コード例 #1
0
    def render(self):
        # Convert first column of dataframe to list
        pie_data = self.table.iloc[:, 0].to_list()

        # Draw pie chart
        self.fig, self.ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(aspect="equal"))
        cs = cm.tab20c(np.arange(20))  # set color palette with a 20 different colors
        self.ax.pie(
            pie_data, colors=cs, autopct='%1.2f%%', pctdistance=0.8, textprops={'color': '#333333', 'weight': 'bold'}
        )
        self.log.info("Pie chart '%s' rendered succesfully", self.title)
コード例 #2
0
def create_plots(dict_counter, name, jaro, text_on=False, which_text=None):
    distances = {}
    group = {}

    labels = []
    for k1 in dict_counter.keys():
        for k2 in dict_counter[k1].keys():
            name1 = f"{k2}_{k1}"
            distances[name1] = Levenshtein.jaro_winkler(
                k1, k2) + 0.0000001 * np.random.random()
            group[name1] = k1
            labels.append(k1)
    testa = list(set(group.values()))
    best_word = find_first_word(testa)
    testa.remove(best_word)
    testb = sort_jaro_worst(best_word, testa[:])
    colors = []
    if len(testb) <= 20:
        cm_subsection1 = linspace(0.0, 1.0, len(testb))
    elif len(testb) > 20 and len(testb) <= 40:
        cm_subsection1 = linspace(0.0, 1.0, 20)
        cm_subsection2 = linspace(0.0, 1.0, len(testb) - 20)
    else:
        cm_subsection1 = linspace(0.0, 1.0, 20)
        cm_subsection2 = linspace(0.0, 1.0, 20)
        cm_subsection3 = linspace(0.0, 1.0, len(testb) - 40)
    for i in range(len(testb)):
        if i < 20:
            colors.append(cm.tab20(cm_subsection1[i]))
        elif i >= 20 and i < 39:
            colors.append(cm.tab20b(cm_subsection2[i - 20]))
        else:
            colors.append(cm.tab20c(cm_subsection3[i - 40]))
    colorsdict = dict(zip(testb, colors))
    df = pd.Series(distances)

    c = [colorsdict.get(group[label], 'k') for label in df.index]
    fig, aa = plt.subplots(figsize=(11, 9))
    aa.axes.get_xaxis().set_visible(False)
    aa.set_xlim(-11, 0.1)
    aa.set_ylim(jaro-.005, 1.005)
    scatter_items = []
    legend_items = []
    for t, d, ca, l in zip([0 for _ in df], df, c, df.index):
        scatter = aa.scatter(t, d, c=ca, alpha=0.5,
                             edgecolors='none')

    for l, colo in zip(colorsdict.keys(), colorsdict.values()):

        scatter_items += aa.plot((-100,), (-100,),
                                 ls='none', marker='.', c=colo, label=l)
    aa.legend(handles=scatter_items, title="Terms", fontsize=7,
              loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=10)
    aa.spines['left'].set_visible(False)
    aa.spines['top'].set_visible(False)
    aa.spines['bottom'].set_visible(False)
    aa.yaxis.set_label_position('right')
    aa.yaxis.set_ticks_position('right')
    plt.tight_layout()

    # We add a rectangle to make sure the labels don't move to the right
    patch = patches.Rectangle((-0.1, 0), 0.2, 100, fill=False, alpha=0)
    aa.add_patch(patch)
    texts = []
    np.random.seed(0)
    for label, y in zip(df.index, df):
        texts += [aa.text(-.1+np.random.random()/1000, y, label.split("_")[0],
                          color=colorsdict.get(group[label], 'k'), fontsize=9)]

    adjust_text(texts, [0 for _ in df], df.values,  ha='right', va='center', add_objects=[patch],
                expand_text=(1.1, 1.25),
                force_text=(0.75, 0), force_objects=(1, 0),
                autoalign=False, only_move={'points': 'x', 'text': 'x', 'objects': 'x'})
    plt.savefig(f'{name}_scatter.png')
    print(len(list(set(group.values()))))
    print(len(testb))
    print(testb)
コード例 #3
0
#####
from matplotlib import cm
words = ['Biological Process', 'Molecular Function', 'Cellular Component']
pie_colors = {'Set3':cm.Set3(np.arange(12)/12.),
              'Set2':cm.Set2(np.arange(8)/8.),
              'Set1':cm.Set1(np.arange(9)/9.),
              'Pastel2':cm.Pastel2(np.arange(8)/8.),
              'Pastel1':cm.Pastel1(np.arange(9)/9.),
              'Dark2':cm.Dark2(np.arange(8)/8.),
              'Paired':cm.Paired(np.arange(12)/12.),
              'Accent':cm.Accent(np.arange(8)/8.),
              'Spectral':cm.Spectral(np.arange(11)/11.),
              'tab20':cm.tab20(np.arange(20)/20.),
              'tab20b':cm.tab20b(np.arange(20)/20.),
              'tab20c':cm.tab20c(np.arange(20)/20.)}
colors = {'#8DD3C7':pie_colors['Set3'][0:1], '#FFFFB3':pie_colors['Set3'][1:2],
         '#BEBADA':pie_colors['Set3'][2:3], '#FB8072':pie_colors['Set3'][3:4],
         '#80B1D3':pie_colors['Set3'][4:5], '#FDB462':pie_colors['Set3'][5:6],
         '#B3DE69':pie_colors['Set3'][6:7], '#FCCDE5':pie_colors['Set3'][7:8],
         '#D9D9D9':pie_colors['Set3'][8:9], '#BC80BD':pie_colors['Set3'][9:10],
         '#CCEBC5':pie_colors['Set3'][10:11], '#FFED6F':pie_colors['Set3'][11:12]}
sizes = ['3x3','4x4','5x5','6x6','7x7','8x8','9x9','10x10']
escala_uno = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]


