class Cart: def __init__(self, # Variables controlling flow of the program save_history=save_history_globals, # Variables used for physical simulation dt=dt_main_simulation_globals, m=m_globals, # mass of pend, kg M=M_globals, # mass of cart, kg L=L_globals, # half length of pend, m u_max=u_max_globals, # max cart force, N M_fric=M_fric_globals, # 1.0, # cart friction, N/m/s J_fric=J_fric_globals, # 10.0, # friction coefficient on angular velocity, Nm/rad/s v_max=v_max_globals, # max DC motor speed, m/s, in absense of friction, used for motor back EMF model controlDisturbance=controlDisturbance_globals, # 0.01, # disturbance, as factor of u_max sensorNoise=sensorNoise_globals, # 0.01, # noise, as factor of max values # Variables for random trace generation N=N_globals, # Complexity of the random trace, number of random points used for interpolation random_length=random_length_globals, # Number of points in the random length trece mode_init = mode_globals # In which mode the Cart should be initialized ): # State of the cart self.s = SimpleNamespace() # s like state self.s.position = 0.0 self.s.positionD = 0.0 self.s.positionDD = 0.0 self.s.angle = 0.0 self.s.angleD = 0.0 self.s.angleDD = 0.0 self.u = 0.0 self.Q = 0.0 self.target_position = 0.0 # Other variables controlling flow or initial state of the program self.Q_thread_enabled = False # If True, control input is computed asynchronously to the simulation in a separate thread self.Q_max = 1.0 self.slider_value = 0.0 self.dt = dt self.time = 0.0 self.dict_history = {} self.reset_dict_history() self.save_history = save_history self.random_trace_generated = False self.use_pregenerated_target_position = False # Physical parameters of the cart self.p = SimpleNamespace() # p like parameters self.p.m = m # mass of pend, kg self.p.M = M # mass of cart, kg self.p.M_fric = M_fric # cart friction, N/m/s self.p.J_fric = J_fric # friction coefficient on angular velocity, Nm/rad/s g = g_globals self.p.g = g_globals self.p.L = L # half length of pend, m k = k_globals self.p.k = k_globals self.p.u_max = u_max # max cart force, N self.p.v_max = v_max # max DC motor speed, m/s, in absence of friction, used for motor back EMF model self.p.controlDisturbance = controlDisturbance # disturbance, as factor of u_max self.p.sensorNoise = sensorNoise # noise, as factor of max values self.p.force_damping = 1.0 # Jacobian of the system linearized around upper equilibrium position # x' = f(x) # x = [x, v, theta, omega] # TODO if parameters change in runtime this Jacobian wont be updated self.Jacobian_UP = array([ [0.0, 1.0, 0.0, 0.0], [0.0, (-(1 + k) * M_fric) / (-m + (1 + k) * (m + M)), (g * m) / (-m + (1 + k) * (m + M)), (-J_fric) / (L * (-m + (1 + k) * (m + M)))], [0.0, 0.0, 0.0, 1.0], [0.0, (-M_fric) / (L * (-m + (1 + k) * (m + M))), (g * (M + m)) / (L * (-m + (1 + k) * (m + M))), -m * (M + m) * J_fric / (L * L * (-m + (1 + k) * (m + M)))], ]) # Array gathering control around equilibrium self.B = u_max * array([ [0.0], [(1 + k) / (-m + (1 + k) * (m + M))], [0.0], [1.0 / (L * (-m + (1 + k) * (m + M)))], ]) # Cost matrices for LQR controller self.Q_matrix = diag([10.0, 1.0, 1.0, 1.0]) # How much to punish x, v, theta, omega self.R_matrix = 1.0e9 # How much to punish Q self.controller_lqr = controller_lqr(self.Jacobian_UP, self.B, self.Q_matrix, self.R_matrix) self.controller_do_mpc = controller_do_mpc() self.controller_do_mpc_discrete = controller_do_mpc_discrete() self.controller = None self.controller_name = '' # Variables for pre-generated random trace self.N = int(N) self.random_length = random_length self.random_track_f = None self.new_track_generated = False self.t_max_pre = None # THE REMAINING PART OF __init__ METHOD CONCERNS DRAWING SETTINGS ONLY # DIMENSIONS OF THE DRAWING ONLY!!! # NOTHING TO DO WITH THE SIMULATION AND NOT INTENDED TO BE MANIPULATED BY USER !!! self.CartLength = 10.0 self.WheelRadius = 0.5 self.WheelToMiddle = 4.0 self.y_plane = 0.0 self.y_wheel = self.y_plane + self.WheelRadius self.MastHight = 10.0 # For drowing only. For calculation see L self.MastThickness = 0.05 self.HalfLength = 50.0 # Length of the track # Elements of the drawing self.Mast = FancyBboxPatch(xy=(self.s.position - (self.MastThickness / 2.0), 1.25 * self.WheelRadius), width=self.MastThickness, height=self.MastHight, fc='g') self.Chassis = FancyBboxPatch((self.s.position - (self.CartLength / 2.0), self.WheelRadius), self.CartLength, 1 * self.WheelRadius, fc='r') self.WheelLeft = Circle((self.s.position - self.WheelToMiddle, self.y_wheel), radius=self.WheelRadius, fc='y', ec='k', lw=5) self.WheelRight = Circle((self.s.position + self.WheelToMiddle, self.y_wheel), radius=self.WheelRadius, fc='y', ec='k', lw=5) self.Slider = Rectangle((0.0, 0.0), self.slider_value, 1.0) self.t2 = transforms.Affine2D().rotate(0.0) # An abstract container for the transform rotating the mast # Set starting mode of operation self.set_mode(new_mode=mode_init) def Generate_Random_Trace_Function(self): # t_pre = arange(0, self.random_length)*self.dt self.t_max_pre = self.random_length * self.dt # t_init = linspace(0, self.t_max_pre, num=self.N, endpoint=True) t_init = np.sort(random.uniform(self.dt, self.t_max_pre, self.N)) t_init = np.insert(t_init, 0, 0.0) t_init = np.append(t_init, self.t_max_pre) y = 2.0 * (random.random(self.N) - 0.5) y = y * 0.8 * self.HalfLength / max(abs(y)) y = np.insert(y, 0, 0.0) y = np.append(y, 0.0) # t1 = timeit.default_timer() # self.random_track_f = interp1d(t_init, y, kind='cubic') # t2 = timeit.default_timer() # Try algorithm setting derivative to 0 a each point yder = [[y[i], 0] for i in range(len(y))] self.random_track_f = BPoly.from_derivatives(t_init, yder) # t3 = timeit.default_timer() # print('Time for simple method: {:.3f}ms'.format((t2-t1)*1000)) # print('Time for complex method: {:.3f}ms'.format((t3 - t2) * 1000)) self.new_track_generated = True # Function gathering equations to update the CartPole state: # x' = f(x) # x = [x, v, theta, omega] def Equations_of_motion(self): self.s.position, self.s.positionD, self.s.angle, self.s.angleD = \ cartpole_integration(self.s, self.dt) self.s.angleDD, self.s.positionDD = cartpole_ode(self.p, self.s, self.u) # Determine the dimensionales [-1,1] value of the motor power Q def Update_Q(self): if self.mode == 0: # in this case slider corresponds already to the power of the motor self.Q = self.slider_value else: # in this case slider gives a target position, lqr regulator # mode == 1 -> lqr controller # mode == 2 -> mpc controller # tic = timeit.default_timer() self.Q = self.controller.step(self.s, self.target_position) # toc = timeit.default_timer() # print("Time to find control input = {} ms".format((toc - tic) * 1000.0)) # if self.Q > 1.0: # print('Q to big! ' + str(self.Q)) # elif self.Q < -1.0: # print('Q to small! ' + str(self.Q)) # This method changes the internal state of the CartPole # from a state at time t to a state at t+dt def update_state(self, slider=None, dt=None, save_history=True): # Optionally update slider, mode and dt values if slider: self.slider_value = slider if dt: self.dt = dt self.save_history = save_history if self.use_pregenerated_target_position == True: self.target_position = self.random_track_f(self.time) if self.target_position > 0.8 * self.HalfLength: self.target_position = 0.8 * self.HalfLength elif self.target_position < -0.8 * self.HalfLength: self.target_position = -0.8 * self.HalfLength self.slider_value = self.target_position else: if self.mode == 0: self.target_position = 0.0 else: self.target_position = self.slider_value # Calculate the next state self.Equations_of_motion() # Normalize angle self.s.angle = normalize_angle_rad(self.s.angle) # In case in the next step the wheel of the cart # went beyond the track # Bump elastically into an (invisible) boarder if (abs(self.s.position) + self.WheelToMiddle) > self.HalfLength: self.s.positionD = -self.s.positionD # Determine the dimensionales [-1,1] value of the motor power Q if not self.Q_thread_enabled: self.Update_Q() self.u = Q2u(self.Q, self.p) # Update the total time of the simulation self.time = self.time + self.dt # If user chose to save history of the simulation it is saved now # It is saved first internally to a dictionary in the Cart instance if self.save_history: # Saving simulation data self.dict_history['time'].append(around(self.time, 5)) self.dict_history['dt'].append(around(self.dt * 1000.0, 3)) self.dict_history['s.position'].append(around(self.s.position, 3)) self.dict_history['s.positionD'].append(around(self.s.positionD, 4)) self.dict_history['s.positionDD'].append(around(self.s.positionDD, 4)) self.dict_history['s.angle'].append(around(self.s.angle, 4)) self.dict_history['s.angleD'].append(around(self.s.angleD, 4)) self.dict_history['s.angleDD'].append(around(self.s.angleDD, 4)) self.dict_history['u'].append(around(self.u, 4)) self.dict_history['Q'].append(around(self.Q, 4)) # The target_position is not always meaningful # If it is not meaningful all values in this column are set to 0 self.dict_history['target_position'].append(around(self.target_position, 4)) # Return the state of the CartPole return self.s.position, self.s.positionD, self.s.positionDD, \ self.s.angle, self.s.angleD, self.s.angleDD, \ self.u # This method only returns the state of the CartPole instance def get_state(self): return self.s.position, self.s.positionD, self.s.positionDD, \ self.s.angle, self.s.angleD, self.s.angleDD, \ self.u # This method resets the internal state of the CartPole instance def reset_state(self): self.s.position = 0.0 self.s.positionD = 0.0 self.s.positionDD = 0.0 self.s.angle = (2.0 * random.normal() - 1.0) * pi / 180.0 self.s.angleD = 0.0 self.s.angleDD = 0.0 self.u = 0.0 self.slider_value = 0.0 self.time = 0.0 # This method draws elements and set properties of the CartPole figure # which do not change at every frame of the animation def draw_constant_elements(self, fig, AxCart, AxSlider): # Delete all elements of the Figure AxCart.clear() AxSlider.clear() ## Upper chart with Cart Picture # Set x and y limits AxCart.set_xlim((-self.HalfLength * 1.1, self.HalfLength * 1.1)) AxCart.set_ylim((-1.0, 15.0)) # Remove ticks on the y-axes AxCart.yaxis.set_major_locator(NullLocator()) # Draw track Floor = Rectangle((-self.HalfLength, -1.0), 2 * self.HalfLength, 1.0, fc='brown') AxCart.add_patch(Floor) # Draw an invisible point at constant position # Thanks to it the axes is drawn high enough for the mast InvisiblePointUp = Rectangle((0, self.MastHight + 2.0), self.MastThickness, 0.0001, fc='w', ec='w') AxCart.add_patch(InvisiblePointUp) # Apply scaling AxCart.axis('scaled') ## Lower Chart with Slider # Set y limits AxSlider.set(xlim=(-1.1 * self.slider_max, self.slider_max * 1.1)) # Remove ticks on the y-axes AxSlider.yaxis.set_major_locator(NullLocator()) # Apply scaling AxSlider.set_aspect("auto") return fig, AxCart, AxSlider # This method accepts the mouse position and updated the slider value accordingly # The mouse position has to be captured by a function not included in this class def update_slider(self, mouse_position): # The if statement formulates a saturation condition if mouse_position > self.slider_max: self.slider_value = self.slider_max elif mouse_position < -self.slider_max: self.slider_value = -self.slider_max else: self.slider_value = mouse_position # This method updates the elements of the Cart Figure which change at every frame. # Not that these elements are not ploted directly by this method # but rather returned as objects which can be used by another function # e.g. animation function from matplotlib package def update_drawing(self): # Draw mast mast_position = (self.s.position - (self.MastThickness / 2.0)) self.Mast.set_x(mast_position) # Draw rotated mast t21 = transforms.Affine2D().translate(-mast_position, -1.25 * self.WheelRadius) t22 = transforms.Affine2D().rotate(self.s.angle) t23 = transforms.Affine2D().translate(mast_position, 1.25 * self.WheelRadius) self.t2 = t21 + t22 + t23 # Draw Chassis self.Chassis.set_x(self.s.position - (self.CartLength / 2.0)) # Draw Wheels self.WheelLeft.center = (self.s.position - self.WheelToMiddle, self.y_wheel) self.WheelRight.center = (self.s.position + self.WheelToMiddle, self.y_wheel) # Draw SLider self.Slider.set_width(self.slider_value) return self.Mast, self.t2, self.Chassis, self.WheelRight, self.WheelLeft, self.Slider # This method resets the dictionary keeping the history of simulation def reset_dict_history(self): self.dict_history = {'time': [0.0], 'dt': [0.0], 's.position': [self.s.position], 's.positionD': [self.s.positionD], 's.positionDD': [self.s.positionDD], 's.angle': [self.s.angle], 's.angleD': [self.s.angleD], 's.angleDD': [self.s.angleDD], 'u': [self.u], 'Q': [self.Q], 'target_position': [self.target_position]} def augment_dict_history(self): # Augment dict self.dict_history['s.angle.sin'] = [around(np.sin(x), 4) for x in self.dict_history['s.angle']] self.dict_history['s.angle.cos'] = [around(np.cos(x), 4) for x in self.dict_history['s.angle']] # This method saves the dictionary keeping the history of simulation to a .csv file def save_history_csv(self, csv_name=None): # Make folder to save data (if not yet existing) try: os.makedirs('./data') except FileExistsError: pass # Set path where to save the data if csv_name is None or csv_name == '': logpath = './data/' + 'CP_' + self.controller_name + str(datetime.now().strftime('_%Y-%m-%d_%H-%M-%S')) + '.csv' else: logpath = './data/' + csv_name if csv_name[-4:] != '.csv': logpath += '.csv' # If such file exists, add index to the end (do not overwrite) net_index = 1 logpath_new = logpath while True: if os.path.isfile(logpath_new): logpath_new = logpath[:-4] else: logpath = logpath_new break logpath_new = logpath_new + '-' + str(net_index) + '.csv' net_index += 1 # Write the .csv file with open(logpath, "w") as outfile: writer = csv.writer(outfile) writer.writerow(['# ' + 'This is CartPole experiment from {} at time {}' .format(datetime.now().strftime('%d.%m.