コード例 #1
0
def make_pressure_color_arrays(vesselgraph):
    edges = vesselgraph.edgelist
    flags = vesselgraph.edges['flags']
    data = vesselgraph.nodes['pressure']
    num_nodes = len(vesselgraph.nodes['position'])
    nflags = krebsutils.edge_to_node_property(num_nodes, edges, flags, 'or')

    is_set = lambda flags_, flag: np.asarray(np.bitwise_and(flags_, flag), np.
                                             bool)

    gray = np.asarray((0.1, 0.1, 0.1))
    lgray = np.asarray((0.5, 0.5, 0.5))

    circulated = is_set(flags, krebsutils.CIRCULATED)
    ncirculated = is_set(nflags, krebsutils.CIRCULATED)
    capillary = is_set(flags, krebsutils.CAPILLARY)
    ncapillary = is_set(nflags, krebsutils.CAPILLARY)
    p0 = np.amin(data[ncirculated])
    p1 = np.amax(data[ncirculated])
    cm = matplotlib.cm.ScalarMappable(cmap=cm_redblue)
    cm.set_clim(p0, p1)

    edgedata = np.average((data[edges[:, 0]], data[edges[:, 1]]), axis=0)
    edgecolors = cm.to_rgba(edgedata)[:, :3]
    edgecolors[~circulated] = gray
    #edgecolors[capillary] = lgray

    nodecolors = cm.to_rgba(data)[:, :3]
    nodecolors[~ncirculated] = gray
    #nodecolors[ncapillary] = lgray

    vesselgraph.edges['colors'] = edgecolors
    vesselgraph.nodes['colors'] = nodecolors
コード例 #2
0
ファイル: main.py プロジェクト: AlexGKim/diffusionMap
    def plots(self,x):

        figax= train_data.plot(color='b',alpha=0.1,s=10)
        train_data.plot(lambda x: self.catastrophe, color='r',alpha=1,s=20,figax=figax)
        plt.savefig('../results/outliers.png')

        for i in xrange(6):
            crap = numpy.sort(self.dm.data_dm().x[:,i])
            crap= crap[len(crap)*.1:len(crap)*.9]
            sig = crap.std()
            cm=matplotlib.cm.ScalarMappable(
                norm=matplotlib.colors.Normalize(vmin=crap[len(crap)/2]-5*sig,
                    vmax=crap[len(crap)/2]+5*sig),cmap='Spectral')
            cval=cm.to_rgba(self.dm.data_dm().x[:,i])
            figax= train_data.plot(c=cval,alpha=0.3,s=20,cmap=cm)
            figax[0].suptitle(str(i))
            plt.savefig('../results/splits.'+str(i)+'.png')

        figax= self.dm.data_dm().plot(color='r',alpha=0.1,s=10,ndim=6)
        self.dm.data_dm().plot(lambda x: self.catastrophe,
            color='b',alpha=0.1,s=20,ndim=6,figax=figax)
        plt.savefig('../results/temp.png')
        figax= self.dm.data_dm().plot(color='r',alpha=0.1,s=10,nsig=20,ndim=6)
        self.dm.data_dm().plot(lambda x: self.catastrophe,
            color='b',alpha=0.2,s=20,ndim=6,figax=figax)
        plt.savefig('../results/temp2.png')

        cm=matplotlib.cm.ScalarMappable(cmap='rainbow')
        cval=cm.to_rgba(self.weight(x.x))
        figax= x.plot(c=cval,alpha=0.2,s=20,cmap=cm,vmin=0,vmax=cval.max())
        plt.savefig('../results/color_dm.png')
コード例 #3
0
def write_kml(filename, data, col, cmap):
    ns = 'http://www.opengis.net/kml/2.2'
    ns_prefix = '{' + ns + '}'
    kml = ET.Element(ns_prefix + 'kml')
    document = ET.SubElement(kml, ns_prefix + 'Document')
    document_name = ET.SubElement(document, ns_prefix + 'name')
    document_name.text = OUT_HEADER[col]
    document_name.tail = '\n'

    norm = matplotlib.colors.Normalize(vmin=data[:,col].min(), vmax=data[:,col].max())
    cm = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap)
    for i in range(data.shape[0] - 1):
        color = cm.to_rgba(data[i,col], bytes=True)
        color_string = f'{color[0]:02x}{color[1]:02x}{color[2]:02x}'

