コード例 #1
0
 def do_3d_projection(self, renderer):
     xs, ys, zs = self._offsets3d
     vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M)
     self._alpha = None
     self.set_facecolors(zalpha(self._facecolor3d, vzs))
     self.set_edgecolors(zalpha(self._edgecolor3d, vzs))
     PatchCollection.set_offsets(self, zip(vxs, vys))
     return min(vzs)
コード例 #2
0
ファイル: art3d.py プロジェクト: stefanor/matplotlib
    def do_3d_projection(self, renderer):
        xs, ys, zs = self._offsets3d
        vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M)
        #FIXME: mpl allows us no way to unset the collection alpha value
        self._alpha = None
        self.set_facecolors(zalpha(self._facecolor3d, vzs))
        self.set_edgecolors(zalpha(self._edgecolor3d, vzs))
        PatchCollection.set_offsets(self, zip(vxs, vys))

        return min(vzs)
コード例 #3
0
    def do_3d_projection(self, renderer):
        xs, ys, zs = self._offsets3d
        vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M)
        #FIXME: mpl allows us no way to unset the collection alpha value
        self._alpha = None
        self.set_facecolors(zalpha(self._facecolor3d, vzs))
        self.set_edgecolors(zalpha(self._edgecolor3d, vzs))
        PatchCollection.set_offsets(self, list(zip(vxs, vys)))

        if vzs.size > 0 :
            return min(vzs)
        else :
            return np.nan
コード例 #4
0
ファイル: art3d.py プロジェクト: JulianNymark/blendergame
    def do_3d_projection(self, renderer):
        xs, ys, zs = self._offsets3d
        vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M)

        fcs = zalpha(self._facecolor3d, vzs) if self._depthshade else self._facecolor3d
        fcs = mcolors.colorConverter.to_rgba_array(fcs, self._alpha)
        self.set_facecolors(fcs)

        ecs = zalpha(self._edgecolor3d, vzs) if self._depthshade else self._edgecolor3d
        ecs = mcolors.colorConverter.to_rgba_array(ecs, self._alpha)
        self.set_edgecolors(ecs)
        PatchCollection.set_offsets(self, list(zip(vxs, vys)))

        if vzs.size > 0:
            return min(vzs)
        else:
            return np.nan
コード例 #5
0
    def do_3d_projection(self, renderer):
        xs, ys, zs = self._offsets3d
        vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M)

        fcs = (zalpha(self._facecolor3d, vzs) if self._depthshade else
               self._facecolor3d)
        fcs = mcolors.colorConverter.to_rgba_array(fcs, self._alpha)
        self.set_facecolors(fcs)

        ecs = (zalpha(self._edgecolor3d, vzs) if self._depthshade else
               self._edgecolor3d)
        ecs = mcolors.colorConverter.to_rgba_array(ecs, self._alpha)
        self.set_edgecolors(ecs)
        PatchCollection.set_offsets(self, list(zip(vxs, vys)))

        if vzs.size > 0:
            return min(vzs)
        else:
            return np.nan
コード例 #6
0
ファイル: outputs.py プロジェクト: arthur-e/flux-python-api
    def render(self, patch_size=0.5, alpha=1.0, x_offset=100):
        '''Draws the legend graphic and saves it to a file.'''
        n = len(self.colors)
        s = patch_size

        # This offset is transformed to "data" coordinates (inches)
        left_offset = (-s * 1.5) - (x_offset / self.dpi)

        # Create grid to plot the artists
        grid = np.concatenate((
            np.zeros(n).reshape(n, 1),
            np.arange(-n, 1)[1:].reshape(n, 1)
        ), axis=1)

        plt.text(left_offset, 1.1, 'Legend', family='sans-serif',
            size=14, weight='bold', color='#ffffff')

        patches = []
        for i in range(n):
            # Add a rectangle
            rect = mpatches.Rectangle(grid[i] - [0, 0], s, s, ec='none')
            patches.append(rect)
            self.__label__(grid[i], self.labels[i], x_offset)

        collection = PatchCollection(patches, alpha=alpha)

