def kmeanDraw(self): cp_imgarr = copy.deepcopy(self.px) img = Image.new('RGB', (self.img_width, self.img_height), "white") p = img.load() Distance = cdist(self.px, self.centroids) cluster_id = np.argmin(Distance, axis=1) for i in range(len(cluster_id)): RGB_value = self.centroids[cluster_id[i]] * 255 cp_imgarr[i] = RGB_value i = 0 for x in range(self.img_width): for y in range(self.img_height): p[x, y] = tuple(cp_imgarr[i].astype(int)) i += 1 img.show() img.save('Kmean' + str(self.K) + '_poblem3.jpg')
def loadImage(nombreImage='leon.jpeg', mostrarImagen=True): img = Image.open(nombreImage) if (mostrarImagen == True): img.show() return img
def taskC(): image = Image.open('f1.jpg') print(image.size) image.thumbnail((100, 100)) print(image.size) image.show()
def taskA(): image = Image.open("f1.jpg") print(image.format) print(image.mode) print(image.size) image.show()
''' ############################### Method 3: Keras: ############################### ''' print("##### Keras #####") ################################ Load image ############################### from keras.preprocessing.image import load_img # load the image in PIL format image = load_img("3096_color.jpeg") # report details about the image print(type(image)) # <class 'PIL.JpegImagePlugin.JpegImageFile'> print(image.format) # JPEG print(image.mode) # RGB print(image.size) # (481, 321) image.show() ################################ Convert image PIL into np.array ############################### from keras.preprocessing.image import img_to_array image_array = img_to_array(image) print(type(image_array)) # <class 'numpy.ndarray'> print(image_array.dtype) # float32 print(image_array.shape) # (321, 481, 3) ################################ Reverse np.array into PIL ############################### from keras.preprocessing.image import array_to_img image_PIL = array_to_img(image_array) print(type(image_PIL)) # <class 'PIL.Image.Image'> ################################ Save image ############################### from keras.preprocessing.image import save_img