#from __future__ import division
#import matplotlib.pyplot as plt
#from matplotlib import colors as mcolors
#colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)
# lista de colores python
コード例 #4
0
def get_colour(data):
    drug, dose, recover, period = data
    dose = float(dose)
    #print drug

    if drug == 'PYY': # graded green
        if dose == 300:
            c = cm.tab20c(0.4)

        elif dose == 7.5:
            c = cm.tab20c(0.45)

        elif dose == 1.5:
            c = cm.tab20c(0.5)

        else:
            print 'ERROR with drug %s, dose %f' %(drug, dose)

    elif drug == 'LiCl': # graded orange
        if dose == 64:
            c = cm.tab20c(0.2)

        elif dose == 32:
            c = cm.tab20c(0.25)

        elif dose == 16:
            c = cm.tab20c(0.3)   
            
        else:
            print 'ERROR with drug %s, dose %f' %(drug, dose)         

    elif drug == 'GLP-1': # graded violet
        if dose == 300:
            c = cm.tab20c(0.6)

        elif dose == 100:
            c = cm.tab20c(0.65)

        elif dose == 30:
            c = cm.tab20c(0.7)   
            
        else:
            print 'ERROR with drug %s, dose %f' %(drug, dose)        

    elif drug == 'sib':
        #c = cm.tab20c(0.6) # yellow
        c= 'y'

    elif drug == 'Ex-4':
        #c = cm.tab20c(0.8) # grey
        c = 'k'

    elif drug == 'Lep':
        #c = cm.tab20c(0) # red
        c = 'r'

    elif drug == 'saline': # graded blue
        if recover == 'A':
            c = cm.tab20c(0.8) # grey

        elif recover == 'R':
            c = cm.tab20c(0) # blue

    elif drug == 'vehicle':
        c = cm.tab20c(0.05)

    else:
        print 'ERROR with drug %s' %(drug)

    return c
コード例 #5
0
def df_input(dfUniprot=DataFrame([])):

    num_phylum = len(dfUniprot.PHYLUM.drop_duplicates())
    from matplotlib import cm
    set3 = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.Set3(np.arange(12) / 12.)
    ]
    set2 = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.Set2(np.arange(8) / 8.)
    ]
    set1 = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.Set1(np.arange(9) / 9.)
    ]
    pastel2 = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.Pastel2(np.arange(8) / 8.)
    ]
    pastel1 = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.Pastel1(np.arange(9) / 9.)
    ]
    dark2 = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.Dark2(np.arange(8) / 8.)
    ]
    paired = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.Paired(np.arange(12) / 12.)
    ]
    accent = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.Accent(np.arange(8) / 8.)
    ]
    spectral = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.Spectral(np.arange(11) / 11.)
    ]
    tab20 = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.tab20(np.arange(20) / 20.)
    ]
    tab20b = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.tab20b(np.arange(20) / 20.)
    ]
    tab20c = [
        matplotlib.colors.rgb2hex(tuple(i))
        for i in cm.tab20c(np.arange(20) / 20.)
    ]

    Colors1 = set2 + set1 + dark2 + paired + accent + spectral + tab20 + tab20b + tab20c
    Colors2 = accent + spectral + tab20 + tab20b + tab20c + set1 + set2 + dark2 + paired
    Colors3 = dark2 + paired + accent + spectral + tab20 + tab20b + tab20c + set1 + set2
    Colors4 = tab20b + tab20c + set1 + set2 + dark2 + paired + accent + spectral + tab20
    Colors5 = spectral + tab20 + tab20b + tab20c + set1 + set2 + dark2 + paired + accent