%Y'), datetime.now().strftime('%H:%M:%S'))]) writer.writerow(['# Number of data points: {}'.format(len(self.dict_history['time']))]) writer.writerow(['# Controller: {}'.format(self.controller_name)]) writer.writerow(['#']) writer.writerow(['# Parameters:']) for k in self.p.__dict__: writer.writerow(['# ' + k + ': ' + str(getattr(self.p, k))]) writer.writerow(['#']) writer.writerow(['# Data:']) writer.writerow(self.dict_history.keys()) writer.writerows(zip(*self.dict_history.values())) def get_history(self): # Augment dict self.dict_history['s.angle.sin'] = [around(np.sin(x), 4) for x in self.dict_history['s.angle']] self.dict_history['s.angle.cos'] = [around(np.cos(x), 4) for x in self.dict_history['s.angle']] return pd.DataFrame(self.dict_history) def load_history_csv(self, csv_name=None, visualisation_only=True): # Set path where to save the data if csv_name is None or csv_name == '': # get the latest file try: list_of_files = glob.glob('./data/' + '/*.csv') file_path = max(list_of_files, key=os.path.getctime) except FileNotFoundError: print('Cannot load: No experiment recording found in data folder ' + './data/') return False else: filename = csv_name if csv_name[-4:] != '.csv': filename += '.csv' # check if file found in DATA_FOLDER_NAME or at local starting point if not os.path.isfile(filename): file_path = os.path.join('data', filename) if not os.path.isfile(file_path): print( 'Cannot load: There is no experiment recording file with name {} at local folder or in {}'.format( filename, './data/')) return False # Get race recording print('Loading file {}'.format(file_path)) try: data: pd.DataFrame = pd.read_csv(file_path, comment='#') # skip comment lines starting with # except Exception as e: print('Cannot load: Caught {} trying to read CSV file {}'.format(e, file_path)) return False if visualisation_only: data = data[['time', 'dt', 's.position', 's.positionD', 's.angle', 'u', 'target_position']] return data def set_mode(self, new_mode=0): if new_mode == 0: self.mode = 0 self.controller = None self.controller_name = 'free' self.slider_max = self.Q_max elif new_mode == 1: self.mode = 1 self.controller = self.controller_lqr self.controller_name = 'lqr' self.slider_max = self.HalfLength # Set the maximal allowed value of the slider elif new_mode == 2: self.mode = 2 self.controller = self.controller_do_mpc self.controller_name = 'do-mpc' self.slider_max = self.HalfLength # Set the maximal allowed value of the slider elif new_mode == 3: self.mode = 3 self.controller = self.controller_do_mpc_discrete self.controller_name = 'do-mpc-discrete' self.slider_max = self.HalfLength # Set the maximal allowed value of the slider
class Cart: def __init__( self, # (Initial) State of the cart # It is only a state after initialization, not after reset # For the later see reset_state function CartPosition=0.0, CartPositionD=0.0, CartPositionDD=0.0, angle=(2.0 * random.normal() - 1.0) * pi / 180.0, angleD=0.0, angleDD=0.0, ueff=0.0, Q=0.0, # Other variables controlling flow of the program Q_max=1, slider_value=0.0, mode=0, dt=0.02, save_history=True, # Variables used for physical simulation m=2.0, # mass of pend, kg M=2.0, # mass of cart, kg Mfric=1.0, # cart friction, N/m/s Jfric=10.0, # friction coefficient on angular velocity, Nm/rad/s g=9.8, # gravity, m/s^2 L=10.0, # half length of pend, m umax=300.0, # max cart force, N maxv=10.0, # max DC motor speed, m/s, in absense of friction, used for motor back EMF model controlDisturbance=0.01, # disturbance, as factor of umax sensorNoise=0.01, # noise, as factor of max values #Variables for the controller angle_safety_limit=6.0, kx=0.5, kxd=5.0, ka=0.5, kad=5.0, #Dimensions of the drawing CartLength=10.0, WheelRadius=0.5, WheelToMiddle=4.0, MastHight=10.0, # Only drawing, not the one used for physical simulation! MastThickness=0.05, y_plane=0.0, HalfLength=50.0): # State of the cart self.CartPosition = CartPosition self.CartPositionD = CartPositionD self.CartPositionDD = CartPositionDD self.angle = angle self.angleD = angleD self.angleDD = angleDD self.ueff = ueff self.Q = Q #Other variables controlling flow of the program self.mode = mode self.Q_max = Q_max # Set the maximal allowed value of the slider dependant on the mode of simulation if self.mode == 0: self.slider_max = self.Q_max elif self.mode == 1: self.slider_max = self.HalfLength self.slider_value = slider_value self.dt = dt self.time_total = 0.0 self.dict_history = {} self.reset_dict_history() self.save_history = save_history #Variables for the controller self.angle_safety_limit = angle_safety_limit self.kx = kx self.kxd = kxd self.ka = ka self.kad = kad #Physical parameters of the cart self.m = m # mass of pend, kg self.M = M # mass of cart, kg self.Mfric = Mfric # cart friction, N/m/s self.Jfric = Jfric # friction coefficient on angular velocity, Nm/rad/s self.g = g # gravity, m/s^2 self.L = L # half length of pend, m self.umax = umax # max cart force, N self.maxv = maxv # max DC motor speed, m/s, in absense of friction, used for motor back EMF model self.controlDisturbance = controlDisturbance # disturbance, as factor of umax self.sensorNoise = sensorNoise # noise, as factor of max values #Helpers self.J = (self.m * (2.0 * self.L)** 2) / 12.0 # moment of inertia around center of pend, kg*m self.jml2 = self.J + self.m * self.L**2 #alpja self.ml = self.m * self.L #beta self.B = self.M + self.m + (self.ml**2) / self.jml2 #Dimensions of the drawing self.CartLength = CartLength self.WheelRadius = WheelRadius self.WheelToMiddle = WheelToMiddle self.y_plane = y_plane self.y_wheel = self.y_plane + self.WheelRadius self.MastHight = MastHight # For drowing only. For calculation see L self.MastThickness = MastThickness self.HalfLength = HalfLength # Length of the track #Elements of the drawing self.Mast = FancyBboxPatch( (self.CartPosition - (self.MastThickness / 2.0), 1.25 * self.WheelRadius), self.MastThickness, self.MastHight, fc='g') self.Chassis = FancyBboxPatch( (self.CartPosition - (self.CartLength / 2.0), self.WheelRadius), self.CartLength, 1 * self.WheelRadius, fc='r') self.WheelLeft = Circle( (self.CartPosition - self.WheelToMiddle, self.y_wheel), radius=self.WheelRadius, fc='y', ec='k', lw=5) self.WheelRight = Circle( (self.CartPosition + self.WheelToMiddle, self.y_wheel), radius=self.WheelRadius, fc='y', ec='k', lw=5) self.Slider = Rectangle((0.0, 0.0), slider_value, 1.0) self.t2 = transforms.Affine2D().rotate( 0.0) # An abstract container for the transform rotating the mast # This method changes the internal state of the CartPole # from a state at time t to a state at t+dt def update_state(self, slider=None, mode=None, dt=None, save_history=True): # Optionally update slider, mode and dt values if slider: self.slider_value = slider if mode: self.mode = mode if dt: self.dt = dt self.save_history = save_history # In case in the last step the wheel of the cart # went beyond the track # Bump elastically into an (invisible) boarder if (abs(self.CartPosition) + self.WheelToMiddle) > self.HalfLength: self.CartPositionD = -self.CartPositionD # Determine the dimensionales [-1,1] value of the motor power Q if self.mode == 1: # in this case slider gives a target position # We use a PI control