        # Space the patches and the text labels
        collection.set_offset_position('data')
        collection.set_offsets(np.array([
            [left_offset, 0]
        ]))

        collection.set_facecolors(self.colors)
        #collection.set_edgecolor('#ffffff') # Draw color for box outlines

        self.axis.add_collection(collection)

        plt.axis('equal')
        plt.axis('off')
        plt.savefig(self.file_path, facecolor=self.bg_color, dpi=self.dpi,
            pad_inches=0)

        return self.file_path
コード例 #7
0
ファイル: art3d.py プロジェクト: LorindaLast/matplotlib
    def do_3d_projection(self, renderer):
        xs, ys, zs = self._offsets3d
        vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M)

        fcs = (zalpha(self._facecolor, vzs) if self._depthshade else
               self._facecolor)
        fcs = mcolors.to_rgba_array(fcs, self._alpha)
        self.set_facecolor(fcs)

        ecs = (zalpha(self._edgecolor, vzs) if self._depthshade else
               self._edgecolor)
        ecs = mcolors.to_rgba_array(ecs, self._alpha)
        self.set_edgecolor(ecs)
        PatchCollection.set_offsets(self, np.column_stack([vxs, vys]))

        if vzs.size > 0:
            return min(vzs)
        else:
            return np.nan
コード例 #8
0
ファイル: gas.py プロジェクト: taijerry/datahub-demo2
def animate(x, rs, label=False, lims=(12, 12), cols=[]):
    """
    Takes an array of positions with shape = (steps, particle, coordinates) and spot size (r)
    and animates their trajectory.
    """
    if not plt.get_fignums():
        fig, ax = plt.subplots(figsize=(5,5))
    else:
        ax = plt.gca()
        fig = plt.gcf()
    x = np.squeeze(x)  # if there is one particle
    fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9)
    # use plt.Circle over ax.scatter since Circle size is in data coordinates, but
    # scatter marker sizes are in Figure coordinates.
    c = PatchCollection([plt.Circle((0, 0), r) for r in rs])
    c.set_offset_position('data')
    c.set_offsets(x[0])
    if not cols and x.shape[1] > 10:
        cols = ['r' if i < lims[0]/2 else 'b' for i in x[0, :, 0]]
    elif cols:
        pass
    else:
        cols = ['r' for i in x[0, :]]
    c.set_color(cols)
    ax.add_collection(c)
    def advance(fn):
        step = fn % len(x)
        c.set_offsets(x[step])
        ax.set_title(step)
        for l, xy in zip(ls, x[step]):
            l.set_x(xy[0])
            l.set_y(xy[1])
    if label:
        ls = [plt.text(*xy, i) for i, xy in enumerate(x[0])]
    else:
        ls = []
    ax.set_xlim((0, lims[0]))
    ax.set_ylim((0, lims[0]))
    ax.add_collection(c)
    fa = animation.FuncAnimation(fig, advance, interval=5e3//len(x))
    plt.show()
    return fa
コード例 #9
0
    def do_3d_projection(self, renderer):
        # see _update_scalarmappable docstring for why this must be here
        _update_scalarmappable(self)
        xs, ys, zs = self._offsets3d
        vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M)

        fcs = (_zalpha(self._facecolor3d, vzs) if self._depthshade else
               self._facecolor3d)
        fcs = mcolors.to_rgba_array(fcs, self._alpha)
        self.set_facecolors(fcs)

        ecs = (_zalpha(self._edgecolor3d, vzs) if self._depthshade else
               self._edgecolor3d)
        ecs = mcolors.to_rgba_array(ecs, self._alpha)
        self.set_edgecolors(ecs)
        PatchCollection.set_offsets(self, np.column_stack([vxs, vys]))