    pie_colors = {
        'Set3': cm.Set3(np.arange(12) / 12.),
        'Set2': cm.Set2(np.arange(8) / 8.),
        'Set1': cm.Set1(np.arange(9) / 9.),
        'Pastel2': cm.Pastel2(np.arange(8) / 8.),
        'Pastel1': cm.Pastel1(np.arange(9) / 9.),
        'Dark2': cm.Dark2(np.arange(8) / 8.),
        'Paired': cm.Paired(np.arange(12) / 12.),
        'Accent': cm.Accent(np.arange(8) / 8.),
        'Spectral': cm.Spectral(np.arange(11) / 11.),
        'tab20': cm.tab20(np.arange(20) / 20.),
        'tab20b': cm.tab20b(np.arange(20) / 20.),
        'tab20c': cm.tab20c(np.arange(20) / 20.)
    }
    circle_colors = {
        'Colors1': Colors1[0:num_phylum],
        'Colors2': Colors2[0:num_phylum],
        'Colors3': Colors3[0:num_phylum],
        'Colors4': Colors4[0:num_phylum],
        'Colors5': Colors5[0:num_phylum]
    }

    def tax_colors(color_list=circle_colors['Colors1'], taxx=dfUniprot):
        tax_cols = [
            'Entry', 'Tax_ID', 'KINGDOM', 'PHYLUM', 'CLASS', 'ORDER', 'FAMILY',
            'GENUS', 'SPECIES', 'Organism'
        ]
        new2 = taxx[tax_cols].drop_duplicates()
        #>>>>>>>>>>>>>>>>>>>>>>>>>>>
        phylum0 = new2.groupby(['PHYLUM'
                                ]).Entry.count().reset_index().sort_values(
                                    by='Entry',
                                    ascending=False).reset_index(drop=True)
        asign_color = {}
        for i, j in zip(phylum0.PHYLUM, color_list):
            if i == 'NA':
                asign_color[i] = 'black'
            else:
                asign_color[i] = j
        phylum0['phy_col'] = list(asign_color.values())
        # distribución de Class
        phylum1 = new2.groupby(['PHYLUM', 'CLASS']).Entry.count().reset_index()
        class0 = []
        class0_colors = []
        for i in phylum0.PHYLUM:
            for j in phylum1.PHYLUM:
                if i == j:
                    class0_colors.append(asign_color[j])
                    class0.append(phylum1[phylum1.PHYLUM == i].sort_values(
                        by='Entry', ascending=False).reset_index(drop=True))
                else:
                    pass
        class1 = pd.concat(class0).drop_duplicates()
        class1['class_col'] = class0_colors
        class0_colors_corregido = []
        for index, row in class1.iterrows():
            if row.PHYLUM == 'NA':
                if row.CLASS == 'NA':
                    class0_colors_corregido.append(row.class_col)
                else:
                    class0_colors_corregido.append('grey')
            else:
                if row.CLASS == 'NA':
                    class0_colors_corregido.append('black')
                else:
                    class0_colors_corregido.append(row.class_col)
        class1['class_col'] = class0_colors_corregido
        class11 = class1.groupby(['CLASS'
                                  ]).Entry.sum().reset_index().sort_values(
                                      by='Entry',
                                      ascending=False).reset_index(drop=True)
        class11 = class11.merge(class1[['CLASS',
                                        'class_col']].drop_duplicates(),
                                on='CLASS',
                                how='left')
        # distribución de Order
        phylum2 = new2.groupby(['PHYLUM', 'CLASS',
                                'ORDER']).Entry.count().reset_index()
        order0 = []
        order0_colors = []
        for i in phylum0.PHYLUM:
            for j in phylum2.PHYLUM:
                if i == j:
                    order0_colors.append(asign_color[j])
                    order0.append(phylum2[phylum2.PHYLUM == i].sort_values(
                        by='Entry', ascending=False).reset_index(drop=True))
                else:
                    pass
        order1 = pd.concat(order0).drop_duplicates()
        order1['order_col'] = order0_colors
        order0_colors_corregido = []
        for index, row in order1.iterrows():
            if row.PHYLUM == 'NA':
                if row.ORDER == 'NA':
                    order0_colors_corregido.append(row.order_col)
                else:
                    order0_colors_corregido.append('grey')
            else:
                if row.ORDER == 'NA':
                    order0_colors_corregido.append('black')
                else:
                    order0_colors_corregido.append(row.order_col)
        order1['order_col'] = order0_colors_corregido
        order11 = order1.groupby(['ORDER'
                                  ]).Entry.sum().reset_index().sort_values(
                                      by='Entry',
                                      ascending=False).reset_index(drop=True)
        order11 = order11.merge(order1[['ORDER',
                                        'order_col']].drop_duplicates(),
                                on='ORDER',
                                how='left')
        # distribución de Genus
        phylum3 = new2.groupby(['PHYLUM', 'CLASS', 'ORDER',
                                'GENUS']).Entry.count().reset_index()
        genus0 = []
        genus0_colors = []
        for i in phylum0.PHYLUM:
            for j in phylum3.PHYLUM:
                if i == j:
                    genus0_colors.append(asign_color[j])
                    genus0.append(phylum3[phylum3.PHYLUM == i].sort_values(
                        by='Entry', ascending=False).reset_index(drop=True))
                else:
                    pass
        genus1 = pd.concat(genus0).drop_duplicates()
        genus1['genus_col'] = genus0_colors
        genus0_colors_corregido = []
        for index, row in genus1.iterrows():
            if row.PHYLUM == 'NA':
                if row.GENUS == 'NA':
                    genus0_colors_corregido.append(row.genus_col)
                else:
                    genus0_colors_corregido.append('grey')
            else:
                if row.GENUS == 'NA':
                    genus0_colors_corregido.append('black')
                else:
                    genus0_colors_corregido.append(row.genus_col)
        genus1['genus_col'] = genus0_colors_corregido
        genus11 = genus1.groupby(['GENUS'
                                  ]).Entry.sum().reset_index().sort_values(
                                      by='Entry',
                                      ascending=False).reset_index(drop=True)
        genus11 = genus11.merge(genus1[['GENUS',
                                        'genus_col']].drop_duplicates(),
                                on='GENUS',
                                how='left')
        # distribución de Organism
        phylum4 = new2.groupby(
            ['PHYLUM', 'CLASS', 'ORDER', 'GENUS',
             'Organism']).Entry.count().reset_index()
        org0 = []
        org0_colors = []
        for i in phylum0.PHYLUM:
            for j in phylum4.PHYLUM:
                if i == j:
                    org0_colors.append(asign_color[j])
                    org0.append(phylum4[phylum4.PHYLUM == i].sort_values(
                        by='Entry', ascending=False).reset_index(drop=True))
                else:
                    pass
        org1 = pd.concat(org0).drop_duplicates()
        org1['org_col'] = org0_colors
        org0_colors_corregido = []
        for index, row in org1.iterrows():
            if row.PHYLUM == 'NA':
                if row.Organism == 'NA':
                    org0_colors_corregido.append(row.org_col)
                else:
                    org0_colors_corregido.append('grey')
            else:
                if row.Organism == 'NA':
                    org0_colors_corregido.append('black')
                else:
                    org0_colors_corregido.append(row.org_col)
        org1['org_col'] = org0_colors_corregido
        org11 = org1.groupby(['Organism'
                              ]).Entry.sum().reset_index().sort_values(
                                  by='Entry',
                                  ascending=False).reset_index(drop=True)
        org11 = org11.merge(org1[['Organism', 'org_col']].drop_duplicates(),
                            on='Organism',
                            how='left')
        os.makedirs('tax', exist_ok=True)
        return phylum0.to_csv('tax/phylum0.tsv', sep = '\t', index = None),\
            class1.to_csv('tax/class1.tsv', sep = '\t', index = None),\
            class11.to_csv('tax/class11.tsv', sep = '\t', index = None),\
            order1.to_csv('tax/order1.tsv', sep = '\t', index = None),\
            order11.to_csv('tax/order11.tsv', sep = '\t', index = None),\
            genus1.to_csv('tax/genus1.tsv', sep = '\t', index = None),\
            genus11.to_csv('tax/genus11.tsv', sep = '\t', index = None),\
            org1.to_csv('tax/org1.tsv', sep = '\t', index = None),\
            org11.to_csv('tax/org11.tsv', sep = '\t', index = None)