on Cart position and speed to determin the angle to which we want to stabilize the Pole # The pendulum has to lean in the direction of the movement # This causes acceleration in the desired direction set_angle = ((self.slider_value - self.CartPosition) * self.kx - self.CartPositionD * self.kxd) # But we never want the set angle to be too big - otherwise we loose control irreversibly # The following if condition implements an empirically determined boundary for set_angle if abs(set_angle) > self.angle_safety_limit: set_angle = sign(set_angle) * self.angle_safety_limit # We convert angle to radians set_angle = (pi / 180.0) * set_angle # Determine the power of the motor (dimensionless in the -1 to 1 range) with PI controller self.Q = (self.angle - set_angle) * self.ka + self.angleD * self.kad # Implemet condition of saturation of motort power - its magnitude cannot be bigger than 1 if self.Q > 1.0: self.Q = 1.0 elif self.Q < -1.0: self.Q = -1.0 elif self.mode == 0: # in this case slider corresponds already to the power of the motor self.Q = self.slider_value # Calculate the force created by the motor self.ueff = self.umax * ( 1 - abs(self.CartPositionD) / self.maxv ) * self.Q # dumb model of EMF of motor, Q is drive -1:1 range self.ueff = self.ueff + self.controlDisturbance * ( 2.0 * random.normal() - 1.0) * self.umax # noise on control # Helpers ca = cos(self.angle) sa = sin(self.angle) A = self.jml2 + (self.ml**2 * (ca)**2 / (self.M + self.m)) # A and B are always >= 0 # Calculate new state of the CartPole self.CartPositionDD = ( self.ueff - self.g * self.ml**2 * sa / self.jml2 + self.ml**2 * self.L * self.angleD**2 * ca * sa / self.jml2 - self.CartPositionD * self.Mfric) / self.B self.angleDD = (-self.ml / (self.M + self.m) * ca * self.ueff + self.m * self.g * self.L * sa - self.ml * (1 + 1 / (self.M + self.m)) * self.angleD**2 * ca * sa - self.angleD * self.Jfric) / A self.angleD = self.angleD + self.angleDD * self.dt self.CartPositionD = self.CartPositionD + self.CartPositionDD * self.dt self.angle = self.angle + self.angleD * self.dt self.CartPosition = self.CartPosition + self.CartPositionD * self.dt #Update the total time of the simulation self.time_total = self.time_total + self.dt # If user chose to save history of the simulation it is saved now # It is saved first internally to a dictionary in the Cart instance if self.save_history: # Saving simulation data self.dict_history['Time'].append(around(self.time_total, 4)) self.dict_history['deltaTimeMs'].append(around( self.dt * 1000.0, 3)) self.dict_history['position'].append(around(self.CartPosition, 3)) self.dict_history['positionD'].append(around( self.CartPositionD, 4)) self.dict_history['positionDD'].append( around(self.CartPositionDD, 4)) self.dict_history['angle'].append(around(self.angle, 4)) self.dict_history['angleD'].append(around(self.angleD, 4)) self.dict_history['angleDD'].append(around(self.angleDD, 4)) self.dict_history['motor'].append(around(self.ueff, 4)) # The PositionTarget is not always meaningful # If it is not meaningful all values in this column are set to 0 if self.mode == 1: self.PositionTarget = self.slider_value elif self.mode == 0: self.PositionTarget = 0.0 self.dict_history['PositionTarget'].append( around(self.PositionTarget, 4)) # Return the state of the CartPole return self.CartPosition, self.CartPositionD, self.CartPositionDD, \ self.angle, self.angleD, self.angleDD, \ self.ueff # This method only returns the state of the CartPole instance def get_state(self): return self.CartPosition, self.CartPositionD, self.CartPositionDD, \ self.angle, self.angleD, self.angleDD, \ self.ueff # This method resets the internal state of the CartPole instance def reset_state(self): self.CartPosition = 0.0 self.CartPositionD = 0.0 self.CartPositionDD = 0.0 self.angle = (2.0 * random.normal() - 1.0) * pi / 180.0 self.angleD = 0.0 self.angleDD = 0.0 self.ueff = 0.0 self.dt = 0.02 self.slider_value = 0.0 # This method draws elements and set properties of the CartPole figure # which do not change at every frame of the animation def draw_constant_elements(self, fig, AxCart, AxSlider): # Get the appropriate max of slider depending on the mode of operation if self.mode == 0: self.slider_max = self.Q_max elif self.mode == 1: self.slider_max = self.HalfLength # Delete all elements of the Figure AxCart.clear() AxSlider.clear() ## Upper chart with Cart Picture # Set x and y limits AxCart.set_xlim((-self.HalfLength * 1.1, self.HalfLength * 1.1)) AxCart.set_ylim((-1.0, 15.0)) # Remove ticks on the y-axes AxCart.yaxis.set_major_locator(NullLocator()) # Draw track Floor = Rectangle((-self.HalfLength, -1.0), 2 * self.HalfLength, 1.0, fc='brown') AxCart.add_patch(Floor) # Draw an invisible point at constant position # Thanks to it the axes is drawn high enough for the mast InvisiblePointUp = Rectangle((0, self.MastHight + 2.0), self.MastThickness, 0.0001, fc='w', ec='w') AxCart.add_patch(InvisiblePointUp) # Apply scaling AxCart.axis('scaled') ## Lower Chart with Slider # Set y limits AxSlider.set(xlim=(-1.1 * self.slider_max, self.slider_max * 1.1)) # Remove ticks on the y-axes AxSlider.yaxis.set_major_locator(NullLocator()) # Apply scaling AxSlider.set_aspect("auto") return fig, AxCart, AxSlider # This method accepts the mouse position and updated the slider value accordingly # The mouse position has to be captured by a function not included in this class def update_slider(self, mouse_position): # The if statement formulates a saturation condition if mouse_position > self.slider_max: self.slider_value = self.slider_max elif mouse_position < -self.slider_max: self.slider_value = -self.slider_max else: self.slider_value = mouse_position # This method updates the elements of the Cart Figure which change at every frame. # Not that these elements are not ploted directly by this method # but rather returned as objects which can be used by another function # e.g. animation function from matplotlib package def update_drawing(self): #Draw mast mast_position = (self.CartPosition - (self.MastThickness / 2.0)) self.Mast.set_x(mast_position) #Draw rotated mast t21 = transforms.Affine2D().translate(-mast_position, -1.25 * self.WheelRadius) t22 = transforms.Affine2D().rotate(-self.angle) t23 = transforms.Affine2D().translate(mast_position, 1.25 * self.WheelRadius) self.t2 = t21 + t22 + t23 #Draw Chassis self.Chassis.set_x(self.CartPosition - (self.CartLength / 2.0)) #Draw Wheels self.WheelLeft.center = (self.CartPosition - self.WheelToMiddle, self.y_wheel) self.WheelRight.center = (self.CartPosition + self.WheelToMiddle, self.y_wheel) #Draw SLider self.Slider.set_width(self.slider_value) return self.Mast, self.t2, self.Chassis, self.WheelRight, self.WheelLeft, self.Slider # This method resets the dictionary keeping the history of simulation def reset_dict_history(self): self.dict_history = { 'Time': [around(self.dt, 3)], 'deltaTimeMs': [around(self.dt * 1000.0, 3)], 'position': [], 'positionD': [], 'positionDD': [], 'angle': [], 'angleD': [], 'angleDD': [], 'motor': [], 'PositionTarget': [] } # This method saves the dictionary keeping the history of simulation to a .csv file def save_history_csv(self): # Make folder to save data (if not yet existing) try: os.makedirs('save') except: pass # Set path where to save the data logpath = './save/' + str( datetime.now().strftime('%Y-%m-%d_%H%M%S')) + '.csv' # Write the .csv file with open(logpath, "w") as outfile: writer = csv.writer(outfile) writer.writerow(self.dict_history.keys()) writer.writerows(zip(*self.dict_history.values()))