        if vzs.size > 0:
            return min(vzs)
        else:
            return np.nan
コード例 #10
0
ファイル: instrument_view.py プロジェクト: OwenArnold/scipp
class InstrumentView:
    def __init__(self,
                 scipp_obj=None,
                 bins=None,
                 masks=None,
                 cmap=None,
                 log=None,
                 vmin=None,
                 vmax=None,
                 aspect=None,
                 size=1,
                 projection=None,
                 nan_color=None,
                 filename=None,
                 continuous_update=None,
                 dim=None):

        self.fig2d = None
        self.fig3d = None
        self.scatter2d = None
        self.scatter3d = None
        self.outline = None
        self.size = size
        self.aspect = aspect
        self.do_update = None
        self.figurewidget = widgets.Output()
        self.figure2d = False
        self.figure3d = False
        self.image = None
        self.nan_color = nan_color
        self.log = log
        self.current_projection = None
        self.dim = dim

        self.data_arrays = {}
        tp = type(scipp_obj)
        if tp is sc.Dataset or tp is sc.DatasetProxy:
            for key in sorted(scipp_obj.keys()):
                var = scipp_obj[key]
                if self.dim in var.dims:
                    self.data_arrays[key] = var
        elif tp is sc.DataArray or tp is sc.DataProxy:
            self.data_arrays[scipp_obj.name] = scipp_obj
        else:
            raise RuntimeError("Unknown input type: {}. Allowed inputs "
                               "are a Dataset or a DataArray (and their "
                               "respective proxies).".format(tp))

        self.globs = {"cmap": cmap, "log": log, "vmin": vmin, "vmax": vmax}
        self.params = {}
        self.hist_data_array = {}
        self.scalar_map = {}
        self.minmax = {}

        # Find the min/max time-of-flight limits and store them
        self.minmax["tof"] = [np.Inf, np.NINF, 1]
        for key, data_array in self.data_arrays.items():
            bins_here = bins
            if data_array.sparse_dim is not None and bins_here is None:
                bins_here = True
            if bins_here is not None:
                dim = None if data_array.sparse_dim is not None else self.dim
                spdim = None if data_array.sparse_dim is None else self.dim
                var = make_bins(data_array=data_array,
                                sparse_dim=spdim,
                                dim=dim,
                                bins=bins_here,
                                padding=(data_array.sparse_dim is not None))
            else:
                var = data_array.coords[self.dim]
            self.minmax["tof"][0] = min(self.minmax["tof"][0], var.values[0])
            self.minmax["tof"][1] = max(self.minmax["tof"][1], var.values[-1])
            self.minmax["tof"][2] = var.shape[0]

        # Rebin all DataArrays to common Tof axis
        self.rebin_data(np.linspace(*self.minmax["tof"]))

        # Create dropdown menu to select the DataArray
        keys = list(self.hist_data_array.keys())
        self.dropdown = widgets.Dropdown(options=keys,
                                         description="Select entry:",
                                         layout={"width": "initial"})
        self.dropdown.observe(self.change_data_array, names="value")

        # Store current active data entry (DataArray)
        self.key = keys[0]

        # Create a Tof slider and its label
        self.tof_dim_indx = self.hist_data_array[self.key].dims.index(self.dim)
        self.slider = widgets.IntSlider(
            value=0,
            min=0,
            step=1,
            description=str(self.dim).replace("Dim.", ""),
            max=self.hist_data_array[self.key].shape[self.tof_dim_indx] - 1,
            continuous_update=continuous_update,
            readout=False)
        self.slider.observe(self.update_colors, names="value")
        self.label = widgets.Label()

        # Add text boxes to change number of bins/bin size
        self.nbins = widgets.Text(value=str(
            self.hist_data_array[self.key].shape[self.tof_dim_indx]),
                                  description="Number of bins:",
                                  style={"description_width": "initial"})
        self.nbins.on_submit(self.update_nbins)

        tof_values = self.hist_data_array[self.key].coords[self.dim].values
        self.bin_size = widgets.Text(value=str(tof_values[1] - tof_values[0]),
                                     description="Bin size:")
        self.bin_size.on_submit(self.update_bin_size)

        projections = [
            "3D", "Cylindrical X", "Cylindrical Y", "Cylindrical Z",
            "Spherical X", "Spherical Y", "Spherical Z"
        ]