    alfas = {
        'Lineage*': [1, 1, 1, 1, 1],
        'Phylum': [1, 0.3, 0.3, 0.3, 0.3],
        'Class': [0.3, 1, 0.3, 0.3, 0.3],
        'Order': [0.3, 0.3, 1, 0.3, 0.3],
        'Genus': [0.3, 0.3, 0.3, 1, 0.3],
        'Species': [0.3, 0.3, 0.3, 0.3, 1],
        'Gradient1*': [1, 0.85, 0.7, 0.55, 0.4],
        'Gradient2*': [0.4, 0.55, 0.7, 0.85, 1],
        'Attenuate*': [0.3, 0.3, 0.3, 0.3, 0.3],
        'None*': [0, 0, 0, 0, 0]
    }

    def circle_lineage(alphas=alfas['Phylum']):
        #fig, ax = plt.subplots(111, facecolor= 'white')
        #fig, ax = plt.subplot(111)
        phylum0 = pd.read_csv('tax/phylum0.tsv', sep='\t').fillna('NA')
        class1 = pd.read_csv('tax/class1.tsv', sep='\t').fillna('NA')
        order1 = pd.read_csv('tax/order1.tsv', sep='\t').fillna('NA')
        genus1 = pd.read_csv('tax/genus1.tsv', sep='\t').fillna('NA')
        org1 = pd.read_csv('tax/org1.tsv', sep='\t').fillna('NA')

        radio = 0.5

        linaje = [phylum0, class1, order1, genus1, org1]
        #colores = [list(asign_color.values()), class0_colors, order0_colors, genus0_colors, org0_colors]
        colores = ['phy_col', 'class_col', 'order_col', 'genus_col', 'org_col']
        pat = []
        size = -.205
        for i, j, k in zip(linaje, colores, alphas):
            size += .205
            patches, texts = plt.pie(
                i.Entry,
                radius=radio + size,
                labels=None,
                labeldistance=0.8,
                rotatelabels=True,
                colors=
                i[j],  # new_colors(valor = len(i.Entry), col = 'nipy_spectral'),
                wedgeprops=dict(width=0.2, edgecolor='white', alpha=k),
                textprops=dict(size=10))
            pat.append(patches)