class CartPole: def __init__(self): # Global time of the simulation self.time = 0.0 # CartPole is initialized with state, control input, target position all zero # This is however usually changed before running the simulation. Treat it just as placeholders. # Container for the augmented state (angle, position and their first and second derivatives)of the cart self.s = s0 # (s like state) # Variables for control input and target position. self.u = 0.0 # Physical force acting on the cart self.Q = 0.0 # Dimensionless motor power in the range [-1,1] from which force is calculated with Q2u() method self.target_position = 0.0 # Physical parameters of the CartPole self.p = p_globals # region Time scales for simulation step, controller update and saving data # See last paragraph of "Time scales" section for explanations # ∆t in number of steps (related to simulation time step) # is set while setting corresponding dt through @property self.dt_controller_number_of_steps = 0 self.dt_save_number_of_steps = 0 # Counts time steps from last controller update or saving # is set while setting corresponding dt through @property self.dt_controller_steps_counter = 0 self.dt_save_steps_counter = 0 # Helper variables to set timescales self._dt_simulation = None self._dt_controller = None self._dt_save = None self.dt_simulation = None # s, Update CartPole dynamical state every dt_simulation seconds self.dt_controller = None # s, Recalculate control input every dt_controller_default seconds self.dt_save = None # s, Save CartPole state every dt_save_default seconds # endregion # region Variables controlling operation of the program - can be modified directly from CartPole environment self.rounding_decimals = 5 # Sets number of digits after coma to save in experiment history for each feature self.save_data_in_cart = True # Decides whether to store whole data of the experiment in dict_history or not self.stop_at_90 = False # If true pole is blocked after reaching the horizontal position # endregion # region Variables controlling operation of the program - should not be modified directly self.save_flag = False # Signalizes that the current time step should be saved self.csv_filepath = None # Where to save the experiment history. self.controller = None # Placeholder for the currently used controller function self.controller_name = '' # Placeholder for the currently used controller name self.controller_idx = None # Placeholder for the currently used controller index self.controller_names = self.get_available_controller_names( ) # list of controllers available in controllers folder # endregion # region Variables for generating experiments with random target trace # Parameters for random trace generation # These need to be set, before CartPole can generate random trace and random experiment self.track_relative_complexity = None # randomly placed target points/s self.length_of_experiment = None # seconds, length of the random length trace self.interpolation_type = None # Sets how to interpolate between turning points of random trace # Possible choices: '0-derivative-smooth', 'linear', 'previous' # '0-derivative-smooth' # -> turning points are connected with smooth interpolation curve having derivative = 0 at each turning p. # 'linear' -> turning points are connected with line segments # 'previous' -> between two turning points the value of the preceding point is kept constant. # In this last setting endpoint if set has no visible effect # (may however appear in the last line of the recording - TODO: not checked) self.turning_points_period = None # How turning points should be distributed # Possible choices: 'regular', 'random' # Regular means that they are equidistant from each other # Random means we pick randomly points at time axis at which we place turning points # Where the target position of the random experiment starts and end: self.start_random_target_position_at = None self.end_random_target_position_at = None # Alternatively you can provide a list of target positions. # e.g. self.turning_points = [10.0, 0.0, 0.0] # If not None this variable has precedence - # track_relative_complexity, start/end_random_target_position_at_globals have no effect. self.turning_points = None self.random_track_f = None # Function interpolataing the random target position between turning points self.new_track_generated = False # Flag informing that a new target position track is generated self.t_max_pre = None # Placeholder for the end time of the generated random experiment self.number_of_timesteps_in_random_experiment = None self.use_pregenerated_target_position = False # Informs method performing experiment # not to take target position from environment # endregion and self.dict_history = {} # Dictionary holding the experiment history # region Variables initialization for drawing/animating a CartPole # DIMENSIONS OF THE DRAWING ONLY!!! # NOTHING TO DO WITH THE SIMULATION AND NOT INTENDED TO BE MANIPULATED BY USER !!! # Variable relevant for interactive use of slider self.slider_max = 0.0 self.slider_value = 0.0 # Parameters needed to display CartPole in GUI # They are assigned with values in self.init_elements() self.CartLength = None self.WheelRadius = None self.WheelToMiddle = None self.y_plane = None self.y_wheel = None self.MastHight = None # For drawing only. For calculation see L self.MastThickness = None self.HalfLength = None # Length of the track # Elements of the drawing self.Mast = None self.Chassis = None self.WheelLeft = None self.WheelRight = None # Arrow indicating acceleration (=motor power) self.Acceleration_Arrow = None self.y_acceleration_arrow = None self.scaling_dx_acceleration_arrow = None self.x_acceleration_arrow = None # Depending on mode, slider may be displayed either as bar or as an arrow self.Slider_Bar = None self.Slider_Arrow = None self.t2 = None # An abstract container for the transform rotating the mast self.init_graphical_elements( ) # Assign proper object to the above variables # endregion # region Initialize CartPole in manual-stabilization mode self.set_controller('manual-stabilization') # endregion # region 1. Methods related to dynamic evolution of CartPole system # This method changes the internal state of the CartPole # from a state at time t to a state at t+dt # We assume this function is called for the first time to calculate first time step # @profile(precision=4) def update_state(self): # Update the total time of the simulation self.time = self.time + self.dt_simulation # Update target position depending on the mode of operation if self.use_pregenerated_target_position: # If time exceeds the max time for which target position was defined if self.time >= self.t_max_pre: return self.target_position = self.random_track_f(self.time) self.slider_value = self.target_position # Assign target position to slider to display it else: if self.controller_name == 'manual-stabilization': self.target_position = 0.0 # In this case target position is not used. # This just fill the corresponding column in history with zeros else: self.target_position = self.slider_value # Get target position from slider # Calculate the next state self.cartpole_integration() # Snippet to stop pole at +/- 90 deg if enabled zero_DD = None if self.stop_at_90: if self.s.angle >= np.pi / 2: self.s.angle = np.pi / 2 self.s.angleD = 0.0 zero_DD = True # Make also second derivatives 0 after they are calculated elif self.s.angle <= -np.pi / 2: self.s.angle = -np.pi / 2 self.s.angleD = 0.0 zero_DD = True # Make also second derivatives 0 after they are calculated else: zero_DD = False # Wrap angle to +/-π self.s.angle = wrap_angle_rad(self.s.angle) # In case in the next step the wheel of the cart # went beyond the track # Bump elastically into an (invisible) boarder if (abs(self.s.position) + self.WheelToMiddle) > self.HalfLength: self.s.positionD = -self.s.positionD # Determine the dimensionless [-1,1] value of the motor power Q self.Update_Q() # Convert dimensionless motor power to a physical force acting on the Cart self.u = Q2u(self.Q, self.p) # Update second derivatives self.s.angleDD, self.s.positionDD = cartpole_ode( self.p, self.s, self.u) if zero_DD: self.s.angleDD = 0.0 # Calculate time steps from last saving # The counter should be initialized at max-1 to start with a control input update self.dt_save_steps_counter += 1 # If update time interval elapsed save current state and zero the counter if self.dt_save_steps_counter == self.dt_save_number_of_steps: # If user chose to save history of the simulation it is saved now # It is saved first internally to a dictionary in the Cart instance if self.save_data_in_cart: # Saving simulation data self.dict_history['time'].append(self.time) self.dict_history['s.position'].append(self.s.position) self.dict_history['s.positionD'].append(self.s.positionD) self.dict_history['s.positionDD'].append(self.s.positionDD) self.dict_history['s.angle'].append(self.s.angle) self.dict_history['s.angleD'].append(self.s.angleD) self.dict_history['s.angleDD'].append(self.s.angleDD) self.dict_history['u'].append(self.u) self.dict_history['Q'].append(self.Q) # The target_position is not always meaningful # If it is not meaningful all values in this column are set to 0 self.dict_history['target_position'].append( self.target_position) self.dict_history['s.angle.sin'].append(np.sin(self.s.angle)) self.dict_history['s.angle.cos'].append(np.cos(self.s.angle)) else: self.dict_history = { 'time': [self.time], 's.position': [self.s.position], 's.positionD': [self.s.positionD], 's.positionDD': [self.s.positionDD], 's.angle': [self.s.angle], 's.angleD': [self.s.angleD], 's.angleDD': [self.s.angleDD], 'u': [self.u], 'Q': [self.Q], 'target_position': [self.target_position], 's.angle.sin': [np.sin(self.s.angle)], 's.angle.cos': [np.cos(self.s.angle)] } self.save_flag = True self.dt_save_steps_counter = 0 # A method integrating the cartpole ode over time step dt # Currently we use a simple single step Euler stepping def cartpole_integration(self): """Simple single step integration of CartPole state by dt Takes state as SimpleNamespace, but returns as separate variables :param s: state of the CartPole (contains: s.position, s.positionD, s.angle and s.angleD) :param dt: time step by which the CartPole state should be integrated """ self.s.position = self.s.position + self.s.positionD * self.dt_simulation self.s.positionD = self.s.positionD + self.s.positionDD * self.dt_simulation self.s.angle = self.s.angle + self.s.angleD * self.dt_simulation self.s.angleD = self.s.angleD + self.s.angleDD * self.dt_simulation # Determine the dimensionless [-1,1] value of the motor power Q # The function loads an external controller from PATH_TO_CONTROLLERS # This function should be called for the first time to calculate 0th time step # Otherwise it goes out of sync with saving def Update_Q(self): # Calculate time steps from last update # The counter should be initialized at max-1 to start with a control input update self.dt_controller_steps_counter += 1 # If update time interval elapsed update control input and zero the counter if self.dt_controller_steps_counter == self.dt_controller_number_of_steps: if self.controller_name == 'manual-stabilization': # in this case slider corresponds already to the power of the motor self.Q = self.slider_value else: # in this case slider gives a target position, lqr regulator self.Q = self.controller.step(self.s, self.target_position, self.time) self.dt_controller_steps_counter = 0 # endregion # region 2. Methods related to experiment history as a whole: saving, loading, plotting, resetting # This method saves the dictionary keeping the history of simulation to a .csv file def save_history_csv(self, csv_name=None, mode='init', length_of_experiment='unknown'): if mode == 'init': # Make folder to save data (if not yet existing) try: os.makedirs(PATH_TO_EXPERIMENT_RECORDINGS[:-1]) except FileExistsError: pass # Set path where to save the data if csv_name is None or csv_name == '': self.csv_filepath = PATH_TO_EXPERIMENT_RECORDINGS + 'CP_' + self.controller_name + str( datetime.now().strftime('_%Y-%m-%d_%H-%M-%S')) + '.csv' else: self.csv_filepath = PATH_TO_EXPERIMENT_RECORDINGS + csv_name if csv_name[-4:] != '.csv': self.csv_filepath += '.csv' # If such file exists, append index to the end (do not overwrite) net_index = 1 logpath_new = self.csv_filepath while True: if os.path.isfile(logpath_new): logpath_new = self.csv_filepath[:-4] else: self.csv_filepath = logpath_new break logpath_new = logpath_new + '-' + str(net_index) + '.csv' net_index += 1 # Write the .csv file with open(self.csv_filepath, "a") as outfile: writer = csv.writer(outfile) writer.writerow([ '# ' + 'This is CartPole experiment from {} at time {}'.format( datetime.now().strftime('%d.%m.%Y'), datetime.now().strftime('%H:%M:%S')) ]) try: repo = Repo() git_revision = repo.head.object.hexsha except: git_revision = 'unknown' writer.writerow( ['# ' + 'Done with git-revision: {}'.format(git_revision)]) writer.writerow(['#']) writer.writerow([ '# Length of experiment: {} s'.format( str(length_of_experiment)) ]) writer.writerow(['#']) writer.writerow(['# Time intervals dt:']) writer.writerow( ['# Simulation: {} s'.format(str(self.dt_simulation))]) writer.writerow([ '# Controller update: {} s'.format(str(self.dt_controller)) ]) writer.writerow(['# Saving: {} s'.format(str(self.dt_save))]) writer.writerow(['#']) writer.writerow( ['# Controller: {}'.format(self.controller_name)]) writer.writerow(['#']) writer.writerow(['# Parameters:']) for k in self.p.