundant and the # diagonal values: idx_null = triu_indices(m.shape[0]) m[idx_null] = np.nan # Extract the minimum and maximum values for scaling of the # colormap/colorbar: max_val = np.nanmax(m) min_val = np.nanmin(m) if color_anchor is None: color_min = min_val color_max = max_val elif color_anchor == 0: bound = max(abs(max_val), abs(min_val)) color_min = -bound color_max = bound else: color_min = color_anchor[0] color_max = color_anchor[1] # The call to imshow produces the matrix plot: im = ax_im.imshow(m, origin='upper', interpolation='nearest', vmin=color_min, vmax=color_max, cmap=cmap) # Formatting: ax = ax_im ax.grid(True) # Label each of the cells with the row and the column: if channel_names is not None: for i in range(0, m.shape[0]): if i < (m.shape[0] - 1): ax.text(i - 0.3, i, channel_names[i], rotation=x_tick_rot) if i > 0: ax.text(-1, i + 0.3, channel_names[i], horizontalalignment='right') ax.set_axis_off() ax.set_xticks(np.arange(N)) ax.xaxis.set_major_formatter(ticker.FuncFormatter(channel_formatter)) fig.autofmt_xdate(rotation=x_tick_rot) ax.set_yticks(np.arange(N)) ax.set_yticklabels(channel_names) ax.set_ybound([-0.5, N - 0.5]) ax.set_xbound([-0.5, N - 1.5]) # Make the tick-marks invisible: for line in ax.xaxis.get_ticklines(): line.set_markeredgewidth(0) for line in ax.yaxis.get_ticklines(): line.set_markeredgewidth(0) ax.set_axis_off() if title is not None: ax.set_title(title) # The following produces the colorbar and sets the ticks if colorbar: # Set the ticks - if 0 is in the interval of values, set that, as well # as the maximal and minimal values: if min_val < 0: ticks = [color_min, min_val, 0, max_val, color_max] # Otherwise - only set the minimal and maximal value: else: ticks = [color_min, min_val, max_val, color_max] # This makes the colorbar: cb = fig.colorbar(im, cax=ax_cb, orientation='horizontal', cmap=cmap, norm=im.norm, boundaries=np.linspace(color_min, color_max, 256), ticks=ticks, format='%.2f') # Set the current figure active axis to be the top-one, which is the one # most likely to be operated on by users later on fig.sca(ax) return fig