        #plt.legend(pat[0], df_phylum.PHYLUM, loc=2,fontsize=13,labelspacing = 0.4,
        #          bbox_to_anchor=(1.05, 1),frameon=False)

        plt.gca().set(aspect='equal')
        plt.title('Root', fontsize=10, x=0.5, y=0.465)
        plt.text(-1.8,
                 1.35,
                 'Lineage',
                 fontsize=15,
                 ha='left',
                 va='center',
                 color='black')
        #plt.title('Lineage',fontsize=20, fontweight='bold', x = -0.17, y = 1)
        #plt.text(1.1, 1.35, linaje_seleccionado, fontsize = 15, ha='left', va='center',
        #                    color='black')
        #>>>>>>>>>>>>>>>>>>>>>>>
        #### insetplot
        #ax2 = plt.axes([0.1, 0.66, 0.13, 0.14])
        ax2 = plt.axes([-0.07, 1.71, 0.17, 0.18])
        logo = [20, 20, 20, 20, 20, 20, 20, 20]
        logo_col = [
            'white', 'white', 'black', 'white', 'white', 'white', 'white',
            'white'
        ]
        logo_col1 = [
            'white', 'white', 'black', 'black', 'black', 'black', 'black',
            'black'
        ]
        radio = 0.5
        linaje = [logo, logo, logo, logo, logo]
        colores = [logo_col1, logo_col, logo_col, logo_col, logo_col]
        name_linaje = ['Phylum', 'Class', 'Order', 'Genus', 'Species']

        pat = []
        size = -.44
        pos = -.18
        for i, j, k, l in zip(linaje, colores, name_linaje, alphas):
            pos += .47
            size += .44
            ax2.pie(i,
                    radius=radio + size,
                    labels=None,
                    colors=j,
                    wedgeprops=dict(width=0.35, edgecolor='white', alpha=l),
                    textprops=dict(size=10))
            ax2.text(0.1,
                     pos,
                     k,
                     fontsize=9,
                     ha='left',
                     va='center',
                     fontweight='bold',
                     alpha=l)  #color='black'

    def barras_tax(df=DataFrame([]),
                   column=0,
                   dim=111,
                   title='',
                   row_num=10,
                   color=['#ff7f0e'],
                   size_x=8,
                   size_y=10,
                   ylabel_text='',
                   xlabel=10,
                   ylabel=10,
                   size_title=15,
                   size_bartxt=10,
                   sep=1.2):
        if len(df) == 0:
            print('Data frame sin datos')
        else:
            #plt.subplot(dim, facecolor= 'white')
            barWidth = 0.9
            if row_num == len(df):
                ejey = list(df.iloc[0:len(df), 1])
                val = max(ejey)
                ejex = list(df.iloc[0:len(df), column])
                colores = list(df.iloc[0:len(df), 2])
                borde = list(
                    np.repeat('white', len(df.iloc[0:row_num, column])))
                linea = list(np.repeat(0, len(df.iloc[0:row_num, column])))
            if row_num < len(df):
                ejey = list(df.iloc[0:row_num,
                                    1]) + [df.iloc[row_num:len(df), 1].sum()]
                val = max(ejey)
                ejex = list(df.iloc[0:row_num, column]) + ['Others']
                borde = list(
                    np.repeat('white', len(df.iloc[0:row_num,
                                                   column]))) + ['black']
                colores = list(df.iloc[0:row_num, 2]) + ['linen']
                linea = list(np.repeat(0, len(df.iloc[0:row_num,
                                                      column]))) + [1]
            if row_num > len(df):
                ejey = list(df.iloc[0:len(df), 1])
                val = max(ejey)
                ejex = list(df.iloc[0:len(df), column])
                borde = list(
                    np.repeat('white', len(df.iloc[0:row_num, column])))
                colores = list(df.iloc[0:len(df), 2])
                linea = list(np.repeat(0, len(df.iloc[0:row_num, column])))

            for i, j, k, l, m in zip(ejex, ejey, borde, colores, linea):
                plt.barh(i,
                         j,
                         color=l,
                         align='center',
                         height=0.7,
                         linewidth=m,
                         alpha=1,
                         edgecolor=k)
            plt.gca().spines['right'].set_visible(False)
            plt.gca().spines['top'].set_visible(False)
            plt.gca().spines['bottom'].set_position(('data', -0.6))
            plt.gca().spines['left'].set_visible(False)
            plt.title(title, size=size_title, loc='left')
            plt.tick_params(axis="y", color="gray")
            plt.yticks(size=size_y)

            v1 = -50
            v2 = 0
            v3 = 0
            for i in range(10000):
                v1 += 50
                v2 += 50
                v3 += 10
                if v1 <= max(list(ejey)) < v2:
                    #print(v3, v1, val, v2)
                    escala = v3