__dict__: writer.writerow( ['# ' + k + ': ' + str(getattr(self.p, k))]) writer.writerow(['#']) writer.writerow(['# Data:']) writer.writerow(self.dict_history.keys()) elif mode == 'save online': # Save this dict with open(self.csv_filepath, "a") as outfile: writer = csv.writer(outfile) self.dict_history = { key: np.around(value, self.rounding_decimals) for key, value in self.dict_history.items() } writer.writerows(zip(*self.dict_history.values())) self.save_now = False elif mode == 'save offline': # Round data to a set precision with open(self.csv_filepath, "a") as outfile: writer = csv.writer(outfile) self.dict_history = { key: np.around(value, self.rounding_decimals) for key, value in self.dict_history.items() } writer.writerows(zip(*self.dict_history.values())) self.save_now = False # Another possibility to save data. # DF_history = pd.DataFrame.from_dict(self.dict_history).round(self.rounding_decimals) # DF_history.to_csv(self.csv_filepath, index=False, header=False, mode='a') # Mode (a)ppend # load csv file with experiment recording (e.g. for replay) def load_history_csv(self, csv_name=None): # Set path where to save the data if csv_name is None or csv_name == '': # get the latest file try: list_of_files = glob.glob(PATH_TO_EXPERIMENT_RECORDINGS + '/*.csv') file_path = max(list_of_files, key=os.path.getctime) except FileNotFoundError: print( 'Cannot load: No experiment recording found in data folder ' + './data/') return False else: filename = csv_name if csv_name[-4:] != '.csv': filename += '.csv' # check if file found in DATA_FOLDER_NAME or at local starting point if not os.path.isfile(filename): file_path = os.path.join(PATH_TO_EXPERIMENT_RECORDINGS, filename) if not os.path.isfile(file_path): print( 'Cannot load: There is no experiment recording file with name {} at local folder or in {}' .format(filename, PATH_TO_EXPERIMENT_RECORDINGS)) return False # Get race recording print('Loading file {}'.format(file_path)) try: data: pd.DataFrame = pd.read_csv( file_path, comment='#') # skip comment lines starting with # except Exception as e: print('Cannot load: Caught {} trying to read CSV file {}'.format( e, file_path)) return False return data # Method plotting the dynamic evolution over time of the CartPole # It should be called after an experiment and only if experiment data was saved def summary_plots(self): fontsize_labels = 14 fontsize_ticks = 12 fig, axs = plt.subplots( 4, 1, figsize=(16, 9), sharex=True) # share x axis so zoom zooms all plots # Plot angle error axs[0].set_ylabel("Angle (deg)", fontsize=fontsize_labels) axs[0].plot(np.array(self.dict_history['time']), np.array(self.dict_history['s.angle']) * 180.0 / np.pi, 'b', markersize=12, label='Ground Truth') axs[0].tick_params(axis='both', which='major', labelsize=fontsize_ticks) # Plot position axs[1].set_ylabel("position (m)", fontsize=fontsize_labels) axs[1].plot(self.dict_history['time'], self.dict_history['s.position'], 'g', markersize=12, label='Ground Truth') axs[1].tick_params(axis='both', which='major', labelsize=fontsize_ticks) # Plot motor input command axs[2].set_ylabel("motor (N)", fontsize=fontsize_labels) axs[2].plot(self.dict_history['time'], self.dict_history['u'], 'r', markersize=12, label='motor') axs[2].tick_params(axis='both', which='major', labelsize=fontsize_ticks) # Plot target position axs[3].set_ylabel("position target (m)", fontsize=fontsize_labels) axs[3].plot(self.dict_history['time'], self.dict_history['target_position'], 'k') axs[3].tick_params(axis='both', which='major', labelsize=fontsize_ticks) axs[3].set_xlabel('Time (s)', fontsize=fontsize_labels) fig.align_ylabels() plt.show() return fig, axs # endregion # region 3. Methods for generating random target position for generation of random experiment # Generates a random target position # in a form of a function interpolating between turning points def Generate_Random_Trace_Function(self): if (self.turning_points is None) or (self.turning_points == []): number_of_turning_points = int( np.floor(self.length_of_experiment * self.track_relative_complexity)) y = 2.0 * (np.random.random(number_of_turning_points) - 0.5) y = y * 0.5 * self.HalfLength if number_of_turning_points == 0: y = np.append(y, 0.0) y = np.append(y, 0.0) elif number_of_turning_points == 1: if self.start_random_target_position_at is not None: y[0] = self.start_random_target_position_at elif self.end_random_target_position_at is not None: y[0] = self.end_random_target_position_at else: pass y = np.append(y, y[0]) else: if self.start_random_target_position_at is not None: y[0] = self.start_random_target_position_at if self.end_random_target_position_at is not None: y[-1] = self.end_random_target_position_at else: number_of_turning_points = len(self.turning_points) if number_of_turning_points == 0: raise ValueError('You should not be here!') elif number_of_turning_points == 1: y = np.array([self.turning_points[0], self.turning_points[0]]) else: y = np.array(self.turning_points) number_of_timesteps = np.ceil(self.length_of_experiment / self.dt_simulation) self.t_max_pre = number_of_timesteps * self.dt_simulation random_samples = number_of_turning_points - 2 if number_of_turning_points - 2 >= 0 else 0 # t_init = linspace(0, self.t_max_pre, num=self.track_relative_complexity, endpoint=True) if self.turning_points_period == 'random': t_init = np.sort( np.random.uniform(self.dt_simulation, self.t_max_pre - self.dt_simulation, random_samples)) t_init = np.insert(t_init, 0, 0.0) t_init = np.append(t_init, self.t_max_pre) elif self.turning_points_period == 'regular': t_init = np.linspace(0, self.t_max_pre, num=random_samples + 2, endpoint=True) else: raise NotImplementedError( 'There is no mode corresponding to this value of turning_points_period variable' ) # Try algorithm setting derivative to 0 a each point if self.interpolation_type == '0-derivative-smooth': yder = [[y[i], 0] for i in range(len(y))] random_track_f = BPoly.from_derivatives(t_init, yder) elif self.interpolation_type == 'linear': random_track_f = interp1d(t_init, y, kind='linear') elif self.interpolation_type == 'previous': random_track_f = interp1d(t_init, y, kind='previous') else: raise ValueError('Unknown interpolation type.') # Truncate the target position to be not grater than 80% of track length def random_track_f_truncated(time): target_position = random_track_f(time) if target_position > 0.8 * self.HalfLength: target_position = 0.8 * self.HalfLength elif target_position < -0.8 * self.HalfLength: target_position = -0.8 * self.HalfLength return target_position self.random_track_f = random_track_f_truncated self.new_track_generated = True # Prepare CartPole Instance to perform an experiment with random target position trace def setup_cartpole_random_experiment( self, # Initial state s0=None, controller=None, dt_simulation=None, dt_controller=None, dt_save=None, # Settings related to random trace generation track_relative_complexity=None, length_of_experiment=None, interpolation_type=None, turning_points_period=None, start_random_target_position_at=None, end_random_target_position_at=None, turning_points=None): # Set time scales: self.dt_simulation = dt_simulation self.dt_controller = dt_controller