        # Create toggle buttons to change projection
        self.buttons = {}
        for p in projections:
            self.buttons[p] = widgets.Button(
                description=p,
                disabled=False,
                button_style=("info" if (p == projection) else ""))
            self.buttons[p].on_click(self.change_projection)
        items = [self.buttons["3D"]]
        for x in "XYZ":
            items.append(self.buttons["Cylindrical {}".format(x)])
            items.append(self.buttons["Spherical {}".format(x)])
            if x != "Z":
                items.append(widgets.Label())

        self.togglebuttons = widgets.GridBox(
            items,
            layout=widgets.Layout(grid_template_columns="repeat(3, 150px)"))

        # Place widgets in boxes
        self.vbox = widgets.VBox([
            widgets.HBox([self.dropdown, self.slider, self.label]),
            widgets.HBox([self.nbins, self.bin_size]), self.togglebuttons
        ])
        self.box = widgets.VBox([self.figurewidget, self.vbox])
        self.box.layout.align_items = "center"

        # Protect against uninstalled ipyvolume
        if ipv is None and projection == "3D":
            print("Warning: 3D projection requires ipyvolume to be "
                  "installed. Use conda/pip install ipyvolume. Reverting to "
                  "2D projection.")
            self.buttons[projections[1]].button_style = "info"
            self.buttons["3D"].button_style = ""
            self.buttons["3D"].disabled = True

        # Render the plot here instead of at the top level because to capture
        # the matplotlib output (if a 2D projection is requested to begin with,
        # the output widget needs to be displayed first, before any mpl figure
        # is displayed.
        render_plot(widgets=self.box, filename=filename, ipv=ipv)

        # Get detector positions
        self.det_pos = np.array(
            sn.position(self.hist_data_array[self.key]).values)
        # Find extents of the detectors
        for i, x in enumerate("xyz"):
            self.minmax[x] = [
                np.amin(self.det_pos[:, i]),
                np.amax(self.det_pos[:, i])
            ]

        # Update the figure
        self.change_projection(self.buttons[projection])

        # Create members object
        self.members = {
            "widgets": {
                "sliders": self.slider,
                "buttons": self.buttons,
                "text": {
                    "nbins": self.nbins,
                    "bin_size": self.bin_size
                },
                "dropdown": self.dropdown
            },
            "fig2d": self.fig2d,
            "fig3d": self.fig3d,
            "scatter2d": self.scatter2d,
            "scatter3d": self.scatter3d,
            "outline": self.outline
        }

        return

    def rebin_data(self, bins):
        """
        Rebin the original data to Tof given some bins. This is executed both
        on first instrument display and when either the number of bins or the
        bin width is changed.
        """
        for key, data_array in self.data_arrays.items():

            # Histogram the data in the Tof dimension
            if data_array.sparse_dim is not None:
                self.hist_data_array[key] = histogram_sparse_data(
                    data_array, data_array.sparse_dim, bins)
            else:
                self.hist_data_array[key] = sc.rebin(
                    data_array, self.dim,
                    make_bins(data_array=data_array,
                              dim=self.dim,
                              bins=bins,
                              padding=False))

            # Parse input parameters for colorbar
            self.params[key] = parse_params(
                globs=self.globs, array=self.hist_data_array[key].values)
            cmap = cm.get_cmap(self.params[key]["cmap"])
            cmap.set_bad(color=self.nan_color)
            self.scalar_map[key] = cm.ScalarMappable(
                cmap=cmap, norm=self.params[key]["norm"])
        return

    def update_colors(self, change):
        self.do_update(change)
        self.label.value = name_with_unit(
            var=self.hist_data_array[self.key].coords[self.dim],
            name=value_to_string(self.hist_data_array[self.key].coords[
                self.dim].values[change["new"]]))
        return

    def change_projection(self, owner):

        if owner.description == self.current_projection:
            owner.button_style = "info"
            return
        if self.current_projection is not None:
            self.buttons[self.current_projection].button_style = ""