        placemark = ET.SubElement(document, ns_prefix + 'Placemark')
        placemark.tail = '\n'
        placemark_name = ET.SubElement(placemark, ns_prefix + 'name')
        placemark_name.text = f'{OUT_HEADER[col]} = {data[i,col]}'
        description = ET.SubElement(placemark, ns_prefix + 'description')
        description.text = f'time = {timestamp_to_string(data[i,OUT_COL_TIME])}'
        linestring = ET.SubElement(placemark, ns_prefix + 'LineString')
        coordinates = ET.SubElement(linestring, ns_prefix + 'coordinates')
        coordinates.text = '%f,%f %f,%f' % (data[i,OUT_COL_LON], data[i,OUT_COL_LAT], data[i+1,OUT_COL_LON], data[i+1,OUT_COL_LAT])
        style = ET.SubElement(placemark, ns_prefix + 'Style')
        linestyle = ET.SubElement(style, ns_prefix + 'LineStyle')
        linecolor = ET.SubElement(linestyle, ns_prefix + 'color')
        linecolor.text = color_string
        width = ET.SubElement(linestyle, ns_prefix + 'width')
        width.text = '4'

    tree = ET.ElementTree(kml)
    with open(filename, 'wb') as outf:
        tree.write(outf, encoding='utf-8', xml_declaration=True, default_namespace=ns)
コード例 #4
0
def matplotlibColormapToPovray(name, cm):
    import matplotlib.cm
    N = 256
    lims = cm.get_clim()
    colors = cm.to_rgba(np.linspace(lims[0], lims[1], N))
    colors = colors[:, :3]  # skip alpha channel
    colors = np.power(colors, 2.4)
    return Colormap(name, lims, colors)
コード例 #5
0
def get_attimg(image, attmap, cm=matplotlib.cm.ScalarMappable(cmap="jet")):

    h, w = image.size(1), image.size(2)
    s = attmap.size(-1)
    attmap = attmap.squeeze().view(s, s).data.cpu().numpy()
    attmap = resize(attmap, (h, w), mode='reflect')
    attmap = cm.to_rgba(attmap)[:, :, 0:3]
    attmap = torch.from_numpy(attmap).float().permute(2, 0, 1)

    return image + attmap
コード例 #6
0
    def run(self, workspace):
        header = ("Image", "Objects", "Bin # (innermost=1)", "Bin count", "Fraction", "Intensity", "COV")
        stats = []
        d = {}
        for image in self.images:
            for o in self.objects:
                for bin_count_settings in self.bin_counts:
                    stats += \
                        self.do_measurements(workspace,
                                             image.image_name.value,
                                             o.object_name.value,
                                             o.center_object_name.value
                                             if o.center_choice != C_SELF
                                             else None,
                                             o.center_choice.value,
                                             bin_count_settings,
                                             d)
        if self.wants_zernikes:
            self.calculate_zernikes(workspace)

        if self.show_window:
            workspace.display_data.header = header
            workspace.display_data.stats = stats
            workspace.display_data.heatmaps = []
        for heatmap in self.heatmaps:
            heatmap_img = d.get(id(heatmap))
            if heatmap_img is not None:
                if self.show_window or heatmap.wants_to_save_display:
                    labels = workspace.object_set.get_objects(
                            heatmap.object_name.get_objects_name()).segmented
                if self.show_window:
                    workspace.display_data.heatmaps.append(
                            (heatmap_img, labels != 0))
                if heatmap.wants_to_save_display:
                    colormap = heatmap.colormap.value
                    if colormap == matplotlib.cm.gray.name:
                        output_pixels = heatmap_img
                    else:
                        if colormap == cps.DEFAULT:
                            colormap = cpprefs.get_default_colormap()
                        cm = matplotlib.cm.ScalarMappable(
                                cmap=colormap)
                        output_pixels = cm.to_rgba(heatmap_img)[:, :, :3]
                        output_pixels[labels == 0, :] = 0
                    parent_image = workspace.image_set.get_image(
                            heatmap.image_name.get_image_name())
                    output_img = cpi.Image(
                            output_pixels,
                            parent_image=parent_image)
                    img_name = heatmap.display_name.value
                    workspace.image_set.add(img_name, output_img)
コード例 #7
0
    def run(self, workspace):
        header = ("Image", "Objects", "Bin # (innermost=1)", "Bin count", "Fraction", "Intensity", "COV")
        stats = []
        d = {}
        for image in self.images:
            for o in self.objects:
                for bin_count_settings in self.bin_counts:
                    stats += \
                        self.do_measurements(workspace,
                                             image.image_name.value,
                                             o.object_name.value,
                                             o.center_object_name.value
                                             if o.center_choice != C_SELF
                                             else None,
                                             o.center_choice.value,
                                             bin_count_settings,
                                             d)
        if self.wants_zernikes != Z_NONE:
            self.calculate_zernikes(workspace)

