def add_particles(self, particle_position, radius, radius_scale=1.0, color=(1, 1, 1), color_by='', alpha=1.0, alpha_by='', kernel=1.0): if len(color_by) == len(particle_position): if np.max(color_by) > 1.0: color_by /= np.max(color_by) import matplotlib.cm as cm #color = cm.winter_r(color_by) color = cm.GnBu(color_by) color = color[:, 0:3] if len(alpha_by) == len(particle_position): if np.max(alpha_by) > 1.0: alpha_by /= np.max(alpha_by) alpha = alpha_by self.particles.append({ 'pos': particle_position, 'color': color, 'alpha': alpha, 'radius': radius, 'radius_scale': radius_scale, 'kernel': kernel })
def get_cmaps_biasCNN(): """ Create color maps """ nsteps = 8 colors_all_1 = np.moveaxis( np.expand_dims(cm.Greys(np.linspace(0, 1, nsteps)), axis=2), [0, 1, 2], [0, 2, 1]) colors_all_2 = np.moveaxis( np.expand_dims(cm.GnBu(np.linspace(0, 1, nsteps)), axis=2), [0, 1, 2], [0, 2, 1]) colors_all_3 = np.moveaxis( np.expand_dims(cm.YlGn(np.linspace(0, 1, nsteps)), axis=2), [0, 1, 2], [0, 2, 1]) colors_all_4 = np.moveaxis( np.expand_dims(cm.OrRd(np.linspace(0, 1, nsteps)), axis=2), [0, 1, 2], [0, 2, 1]) colors_all = np.concatenate((colors_all_1[np.arange(2, nsteps, 1), :, :], colors_all_2[np.arange(2, nsteps, 1), :, :], colors_all_3[np.arange(2, nsteps, 1), :, :], colors_all_4[np.arange(2, nsteps, 1), :, :], colors_all_2[np.arange(2, nsteps, 1), :, :]), axis=1) int_inds = [3, 3, 3, 3] colors_main = np.asarray( [colors_all[int_inds[ii], ii, :] for ii in range(np.size(int_inds))]) colors_main = np.concatenate((colors_main, colors_all[5, 1:2, :]), axis=0) # plot the color map #plt.figure();plt.imshow(np.expand_dims(colors_main,axis=0)) colors_sf = np.moveaxis( np.expand_dims(cm.GnBu(np.linspace(0, 1, 8)), axis=2), [0, 1, 2], [0, 2, 1]) colors_sf = colors_sf[np.arange(2, 8, 1), :, :] return colors_main, colors_sf
def plot_cube(cube, angle=320): '''cube must be 3d ''' cube = normalize(cube) cube = np.expand_dims(cube, axis=-1) #28x28x1 facecolors = cm.GnBu(cube) #28x28x4 filled = np.ones(cube.shape) #28x28x1 x, y, z = np.indices(np.array(cube.shape) + 1) #29x29x2 for each axis fig = plt.figure(figsize=[6, 6]) ax = fig.gca(projection='3d') ax.view_init(30, angle) ax.set_axis_off() ax.set_box_aspect((cube.shape[0], cube.shape[1], 20)) ax.voxels(x, y, z, filled=filled, facecolors=facecolors, linewidth=0.0001) plt.show()
def Visual3D(self, draw_edge=True): fig = plt.figure(figsize=[10, 10]) ax = fig.gca(projection='3d') pos = self.pos x = pos.T[0] y = pos.T[1] z = pos.T[2] ax.scatter(x, y, z, c='r') edge = set() for i in range(self.n): for j in range(self.n): if (i != j and self.adjacence[i, j] > 1.e-5): x1, x2 = pos[i][0], pos[j][0] y1, y2 = pos[i][1], pos[j][1] z1, z2 = pos[i][2], pos[j][2] if (x1 > x2): x1, x2 = x2, x1 y1, y2 = y2, y1 z1, z2 = z2, z1 edge.add(((x1, x2), (y1, y2), (z1, z2))) edge = list(edge) if (draw_edge): for i in range(len(edge)): ax.plot(*edge[i]) plt.show() #Projection2D edge = set() fig = plt.figure(figsize=[10, 10]) for i in range(self.n): for j in range(self.n): if (i != j and self.adjacence[i, j] > 1.e-5): x1, x2 = pos[i][0], pos[j][0] y1, y2 = pos[i][1], pos[j][1] if (x1 > x2): x1, x2 = x2, x1 y1, y2 = y2, y1 edge.add(((x1, x2), (y1, y2))) edge = list(edge) if (draw_edge): for i in range(len(edge)): plt.plot(*edge[i], color='black', linewidth=0.3) point_c = pos[:, 2] / np.max(pos[:, 2]) colors = cm.rainbow(point_c) plt.scatter(x, y, color=colors) plt.show() #PCA Verion fig = plt.figure(figsize=[10, 10]) edge = set() pca = PCA(2) pca.fit(self.pos) pos = pca.transform(self.pos) for i in range(self.n): for j in range(self.n): if (i != j and self.adjacence[i, j] > 1.e-5): x1, x2 = pos[i][0], pos[j][0] y1, y2 = pos[i][1], pos[j][1] if (x1 > x2): x1, x2 = x2, x1 y1, y2 = y2, y1 edge.add(((x1, x2), (y1, y2))) edge = list(edge) for i in range(len(edge)): plt.plot(*edge[i], color='black', linewidth=0.3) colors = cm.GnBu(point_c) plt.scatter(pos.T[0], pos.T[1], color=colors) plt.show()
cmap = cm.GnBu bounds = np.linspace(0, 40, 41) norm = colors.BoundaryNorm(bounds, cmap.N) #bounds = np.linspace(0,120,21) #norm = colors.BoundaryNorm(bounds, ncolors=256) #print norm(100) #sys.exit() for key, value in patches.iteritems(): print key + " " + str(color[key]) ax.add_collection( PatchCollection(value, facecolor=cm.GnBu(norm(color[key])), cmap=cm.GnBu, edgecolor='k', linewidth=1., zorder=2)) # ax.add_collection(PatchCollection(value, facecolors=color[key], cmap=cm.GnBu, edgecolor='k', # linewidth=1., zorder=2, norm=norm)) ### Plot colorbar #set room for colorbar fig.subplots_adjust(right=0.85) axcb = fig.add_axes([0.87, 0.15, 0.03, 0.7]) cb = mpl.colorbar.ColorbarBase(axcb,
import csv import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdate import time import matplotlib.colors as colors_fun import matplotlib.cm as cm import plotly.plotly as py import plotly.graph_objs as go import pdb file = open('homeless_by_county.csv', 'rt') reader = csv.reader(file) data = [x for x in reader] county = [x[0] for x in data] number = [x[1] for x in data] colors = cm.GnBu(np.linspace(1, 0, len(number)) ) colors = [colors_fun.rgb2hex(color) for color in colors] trace = go.Pie(labels=county, values=number, hoverinfo='label+percent', textinfo='value', textfont=dict(size=20), marker=dict(colors=colors, line=dict(color='#000000', width=0.5))) py.iplot([trace], filename='Homeless-by-county')