        # Temporarily disable automatic plotting in notebook
        if plt.isinteractive():
            plt.ioff()
            re_enable_interactive = True
        else:
            re_enable_interactive = False

        update_children = False

        if owner.description == "3D":
            self.projection_3d()
            self.do_update = self.update_colors_3d
        else:
            if self.current_projection == "3D" or \
               self.current_projection is None:
                update_children = True
            self.projection_2d(owner.description, update_children)
            self.do_update = self.update_colors_2d

        self.update_colors({"new": self.slider.value})

        self.current_projection = owner.description
        self.buttons[owner.description].button_style = "info"

        # Re-enable automatic plotting in notebook
        if re_enable_interactive:
            plt.ion()

        return

    def projection_3d(self):
        # Initialise Figure
        if not self.figure3d:
            self.fig3d = ipv.figure(width=config.plot.width,
                                    height=config.plot.height,
                                    animation=0,
                                    lighting=False)
            max_size = 0.0
            dx = {"x": 0, "y": 0, "z": 0}
            for ax in dx.keys():
                dx[ax] = np.ediff1d(self.minmax[ax])
            max_size = np.amax(list(dx.values()))
            # Make plot outline if aspect ratio is to be conserved
            if self.aspect == "equal":
                arrays = dict()
                for ax, s in dx.items():
                    diff = max_size - s
                    arrays[ax] = [
                        self.minmax[ax][0] - 0.5 * diff,
                        self.minmax[ax][1] + 0.5 * diff
                    ]

                outl_x, outl_y, outl_z = np.meshgrid(arrays["x"],
                                                     arrays["y"],
                                                     arrays["z"],
                                                     indexing="ij")
                self.outline = ipv.plot_wireframe(outl_x,
                                                  outl_y,
                                                  outl_z,
                                                  color="black")
            # Try to guess marker size
            perc_size = 100.0 * self.size / max_size
            self.scatter3d = ipv.scatter(x=self.det_pos[:, 0],
                                         y=self.det_pos[:, 1],
                                         z=self.det_pos[:, 2],
                                         marker="square_2d",
                                         size=perc_size)
            self.figure3d = True

        self.figurewidget.clear_output()
        self.box.children = tuple([self.figurewidget, ipv.gcc(), self.vbox])
        return

    def update_colors_3d(self, change):
        arr = self.hist_data_array[self.key][self.dim, change["new"]].values
        if self.log:
            arr = np.ma.masked_where(arr <= 0, arr)
        self.scatter3d.color = self.scalar_map[self.key].to_rgba(arr)
        return

    def projection_2d(self, projection, update_children):
        # Initialise figure if we switched from 3D view, if not re-use current
        # figure.
        if update_children:
            self.box.children = tuple([self.figurewidget, self.vbox])
        if not self.figure2d:
            self.fig2d, self.ax = plt.subplots(
                1,
                1,
                figsize=(config.plot.width / config.plot.dpi,
                         config.plot.height / config.plot.dpi))

        if update_children:
            with self.figurewidget:
                disp.display(self.fig2d)

        # Compute cylindrical or spherical projections
        permutations = {"X": [0, 2, 1], "Y": [1, 0, 2], "Z": [2, 1, 0]}
        axis = projection[-1]

        theta = np.arctan2(self.det_pos[:, permutations[axis][2]],
                           self.det_pos[:, permutations[axis][1]])
        if projection.startswith("Cylindrical"):
            z_or_phi = self.det_pos[:, permutations[axis][0]]
        elif projection.startswith("Spherical"):
            z_or_phi = np.arcsin(
                self.det_pos[:, permutations[axis][0]] /
                np.sqrt(self.det_pos[:, 0]**2 + self.det_pos[:, 1]**2 +
                        self.det_pos[:, 2]**2))