        if self.show_window:
            workspace.display_data.header = header
            workspace.display_data.stats = stats
            workspace.display_data.heatmaps = []
        for heatmap in self.heatmaps:
            heatmap_img = d.get(id(heatmap))
            if heatmap_img is not None:
                if self.show_window or heatmap.wants_to_save_display:
                    labels = workspace.object_set.get_objects(
                            heatmap.object_name.get_objects_name()).segmented
                if self.show_window:
                    workspace.display_data.heatmaps.append(
                            (heatmap_img, labels != 0))
                if heatmap.wants_to_save_display:
                    colormap = heatmap.colormap.value
                    if colormap == matplotlib.cm.gray.name:
                        output_pixels = heatmap_img
                    else:
                        if colormap == cps.DEFAULT:
                            colormap = cpprefs.get_default_colormap()
                        cm = matplotlib.cm.ScalarMappable(
                                cmap=colormap)
                        output_pixels = cm.to_rgba(heatmap_img)[:, :, :3]
                        output_pixels[labels == 0, :] = 0
                    parent_image = workspace.image_set.get_image(
                            heatmap.image_name.get_image_name())
                    output_img = cpi.Image(
                            output_pixels,
                            parent_image=parent_image)
                    img_name = heatmap.display_name.value
                    workspace.image_set.add(img_name, output_img)
コード例 #8
0
ファイル: Result.py プロジェクト: makdl/SpatialPy-sdpd
    def _compute_colors(cls, x):
        import matplotlib.cm

        # Get RGB color map proportional to the concentration.
        cm = matplotlib.cm.ScalarMappable()
        crgba = cm.to_rgba(x, bytes=True)
        # Convert RGB to HEX
        colors = []
        for row in crgba:
            # get R,G,B of RGBA
            colors.append(_rgb_to_hex(tuple(list(row[0:3]))))

        # Convert Hex to Decimal
        for i, c in enumerate(colors):
            colors[i] = int(c, 0)

        return colors
コード例 #9
0
ファイル: spatial.py プロジェクト: jesusrv1103/stochss
    def get(self):
        logging.info('GET self.request.body = {}'.format(self.request.body))
        reqType = self.request.get('reqType')

        if reqType == 'getJobInfo':
            job = SpatialJobWrapper.get_by_id(int(self.request.get('id')))

            if self.user.user_id() != job.user_id:
                self.response.headers['Content-Type'] = 'application/json'
                self.response.write({
                    "status": False,
                    "msg": "Not the right user"
                })

            result = {}
            stdout = ''
            stderr = ''
            complete = ''
            if job.outData is None:
                complete = 'yes'
            else:
                try:
                    fstdoutHandle = open(str(job.outData + '/stdout.log'), 'r')
                    stdout = fstdoutHandle.read()
                    fstdoutHandle.close()
                    fstderrHandle = open(str(job.outData + '/stderr.log'), 'r')
                    stderr = fstderrHandle.read()
                    fstderrHandle.close()
                    if os.path.exists("{0}/results/complete".format(
                            job.outData)):
                        complete = 'yes'
                except IOError as e:
                    traceback.print_exc()
                    result['status'] = False
                    result[
                        'msg'] = 'Error running the simulation: stdout/stderr outputs missing.'

            result.update({
                "id": int(self.request.get('id')),
                "jobStatus": job.status,
                "complete": complete,
                "resource": job.resource,
                "modelName": job.modelName,
                "outData": job.outData,
                "name": job.name,
                "uuid": job.cloudDatabaseID,
                "output_stored": job.output_stored,
                "stdout": stdout,
                "stderr": stderr,
                "indata": json.loads(job.indata)
            })

            logging.debug("result =\n\n{}".format(pprint.pformat(result)))

            self.response.headers['Content-Type'] = 'application/json'
            self.response.write(json.dumps(result))
            return
        elif reqType == 'getMeshData':
            try:
                job = SpatialJobWrapper.get_by_id(int(self.request.get('id')))

                data = json.loads(self.request.get('data'))

                logging.debug("data = {}".format(data))

                trajectory = data["trajectory"]
                timeIdx = data["timeIdx"]
                resultJS = {}

                #if not job.preprocessed or not os.path.exists(job.preprocessedDir):
                job.preprocess(trajectory)

                indir = job.preprocessedDir

                with open(os.path.join(indir, 'mesh.json'), 'r') as meshfile:
                    mesh = json.load(meshfile)

                with open(os.path.join(indir, 'voxelTuples.json'),
                          'r') as voxelTuplesFile:
                    voxelTuples = json.load(voxelTuplesFile)

                f = os.path.join(indir, 'result{0}'.format(trajectory))

                with h5py.File(f, 'r') as dataFile:
                    species = dataFile.keys()

                self.response.content_type = 'application/json'
                self.response.write(
                    json.dumps({
                        "mesh": mesh,
                        "voxelTuples": voxelTuples,
                        "species": species
                    }))

            except Exception as e:
                traceback.print_exc()
                result = {}
                result['status'] = False
                result['msg'] = 'Error: error fetching results {0}'.format(e)
                self.response.headers['Content-Type'] = 'application/json'

                self.response.write(json.dumps(result))
            return
        elif reqType == 'getTimeSeriesData':
            try:
                job = SpatialJobWrapper.get_by_id(int(self.request.get('id')))
                data = json.loads(self.request.get('data'))
                logging.debug(
                    'patial.get(onlyColorRange): data={0}'.format(data))
                trajectory = data["trajectory"]
                sTime = data["timeStart"]
                eTime = data["timeEnd"]