            plt.xticks(range(0, val, escala), size=size_x)  #fontweight='bold'
            plt.ylabel(ylabel_text, size=ylabel)
            plt.xlabel("Number of Proteins", size=xlabel)
            #plt.tick_params(top = 'on', bottom = 'on', right = 'on', left = 'on')
            #plt.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False)

            for j, k in zip(ejey, range(0, len(ejey))):
                plt.text(j + sep,
                         k - 0.2,
                         j,
                         size=size_bartxt,
                         ha='left',
                         color='black')

    import ipywidgets as widgets
    from ipywidgets import interact, interactive, fixed, interact_manual, Button, HBox, VBox, IntSlider, Label, IntRangeSlider
    from ipywidgets import Checkbox, RadioButtons
    from ipywidgets import Button, Layout
    alfas = {
        'Lineage*': [1, 1, 1, 1, 1],
        'Phylum': [1, 0.3, 0.3, 0.3, 0.3],
        'Class': [0.3, 1, 0.3, 0.3, 0.3],
        'Order': [0.3, 0.3, 1, 0.3, 0.3],
        'Genus': [0.3, 0.3, 0.3, 1, 0.3],
        'Species': [0.3, 0.3, 0.3, 0.3, 1],
        'Gradient1*': [1, 0.85, 0.7, 0.55, 0.4],
        'Gradient2*': [0.4, 0.55, 0.7, 0.85, 1],
        'Attenuate*': [0.3, 0.3, 0.3, 0.3, 0.3],
        'None*': [0, 0, 0, 0, 0]
    }
    plotss = ['Phylum', 'Class', 'Order', 'Genus', 'Species']
    posicion_subplots = []
    n = 0.9
    while n < 2:
        n += 0.1
        posicion_subplots.append(np.around(n, 1))

    color_a6 = widgets.Dropdown(options=list(circle_colors.keys()),
                                value='Colors1',
                                description='Colors:',
                                disabled=False,
                                button_style='',
                                layout=Layout(width='20%', height='25px'))
    a6 = widgets.Dropdown(options=list(alfas.keys()),
                          description='Chart 1:',
                          value='Phylum',
                          disabled=False,
                          button_style='',
                          layout=Layout(width='20%', height='25px'))
    a61 = widgets.Dropdown(options=plotss,
                           description='Chart 2:',
                           disabled=False,
                           button_style='',
                           layout=Layout(width='20%', height='25px'))
    pos_sub1 = widgets.Dropdown(options=posicion_subplots,
                                value=1.3,
                                description='xloc1:',
                                disabled=False,
                                layout=Layout(width='15%', height='25px'))
    pos_sub2 = widgets.Dropdown(options=posicion_subplots,
                                value=1.3,
                                description='xloc2:',
                                disabled=False,
                                layout=Layout(width='15%', height='25px'))
    b6 = widgets.Dropdown(options=list(range(0, 101)),
                          value=10,
                          description='rows1:',
                          disabled=False,
                          layout=Layout(width='15%', height='25px'))
    c6 = widgets.Dropdown(options=list(range(0, 101)),
                          value=10,
                          description='rows2:',
                          disabled=False,
                          layout=Layout(width='15%', height='25px'))
    z6 = widgets.ToggleButton(value=False,
                              description='Save Chart',
                              disabled=False,
                              button_style='',
                              tooltip='Description')
    o6 = widgets.Dropdown(options=[0, 0.25, 0.5, 0.75] + list(range(0, 201)),
                          value=3,
                          description='sep1:',
                          disabled=False,
                          layout=Layout(width='15%', height='25px'))
    o61 = widgets.Dropdown(options=[0, 0.25, 0.5, 0.75] + list(range(0, 201)),
                           value=3,
                           description='sep2:',
                           disabled=False,
                           layout=Layout(width='15%', height='25px'))

    d6 = widgets.Dropdown(options=list(range(0, 51)),
                          value=8,
                          description='size_y1:',
                          disabled=False,
                          layout=Layout(width='15%', height='25px'))
    d61 = widgets.Dropdown(options=list(range(0, 51)),
                           value=8,
                           description='size_y2:',
                           disabled=False,
                           layout=Layout(width='15%', height='25px'))
    g6 = widgets.Dropdown(options=list(range(0, 51)),
                          value=8,
                          description='bartxt1:',
                          disabled=False,
                          layout=Layout(width='15%', height='25px'))
    g61 = widgets.Dropdown(options=list(range(0, 51)),
                           value=8,
                           description='bartxt2:',
                           disabled=False,
                           layout=Layout(width='15%', height='25px'))

    xxx = Button(layout=Layout(width='5%', height='25px'), disabled=True)
    xxx.style.button_color = 'white'
    yyy = Button(layout=Layout(width='94%', height='5px'), disabled=True)
    yyy.style.button_color = 'red'

    ww = widgets.HBox([color_a6, xxx, z6])
    w6 = widgets.HBox([
        a6,
        b6,
        o6,
        d6,
        g6,
        pos_sub1,
    ])
    w7 = widgets.HBox([
        a61,
        c6,
        o61,
        d61,
        g61,
        pos_sub2,
    ])
    w8 = widgets.VBox([w6, w7, yyy])