        # Create the scatter
        if not self.figure2d:
            patches = []
            for x, y in zip(theta, z_or_phi):
                patches.append(
                    Rectangle((x - 0.5 * self.size, y - 0.5 * self.size),
                              self.size, self.size))

            self.scatter2d = PatchCollection(
                patches,
                cmap=self.params[self.key]["cmap"],
                norm=self.params[self.key]["norm"],
                array=self.hist_data_array[self.key][self.dim,
                                                     self.slider.value].values)
            self.ax.add_collection(self.scatter2d)
            self.save_xy = np.array([theta, z_or_phi]).T
            if self.params[self.key]["cbar"]:
                self.cbar = plt.colorbar(self.scatter2d, ax=self.ax)
                self.cbar.ax.set_ylabel(
                    name_with_unit(var=self.hist_data_array[self.key],
                                   name=""))
                self.cbar.ax.yaxis.set_label_coords(-1.1, 0.5)
            self.figure2d = True
        else:
            self.scatter2d.set_offset_position("data")
            self.scatter2d.set_offsets(
                np.array([theta, z_or_phi]).T - self.save_xy)
        self.ax.set_xlim(
            [np.amin(theta) - self.size,
             np.amax(theta) + self.size])
        self.ax.set_ylim(
            [np.amin(z_or_phi) - self.size,
             np.amax(z_or_phi) + self.size])
        return

    def update_colors_2d(self, change):
        self.scatter2d.set_array(
            self.hist_data_array[self.key][self.dim, change["new"]].values)
        self.fig2d.canvas.draw_idle()
        return

    def update_nbins(self, owner):
        try:
            nbins = int(owner.value)
        except ValueError:
            print("Warning: could not convert value: {} to an "
                  "integer.".format(owner.value))
            return
        # self.rebin_data(nbins, from_nbins_text)
        self.rebin_data(
            np.linspace(self.minmax["tof"][0], self.minmax["tof"][1],
                        nbins + 1))
        x = self.hist_data_array[self.key].coords[self.dim].values
        self.bin_size.value = str(x[1] - x[0])
        self.update_slider()
        return

    def update_bin_size(self, owner):
        try:
            binw = float(owner.value)
        except ValueError:
            print("Warning: could not convert value: {} to a "
                  "float.".format(owner.value))
            return
        self.rebin_data(
            np.arange(self.minmax["tof"][0], self.minmax["tof"][1], binw))
        self.nbins.value = str(
            self.hist_data_array[self.key].shape[self.tof_dim_indx])
        self.update_slider()
        return

    def update_slider(self):
        """
        Try to replace the slider around the same position
        """

        # Compute percentage position
        perc_pos = self.slider.value / self.slider.max
        # Compute new position
        nbins = int(self.nbins.value)
        new_pos = int(perc_pos * nbins)
        # Either place new upper boundary first, or change slider value first
        if new_pos > self.slider.max:
            self.slider.max = nbins
            self.slider.value = new_pos
        else:
            self.slider.value = new_pos
            self.slider.max = nbins
        return

    def change_data_array(self, change):
        self.key = change["new"]
        if self.scatter2d is not None:
            # Apparently, you have to set norm, clim on PatchCollection and
            # clim on the colorbar to get this working. Only setting norm
            # seems to work only on the first change.
            self.scatter2d.set_norm(self.params[self.key]["norm"])
            self.scatter2d.set_clim(vmin=self.params[self.key]["vmin"],
                                    vmax=self.params[self.key]["vmax"])
            self.cbar.set_clim(vmin=self.params[self.key]["vmin"],
                               vmax=self.params[self.key]["vmax"])
        self.update_colors({"new": self.slider.value})