                #TODO: what is the right value here?
                if eTime is None:
                    eTime = 0
                dataType = "population" if "showPopulation" in data and data[
                    "showPopulation"] else "concentration"

                resultJS = {}

                if job.preprocessed is None or trajectory not in job.preprocessed or not os.path.exists(
                        job.preprocessedDir):
                    job.preprocess(trajectory)

                f = os.path.join(job.preprocessedDir,
                                 'result{0}'.format(trajectory))

                limits = {}

                logging.debug(
                    'Spatial.get(onlyColorRange): sTime={0} eTime={0}'.format(
                        sTime, eTime))

                with h5py.File(f, 'r') as dataFile:
                    dataTmp = {}
                    colorTmp = {}

                    for specie in dataFile.keys():
                        data2 = dataFile[specie][dataType][sTime:eTime + 1]

                        dataTmp[specie] = data2

                        limits[specie] = {
                            'min': dataFile[specie][dataType].attrs['min'],
                            'max': dataFile[specie][dataType].attrs['max']
                        }

                        cm.set_clim(dataFile[specie][dataType].attrs['min'],
                                    dataFile[specie][dataType].attrs['max'])
                        rgbas = cm.to_rgba(data2, bytes=True).astype('uint32')

                        rgbas = numpy.left_shift(
                            rgbas[:, :, 0], 16) + numpy.left_shift(
                                rgbas[:, :, 1], 8) + rgbas[:, :, 2]

                        #rgbaInts = numpy.zeros((rgbas.shape[0], rgbas.shape[1]))

                        #for i in range(rgbas.shape[0]):
                        #    for j in range(rgbas.shape[1]):
                        #        rgbaInts[i, j] = int('0x%02x%02x%02x' % tuple(rgbas[i, j][0:3]), 0)

                        colorTmp[specie] = []
                        for i in range(rgbas.shape[0]):
                            colorTmp[specie].append(
                                list(rgbas[i].astype('int')))

                    colors = {}
                    data = {}
                    for i in range(abs(eTime - sTime + 1)):
                        colors[sTime + i] = {}
                        data[sTime + i] = {}
                        for specie in dataFile.keys():
                            colors[sTime + i][specie] = colorTmp[specie][i]
                            data[sTime + i][specie] = list(dataTmp[specie][i])

                self.response.content_type = 'application/json'
                self.response.write(
                    json.dumps({
                        "colors": colors,
                        "raw": data,
                        "limits": limits
                    }))

            except Exception as e:
                traceback.print_exc()
                result = {}
                result['status'] = False
                result['msg'] = 'Error: error fetching results {0}'.format(e)
                self.response.headers['Content-Type'] = 'application/json'
                self.response.write(json.dumps(result))

            return

        self.render_response('spatial.html')
コード例 #10
0
def make_any_color_arrays(vesselgraph, data_name):
    edges = vesselgraph.edgelist
    num_nodes = len(vesselgraph.nodes['position'])
    flags = vesselgraph.edges['flags']
    flags = np.asarray(flags, dtype='uint32')
    nflags = krebsutils.edge_to_node_property(num_nodes, edges, flags, 'or')

    mask = myutils.bbitwise_and(flags, krebsutils.CIRCULATED)
    nmask = myutils.bbitwise_and(nflags, krebsutils.CIRCULATED)

    if data_name in vesselgraph.edges:
        edgedata = vesselgraph.edges[data_name]
        nodedata = krebsutils.edge_to_node_property(num_nodes, edges, edgedata,
                                                    'avg')
    else:
        nodedata = vesselgraph.nodes[data_name]
        edgedata = np.average((nodedata[edges[:, 0]], nodedata[edges[:, 1]]),
                              axis=0)

    gray = np.asarray((0.1, 0.1, 0.1))
    edgecolors = np.repeat(gray.reshape(1, -1), len(edgedata), axis=0)
    nodecolors = np.repeat(gray.reshape(1, -1), len(nodedata), axis=0)
    #colors = lambda arr: cm.to_rgba(arr)[:,:3]
    colors = lambda arr: np.power(cm.to_rgba(arr)[:, :3], 2.4)