    ######

    def col(color_a6):
        tax_colors(color_list=circle_colors[color_a6], taxx=dfUniprot)

    out7 = widgets.interactive_output(col, {'color_a6': color_a6})

    def box1(a6, a61, pos_sub1, pos_sub2, b6, c6, z6, o6, o61, d6, d61, g6,
             g61):
        yetiquetas_plot1 = {
            'Lineage*': 'Phylum',
            'Phylum': 'Phylum',
            'Class': 'Class',
            'Order': 'Order',
            'Genus': 'Genus',
            'Species': 'Species',
            'Gradient1*': 'Phylum',
            'Gradient2*': 'Phylum',
            'Attenuate*': 'Phylum',
            'None*': 'Phylum'
        }
        plots1 = {
            'Lineage*': pd.read_csv('tax/phylum0.tsv', sep='\t').fillna('NA'),
            'Phylum': pd.read_csv('tax/phylum0.tsv', sep='\t').fillna('NA'),
            'Class': pd.read_csv('tax/class11.tsv', sep='\t').fillna('NA'),
            'Order': pd.read_csv('tax/order11.tsv', sep='\t').fillna('NA'),
            'Genus': pd.read_csv('tax/genus11.tsv', sep='\t').fillna('NA'),
            'Species': pd.read_csv('tax/org11.tsv', sep='\t').fillna('NA'),
            'Gradient1*': pd.read_csv('tax/phylum0.tsv',
                                      sep='\t').fillna('NA'),
            'Gradient2*': pd.read_csv('tax/phylum0.tsv',
                                      sep='\t').fillna('NA'),
            'Attenuate*': pd.read_csv('tax/phylum0.tsv',
                                      sep='\t').fillna('NA'),
            'None*': pd.read_csv('tax/phylum0.tsv', sep='\t').fillna('NA')
        }
        plots2 = {
            'Phylum': pd.read_csv('tax/phylum0.tsv', sep='\t').fillna('NA'),
            'Class': pd.read_csv('tax/class11.tsv', sep='\t').fillna('NA'),
            'Order': pd.read_csv('tax/order11.tsv', sep='\t').fillna('NA'),
            'Genus': pd.read_csv('tax/genus11.tsv', sep='\t').fillna('NA'),
            'Species': pd.read_csv('tax/org11.tsv', sep='\t').fillna('NA')
        }
        ax3 = plt.axes([pos_sub2, .97, .3, 0.55])
        ##>>>>>>>>>>> grafico circular
        ax = plt.axes([0, 1, 0.9, 1])
        circle_lineage(alphas=alfas[a6])
        ##>>>>>>>>>>> grafico 1
        #ax2 = plt.axes([pos_sub1, 1.51, .3, 0.55])
        ax2 = plt.axes([pos_sub1, 1.63, .3, 0.4])  #>>>>>>>>>>

        barras_tax(
            plots1[a6],
            #barras_tax(tax_colors(color_list = circle_colors['Spectral'])[0],
            row_num=b6,
            color=plots1[a6].iloc[0:b6, 2],
            sep=o6,
            size_y=d6,
            size_bartxt=g6,
            ylabel_text=yetiquetas_plot1[a6],
            ylabel=10)

        ##>>>>>>>>>>> grafico 2
        ax3 = plt.axes([pos_sub2, .97, .3, 0.55])

        barras_tax(
            plots2[a61],
            #barras_tax(tax_colors(color_list = circle_colors['Spectral'])[0],
            row_num=c6,
            color=plots2[a61].iloc[0:b6, 2],
            sep=o61,
            size_y=d61,
            size_bartxt=g61,
            ylabel_text=yetiquetas_plot1[a61],
            ylabel=10)

        ##>>>>>>>>>>>> save
        if z6 == True:
            import datetime
            plt.savefig('img/Lineage' +
                        datetime.datetime.now().strftime('%d.%B.%Y_%I-%M%p') +
                        '.png',
                        dpi=900,
                        bbox_inches='tight')
        else:
            pass

    out6 = widgets.interactive_output(
        box1, {
            'a6': a6,
            'a61': a61,
            'pos_sub1': pos_sub1,
            'pos_sub2': pos_sub2,
            'b6': b6,
            'c6': c6,
            'z6': z6,
            'o6': o6,
            'o61': o61,
            'd6': d6,
            'd61': d61,
            'g6': g6,
            'g61': g61
        })
    import warnings
    warnings.filterwarnings("ignore")
    return display(VBox([yyy, ww, w8, out6]))
コード例 #6
0
part_dir = '../output/pipeline_snapshots/particles'
parts = pd.read_csv(part_dir+'/parts_filtered.csv')