    if data_name == 'hematocrit':
        cm = matplotlib.cm.ScalarMappable(cmap=cm_hematocrit)
        cm.set_clim(0, 1)
        unmapped_range = (0., 1.)
        edgecolors[mask] = colors(edgedata[mask])
        nodecolors[nmask] = colors(nodedata[nmask])
    elif data_name == 'pressure':
        #this looks really ugly if there is a zero pressure node
        #p0 = np.amin(nodedata)
        p0 = np.min(nodedata[np.nonzero(nodedata)])
        p1 = np.amax(nodedata)
        unmapped_range = (p0, p1)
        cm = matplotlib.cm.ScalarMappable(cmap=cm_redblue)
        cm.set_clim(p0, p1)
        edgecolors[mask] = colors(edgedata[mask])
        nodecolors[nmask] = colors(nodedata[nmask])
    elif data_name == 'shearforce':
        mask = mask & (edgedata > 0)
        nmask = nmask & (nodedata > 0)
        edgedata = edgedata[mask]
        nodedata = nodedata[nmask]
        unmapped_range = edgedata.min(), edgedata.max()
        edgedata = np.log10(edgedata)
        nodedata = np.log10(nodedata)
        p0 = -4  #np.amin(edgedata)
        p1 = -1  #np.amax(edgedata)
        cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.spectral)
        cm.set_clim(p0, p1)
        edgecolors[mask] = colors(edgedata)
        nodecolors[nmask] = colors(nodedata)
    elif data_name == 'S_tot':
        #mask = mask & (edgedata>0)
        #nmask = nmask & (nodedata>0)
        edgedata = edgedata[mask]
        nodedata = nodedata[nmask]
        unmapped_range = edgedata.min(), edgedata.max()
        p0 = np.amin(edgedata)
        p1 = np.amax(edgedata)
        #print("p0: %f, p1: %f" % (p0,p1))
        #unmapped_range = (p0, p1)
        cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.jet)
        cm.set_clim(p0, p1)
        #edgedata = np.log10(edgedata)
        #nodedata = np.log10(nodedata)
        #p0 = -4#np.amin(edgedata)
        #p1 = -1#np.amax(edgedata)
        #cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.spectral)
        #cm.set_clim(p0, p1)
        edgecolors[mask] = colors(edgedata)
        nodecolors[nmask] = colors(nodedata)
    elif data_name == 'flow':
        mask = mask & (edgedata > 0)
        nmask = nmask & (nodedata > 0)
        edgedata = edgedata[mask]
        nodedata = nodedata[nmask]
        unmapped_range = edgedata.min(), edgedata.max()
        edgedata = np.log10(edgedata)
        nodedata = np.log10(nodedata)
        p0 = np.floor(np.amin(edgedata))
        p1 = np.ceil(np.amax(edgedata))
        cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.jet)
        cm.set_clim(p0, p1)
        edgecolors[mask] = colors(edgedata)
        nodecolors[nmask] = colors(nodedata)
    elif data_name == 'conductivitySignal':
        edgedata = edgedata[mask]
        nodedata = nodedata[nmask]
        unmapped_range = edgedata.min(), edgedata.max()
        p0 = np.amin(edgedata)
        p1 = np.amax(edgedata)
        cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.jet)
        cm.set_clim(p0, p1)
        edgecolors[mask] = colors(edgedata)
        nodecolors[nmask] = colors(nodedata)
    elif data_name == 'metabolicSignal':
        edgedata = edgedata[mask]
        nodedata = nodedata[nmask]
        unmapped_range = edgedata.min(), edgedata.max()
        p0 = np.amin(edgedata)
        p1 = np.amax(edgedata)
        cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.jet)
        cm.set_clim(p0, p1)
        edgecolors[mask] = colors(edgedata)
        nodecolors[nmask] = colors(nodedata)
    elif data_name == 'flags':
        edgecolors[mask
                   & (flags & krebsutils.ARTERY).astype(np.bool)] = np.asarray(
                       (1., 0., 0.))
        nodecolors[nmask & (nflags
                            & krebsutils.ARTERY).astype(np.bool)] = np.asarray(
                                (1., 0., 0.))
        edgecolors[mask
                   & (flags & krebsutils.VEIN).astype(np.bool)] = np.asarray(
                       (0., 0., 1.))
        nodecolors[nmask
                   & (nflags & krebsutils.VEIN).astype(np.bool)] = np.asarray(
                       (0., 0., 1.))
        edgecolors[mask
                   & (flags
                      & krebsutils.CAPILLARY).astype(np.bool)] = np.asarray(
                          (0., 1., 0.))
        nodecolors[nmask
                   & (nflags
                      & krebsutils.CAPILLARY).astype(np.bool)] = np.asarray(
                          (0., 1., 0.))
        for idx in vesselgraph.roots:
            nodecolors[idx] = np.asarray((1., 1., 0.))
        cm, unmapped_range = None, (None, None)
    vesselgraph.edges['colors'] = edgecolors
    vesselgraph.nodes['colors'] = nodecolors
    return cm, unmapped_range
コード例 #11
0
    def get(self):
        logging.info('GET self.request.body = {}'.format(self.request.body))
        reqType = self.request.get('reqType')

        if reqType == 'getJobInfo':
            job = SpatialJobWrapper.get_by_id(int(self.request.get('id')))

            if self.user.user_id() != job.user_id:
                self.response.headers['Content-Type'] = 'application/json'
                self.response.write({ "status" : False, "msg" : "Not the right user" })

            result = {}
            stdout = ''
            stderr = ''
            complete = ''
            if job.outData is None:
                complete = 'yes'
            else:
                try:
                    fstdoutHandle = open(str(job.outData + '/stdout.log'), 'r')
                    stdout = fstdoutHandle.read()
                    fstdoutHandle.close()
                    fstderrHandle = open(str(job.outData + '/stderr.log'), 'r')
                    stderr = fstderrHandle.read()
                    fstderrHandle.close()
                    if os.path.exists("{0}/results/complete".format(job.outData)):
                        complete = 'yes'
                except IOError as e:
                    traceback.print_exc()
                    result['status'] = False
                    result['msg'] = 'Error running the simulation: stdout/stderr outputs missing.'

            result.update({"id" : int(self.request.get('id')),
                           "jobStatus" : job.status,
                           "complete" : complete,
                           "resource" : job.resource,
                           "modelName" : job.modelName,
                           "outData" : job.outData,
                           "name" : job.name,
                           "uuid": job.cloudDatabaseID,
                           "output_stored": job.output_stored,
                           "stdout" : stdout,
                           "stderr" : stderr,
                           "indata" : json.loads(job.indata) })

            logging.debug("result =\n\n{}".format(pprint.pformat(result)))

            self.response.headers['Content-Type'] = 'application/json'
            self.response.write(json.dumps(result))
            return
        elif reqType == 'getMeshData':
            try:
                job = SpatialJobWrapper.get_by_id(int(self.request.get('id')))

                data = json.loads(self.request.get('data'))

                logging.debug("data = {}".format(data))

                trajectory = data["trajectory"]
                timeIdx = data["timeIdx"]                
                resultJS = {}

                #if not job.preprocessed or not os.path.exists(job.preprocessedDir):
                job.preprocess(trajectory)

                indir = job.preprocessedDir
                    
                with open(os.path.join(indir, 'mesh.json') ,'r') as meshfile:
                    mesh = json.load(meshfile)

                with open(os.path.join(indir, 'voxelTuples.json') ,'r') as voxelTuplesFile:
                    voxelTuples = json.load(voxelTuplesFile)

                f = os.path.join(indir, 'result{0}'.format(trajectory))
                
                with h5py.File(f, 'r') as dataFile:
                    species = dataFile.keys()

                self.response.content_type = 'application/json'
                self.response.write(json.dumps({ "mesh" : mesh, "voxelTuples" : voxelTuples, "species" : species }))
            
            except Exception as e:
                traceback.print_exc()
                result = {}
                result['status'] = False
                result['msg'] = 'Error: error fetching results {0}'.format(e)
                self.response.headers['Content-Type'] = 'application/json'

                self.response.write(json.dumps(result))
            return
        elif reqType == 'getTimeSeriesData':
            try:
                job = SpatialJobWrapper.get_by_id(int(self.request.get('id')))
                data = json.loads(self.request.get('data'))
                logging.debug('patial.get(onlyColorRange): data={0}'.format(data))
                trajectory = data["trajectory"]
                sTime= data["timeStart"]
                eTime = data["timeEnd"]

                #TODO: what is the right value here?
                if eTime is None:
                    eTime = 0
                dataType = "population" if "showPopulation" in data and data["showPopulation"] else "concentration"

                resultJS = {}

                if job.preprocessed is None or trajectory not in job.preprocessed or not os.path.exists(job.preprocessedDir):
                    job.preprocess(trajectory)

                f = os.path.join(job.preprocessedDir, 'result{0}'.format(trajectory))

                limits = {}

                logging.debug('Spatial.get(onlyColorRange): sTime={0} eTime={0}'.format(sTime,eTime))

                with h5py.File(f, 'r') as dataFile:
                    dataTmp = {}
                    colorTmp = {}

                    for specie in dataFile.keys():
                        data2 = dataFile[specie][dataType][sTime:eTime + 1]

                        dataTmp[specie] = data2
                        
                        limits[specie] = { 'min' : dataFile[specie][dataType].attrs['min'],
                                           'max' : dataFile[specie][dataType].attrs['max'] }

                        cm.set_clim(dataFile[specie][dataType].attrs['min'], dataFile[specie][dataType].attrs['max'])
                        rgbas = cm.to_rgba(data2, bytes = True).astype('uint32')

                        rgbas = numpy.left_shift(rgbas[:, :, 0], 16) + numpy.left_shift(rgbas[:, :, 1], 8) + rgbas[:, :, 2]
                        
                        #rgbaInts = numpy.zeros((rgbas.shape[0], rgbas.shape[1]))

                        #for i in range(rgbas.shape[0]):
                        #    for j in range(rgbas.shape[1]):
                        #        rgbaInts[i, j] = int('0x%02x%02x%02x' % tuple(rgbas[i, j][0:3]), 0)