parts = pd.read_csv('../output/pipeline_snapshots/particles/parts_filtered_10partsPerCell.csv')
parts = parts[~(parts.strain=='yQC25')]
rep_dict = {'yQC21':15, 'yQC22':14,'yQC23':12,'yQC62':10, 'yQC26':10.1,
        'yQC63TL174':9, 'TL47pQC99':33, 'TL47pQC116':30 , 'TL47pQC115':32, 'TL47pQC118':31,
        'TL47pQC119S2':27, 'TL47pQC1195D':28, 'TL47pQC1203K':27.1, 'TL47pQC1202H':26, 'TL47pQC1192E':29}
parts['CTDr'] = parts.strain.map(rep_dict)
parts['cid'] = parts['roi'].apply(str) + parts['mov_name']
################################################################################
################################################################################
plot_dir = '../output/pipeline_snapshots/plots/'
colors = ['b','k','r','seagreen','mediumorchid', 'g','y','cyan']
colors = cm.tab20c(np.linspace(0.1,1, len(parts.strain.unique())))
colors_strain = {s:c for s,c in zip(parts.strain.unique(), colors)}
patches = [mpatches.Patch(color=colors_strain[l], label=l) for l in colors_strain]
# filter by mov_name
filt_bymov = []
for im, df in parts.groupby('mov_name'):
    filt_bymov.append(df[(df.mass_norm>df.mass_norm.mean())])
filt_bymov = pd.concat(filt_bymov, ignore_index=True)
fig, ax = plt.subplots()
filt_bymov.groupby('strain').apply(lambda x: plot_ecdf(x['mass_norm'].values, color=colors[x.name], ax=ax, label=x.name))
plt.legend()

fig, ax = plt.subplots(figsize=(10,8))
parts[(parts.mass_norm>=7)&(parts.corrwideal>=0.5)].groupby('strain').apply(lambda x: plot_ecdf(x['mass_norm'].values,
                            color=colors_strain[x.name], ax=ax, label=x.name, formal=True, rasterized=True))
parts[(parts.mass_norm>=7)&(parts.corrwideal>=0.5)].groupby('strain').apply(lambda x: ax.axvline(np.median(x['mass_norm'].values),
コード例 #7
0
joint3D = os.path.join(inBasePath, 'pose_joints_3d', imgNr + '.npy')
joint2D = os.path.join(inBasePath, 'pose_joints_2d', imgNr + '.npy')
imgPath = os.path.join(inBasePath, 'composition', imgNr + '.png')

cam = np.load(camIn, allow_pickle=True)
joints3D = np.load(joint3D, allow_pickle=True).item()
joints2D = np.load(joint2D, allow_pickle=True).item()
img = cv2.imread(imgPath)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
sHumanNames = joints2D.keys()

############### 3d joints in world coordinate system ##########################
fig = plt.figure()
ax = fig.add_subplot(121, projection='3d')
ax2 = fig.add_subplot(122)
colors = cm.tab20c(np.linspace(0, 1, len(sHumanNames)))

# plot initial 3D positions
for i, key in enumerate(sHumanNames):
    ax.scatter(joints3D[key][:, 0],
               joints3D[key][:, 1],
               joints3D[key][:, 2],
               c=np.reshape(colors[i], (1, -1)))
    ax.set_xlabel('X axis')
    ax.set_ylabel('Y axis')
    ax.set_zlabel('Z axis')

ax.scatter(cam[0, 3], cam[1, 3], cam[2, 3],
           c='black')  # show camera as black dot
ax2.imshow(img)
コード例 #8
0
# label_list = ("SRC", "SOL$_{DIV}$", "SOL$_5$")
#
# plot_iterations_for_target(list, label_list)

# #TODO Full Iterations Plot
# list = ("zeroguess", "tompson_scalar", "supervised", "solverbased_i5")
# label_list = ("Zero", "PHY", "SUP", "SOL$_5$")
# colors = (cm.tab20c( 7,20), cm.tab20c(13,20), cm.tab20c(17,20), cm.Greens(0.5))
#
# plot_iterations(list, label_list)
#
#
#TODO Residual Plot
list = ("zeroguess", "solverbased_i5", "tompson_scalar", "supervised")
label_list = ("Zero", "SOL$_5$", "PHY", "SUP")
colors = (cm.tab20c(7, 20), cm.Greens(0.5), cm.tab20c(13,
                                                      20), cm.tab20c(17, 20))

plot_residuum(list, label_list, cropped=False)
#
#
# #TODO Ablation Plots
# list = ("solverbased_i1", "solverbased_i2", "solverbased_i5", "solverbased", "solverbased_i15")
# label_list = ("SOL$_1$", "SOL$_2$",  "SOL$_5$", "SOL$_{10}$", "SOL$_{15}$")
# colors = (cm.Greens(0.3), cm.Greens(0.5), cm.Greens(0.7), cm.Greens(0.9), cm.Greens(1.1))
#
# plot_residuum_zoomed(list, label_list, cropped=True)
# plot_iterations(list, label_list)
#
#
# #TODO Residual Image Comparison