                        colorTmp[specie] = []
                        for i in range(rgbas.shape[0]):
                            colorTmp[specie].append(list(rgbas[i].astype('int')))

                    colors = {}
                    data = {}
                    for i in range(abs(eTime - sTime + 1)):
                        colors[sTime + i] = {}
                        data[sTime + i] = {}
                        for specie in dataFile.keys():
                            colors[sTime + i][specie] = colorTmp[specie][i] 
                            data[sTime + i][specie] = list(dataTmp[specie][i])

                self.response.content_type = 'application/json'
                self.response.write(json.dumps( { "colors" : colors, "raw" : data, "limits" : limits } ))

            except Exception as e:
                traceback.print_exc()
                result = {}
                result['status'] = False
                result['msg'] = 'Error: error fetching results {0}'.format(e)
                self.response.headers['Content-Type'] = 'application/json'
                self.response.write(json.dumps(result))

            return
        
        self.render_response('spatial.html')
コード例 #12
0
def InsertGraphColors(vesselgraph, po2field, data_name):
    edges = vesselgraph.edgelist
    num_nodes = len(vesselgraph.nodes['position'])

    if data_name in vesselgraph.edges:
        edgedata = data = vesselgraph.edges[data_name]
        nodedata = krebsutils.edge_to_node_property(num_nodes, edges, data,
                                                    'avg')
    else:
        nodedata = data = vesselgraph.nodes[data_name]
        edgedata = np.average((data[edges[:, 0]], data[edges[:, 1]]), axis=0)

    if data_name == 'po2vessels':
        try:
            p1 = np.amax(data)
        except ValueError:
            print("p1 not found")
            pass
        if po2field is not None:
            p1 = max(p1, np.amax(po2field))
        try:
            p0 = np.amin(data)
        except ValueError:
            print("p0 not found")
            pass
        if po2field is not None:
            p0 = min(p0, np.amin(po2field))
        #p1 = math.ceil(p1/10.0)*10.0  # round to powers of something
        #p1 = 100.0
        value_range = (p0, p1)
        cm = matplotlib.cm.ScalarMappable(cmap=cm_po2)
    elif data_name == 'saturation':
        cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.spectral)
        vesselgraph.edges['saturation']
        value_range = (np.min(vesselgraph.edges['saturation']),
                       np.max(vesselgraph.edges['saturation']))
        #value_range = (0,1.)
    elif data_name == 'hboconc':
        cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.gnuplot)
        p1 = math.ceil(np.amax(data))
        value_range = (0., p1)
    cm.set_clim(*value_range)

    colors = lambda arr: np.power(cm.to_rgba(arr)[:, :3], 2.4)
    if data_name in vesselgraph.edges:
        edgecolors = colors(data)
        nodecolors = colors(nodedata)
    else:
        edgecolors = colors(edgedata)
        nodecolors = colors(data)

    flags = vesselgraph.edges['flags']
    nflags = krebsutils.edge_to_node_property(num_nodes, edges, flags, 'or')
    is_not_set = lambda flags_, flag: np.bitwise_not(
        np.asarray(np.bitwise_and(flags_, flag), np.bool))
    gray = np.asarray((0.3, 0.3, 0.3))
    uncirculated = is_not_set(flags, krebsutils.CIRCULATED)
    nuncirculated = is_not_set(nflags, krebsutils.CIRCULATED)
    edgecolors[uncirculated] = gray
    nodecolors[nuncirculated] = gray

    print 'colormap range ', cm.get_clim()

    vesselgraph.edges['colors'] = edgecolors
    vesselgraph.nodes['colors'] = nodecolors
    return cm
コード例 #13
0
# Compile images
cm = matplotlib.cm.ScalarMappable(None, cmap='plasma')
cm.set_clim(0.00, 0.08)
disparities = np.load(os.path.join(cfg['disp_path'], cfg['disp_fmt'].format(cfg['filenames_index'])), mmap_mode='r')
full_image = np.zeros((2 * len(cfg['sets']) * cfg['image_size'][0], len(cfg['distances']) * cfg['image_size'][1], 3), dtype=np.uint8)
for si, s in enumerate(cfg['sets']):
    print('Set: {}'.format(s))
    imgs = np.zeros((cfg['image_size'][0], len(cfg['distances']) * cfg['image_size'][1], 3), dtype=np.uint8)
    disps = np.zeros_like(imgs)
    for di, d in enumerate(cfg['distances']):
        fn = cfg['filename_fmt'].format(set=s, scene=cfg['scene'], object=cfg['object'], distance=d)
        mask_fn = cfg['mask_fmt'].format(set=s, scene=cfg['scene'], object=cfg['object'], distance=d)
        img = imread(os.path.join(cfg['data_path'], fn))
        img = img_as_ubyte(resize(img, cfg['image_size']))
        imgs[:, (di * cfg['image_size'][1]):((di + 1) * cfg['image_size'][1])] = img
        mask = imread(os.path.join(cfg['data_path'], mask_fn))[:, :, 0]
        mask = resize(mask, cfg['image_size'])
        c = find_contours(mask, 0.5)[0]
        disp = disparities[indices[(s, d)], :, :]
        disp = resize(disp, cfg['image_size'])
        disp = img_as_ubyte(cm.to_rgba(disp)[:, :, :3])
        rr, cc = polygon_perimeter(c[:, 0], c[:, 1])
        outline = np.zeros(cfg['image_size'])
        outline[rr, cc] = 1
        outline = binary_dilation(outline, square(5))
        disp[outline, :] = [255, 255, 255]
        disps[:, (di * cfg['image_size'][1]):((di + 1) * cfg['image_size'][1])] = disp
    full_image[((si * 2) * cfg['image_size'][0]):((si * 2 + 1) * cfg['image_size'][0]), :] = imgs
    full_image[((si * 2 + 1) * cfg['image_size'][0]):((si * 2 + 2) * cfg['image_size'][0]), :] = disps

imsave(cfg['output_path'], full_image)
コード例 #14
0
def make_any_color_arrays(vesselgraph, data_name):
    edges = vesselgraph.edgelist
    num_nodes = len(vesselgraph.nodes['position'])
    flags = vesselgraph.edges['flags']
    nflags = krebsutils.edge_to_node_property(num_nodes, edges, flags, 'or')

    mask = myutils.bbitwise_and(flags, krebsutils.CIRCULATED)
    nmask = myutils.bbitwise_and(nflags, krebsutils.CIRCULATED)

    if data_name in vesselgraph.edges:
        edgedata = vesselgraph.edges[data_name]
        nodedata = krebsutils.edge_to_node_property(num_nodes, edges, edgedata,
                                                    'avg')
    else:
        nodedata = vesselgraph.nodes[data_name]
        edgedata = np.average((nodedata[edges[:, 0]], nodedata[edges[:, 1]]),
                              axis=0)

    gray = np.asarray((0.1, 0.1, 0.1))
    edgecolors = np.repeat(gray.reshape(1, -1), len(edgedata), axis=0)
    nodecolors = np.repeat(gray.reshape(1, -1), len(nodedata), axis=0)
    #colors = lambda arr: cm.to_rgba(arr)[:,:3]
    colors = lambda arr: np.power(cm.to_rgba(arr)[:, :3], 2.4)

    if data_name == 'hematocrit':
        cm = matplotlib.cm.ScalarMappable(cmap=cm_hematocrit)
        cm.set_clim(0, 1)
        unmapped_range = (0., 1.)
        edgecolors[mask] = colors(edgedata[mask])
        nodecolors[nmask] = colors(nodedata[nmask])
    elif data_name == 'pressure':
        p0 = np.amin(nodedata)
        p1 = np.amax(nodedata)
        unmapped_range = (p0, p1)
        cm = matplotlib.cm.ScalarMappable(cmap=cm_redblue)
        cm.set_clim(p0, p1)
        edgecolors[mask] = colors(edgedata[mask])
        nodecolors[nmask] = colors(nodedata[nmask])
    elif data_name == 'shearforce':
        mask = mask & (edgedata > 0)
        nmask = nmask & (nodedata > 0)
        edgedata = edgedata[mask]
        nodedata = nodedata[nmask]
        unmapped_range = edgedata.min(), edgedata.max()
        edgedata = np.log10(edgedata)
        nodedata = np.log10(nodedata)
        p0 = -4  #np.amin(edgedata)
        p1 = -1  #np.amax(edgedata)
        cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.spectral)
        cm.set_clim(p0, p1)
        edgecolors[mask] = colors(edgedata)
        nodecolors[nmask] = colors(nodedata)
    elif data_name == 'flow':
        mask = mask & (edgedata > 0)
        nmask = nmask & (nodedata > 0)
        edgedata = edgedata[mask]
        nodedata = nodedata[nmask]
        unmapped_range = edgedata.min(), edgedata.max()
        edgedata = np.log10(edgedata)
        nodedata = np.log10(nodedata)
        p0 = np.floor(np.amin(edgedata))
        p1 = np.ceil(np.amax(edgedata))
        cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.jet)
        cm.set_clim(p0, p1)
        edgecolors[mask] = colors(edgedata)
        nodecolors[nmask] = colors(nodedata)
    elif data_name == 'flags':
        unmapped_range = (0., 1.)
        mask = mask & (edgedata > 0)
        nmask = nmask & (nodedata > 0)
        edgedata = edgedata[mask]
        nodedata = nodedata[nmask]
        edgedata = np.bitwise_and(edgedata, krebsutils.ARTERY)
        cm = matplotlib.cm.ScalarMappable(cmap=matplotlib.cm.jet)
        edgecolors[mask] = colors(edgedata)
        nodecolors[nmask] = colors(nodedata)
    vesselgraph.edges['colors'] = edgecolors
    vesselgraph.nodes['colors'] = nodecolors
    return cm, unmapped_range