self.dt_save = dt_save # Set CartPole in the right (automatic control) mode # You may want to provide it before this function not to reload it every time if controller is not None: self.set_controller(controller) # Set initial state self.s = s0 self.track_relative_complexity = track_relative_complexity self.length_of_experiment = length_of_experiment self.interpolation_type = interpolation_type self.turning_points_period = turning_points_period self.start_random_target_position_at = start_random_target_position_at self.end_random_target_position_at = end_random_target_position_at self.turning_points = turning_points self.Generate_Random_Trace_Function() self.use_pregenerated_target_position = 1 self.number_of_timesteps_in_random_experiment = int( np.ceil(self.length_of_experiment / self.dt_simulation)) # Target position at time 0 self.target_position = self.random_track_f(self.time) # Make already in the first timestep Q appropriate to the initial state, target position and controller self.Update_Q() self.set_cartpole_state_at_t0(reset_mode=2, s=self.s, Q=self.Q, target_position=self.target_position) # Runs a random experiment with parameters set with setup_cartpole_random_experiment # And saves the experiment recording to csv file # @profile(precision=4) def run_cartpole_random_experiment(self, csv=None, save_mode='offline'): """ This function runs a random CartPole experiment and returns the history of CartPole states, control inputs and desired cart position """ if save_mode == 'offline': self.save_data_in_cart = True elif save_mode == 'online': self.save_data_in_cart = False else: raise ValueError('Unknown save mode value') # Create csv file for savign self.save_history_csv(csv_name=csv, mode='init', length_of_experiment=self.length_of_experiment) # Save 0th timestep if save_mode == 'online': self.save_history_csv(csv_name=csv, mode='save online') # Run the CartPole experiment for number of time for _ in trange(self.number_of_timesteps_in_random_experiment): # Print an error message if it runs already to long (should stop before) if self.time > self.t_max_pre: raise Exception( 'ERROR: It seems the experiment is running too long...') self.update_state() # Additional option to stop the experiment if abs(self.s.position) > 45.0: break print('Cart went out of safety boundaries') # if abs(CartPoleInstance.s.angle) > 0.8*np.pi: # raise ValueError('Cart went unstable') if save_mode == 'online' and self.save_flag: self.save_history_csv(csv_name=csv, mode='save online') self.save_flag = False data = pd.DataFrame(self.dict_history) if save_mode == 'offline': self.save_history_csv(csv_name=csv, mode='save offline') self.summary_plots() # Set CartPole state - the only use is to make sure that experiment history is discared # Maybe you can delete this line self.set_cartpole_state_at_t0(reset_mode=0) return data # endregion # region 4. Methods "Get, set, reset" # Method returns the list of controllers available in the PATH_TO_CONTROLLERS folder def get_available_controller_names(self): """ Method returns the list of controllers available in the PATH_TO_CONTROLLERS folder """ controller_files = glob.glob(PATH_TO_CONTROLLERS + 'controller_' + '*.py') controller_names = ['manual-stabilization'] controller_names.extend( np.sort([ os.path.basename(item)[len('controller_'):-len('.py')].replace( '_', '-') for item in controller_files ])) return controller_names # Set the controller of CartPole def set_controller(self, controller_name=None, controller_idx=None): """ The method sets a new controller as the current controller of the CartPole instance. The controller may be indicated either by its name or by the index on the controller list (see get_available_controller_names method). """ # Check if the proper information was provided: either controller_name or controller_idx if (controller_name is None) and (controller_idx is None): raise ValueError( 'You have to specify either controller_name or controller_idx to set a new controller.' 'You have specified none of the two.') elif (controller_name is not None) and (controller_idx is not None): raise ValueError( 'You have to specify either controller_name or controller_idx to set a new controller.' 'You have specified both.') else: pass # If controller name provided get controller index and vice versa if (controller_name is not None): try: controller_idx = self.controller_names.index(controller_name) except ValueError: raise ValueError( '{} is not in list. \n In list are: {}'.format( controller_name, self.controller_names)) else: controller_name = self.controller_names[controller_idx] # save controller name and index to variables in the CartPole namespace self.controller_name = controller_name self.controller_idx = controller_idx # Load controller if self.controller_name == 'manual-stabilization': self.controller = None else: controller_full_name = 'controller_' + self.controller_name.replace( '-', '_') path_import = PATH_TO_CONTROLLERS[2:].replace('/', '.').replace( r'\\', '.') import_str = 'from ' + path_import + controller_full_name + ' import ' + controller_full_name exec(import_str) self.controller = eval(controller_full_name + '()') # Set the maximal allowed value of the slider - relevant only for GUI if self.controller_name == 'manual-stabilization': self.slider_max = 1.0 self.Slider_Arrow.set_positions((0, 0), (0, 0)) else: self.slider_max = self.p.TrackHalfLength self.Slider_Bar.set_width(0.0) # This method resets the internal state of the CartPole instance # The starting state (for t = 0) may be # all zeros (reset_mode = 0) # set in this function (reset_mode = 1) # provide by user (reset_mode = 1), by giving s, Q and target_position def set_cartpole_state_at_t0(self, reset_mode=1, s=None, Q=None, target_position=None): self.time = 0.0 if reset_mode == 0: # Don't change it self.s.position = self.s.positionD = self.s.positionDD = 0.0 self.s.angle = self.s.angleD = self.s.angleDD = 0.0 self.Q = self.u = 0.0 self.slider = self.target_position = 0.0 elif reset_mode == 1: # You may change this but be carefull with other user. Better use 3 # You can change here with which initial parameters you wish to start the simulation self.s.position = 0.0 self.s.positionD = 0.0 self.s.angle = (2.0 * np.random.normal() - 1.0) * np.pi / 180.0 # np.pi/2.0 # self.s.angleD = 0.0 # 1.0 self.target_position = self.slider_value self.Q = 0.0 self.u = Q2u(self.Q, self.p) self.s.angleDD, self.s.positionDD = cartpole_ode( self.p, self.s, self.u) elif reset_mode == 2: # Don't change it if (s is not None) and (Q is not None) and (target_position is not None): self.s = s self.Q = Q self.slider = self.target_position = target_position self.u = Q2u(self.Q, self.p) # Calculate CURRENT control input self.s.angleDD, self.s.positionDD = cartpole_ode( self.p, self.s, self.u) # Calculate CURRENT second derivatives else: raise ValueError( 's, Q or target position not provided for initial state') # Reset the dict keeping the experiment history and save the state for t = 0 self.dict_history = { 'time': [self.time], 's.position': [self.s.position], 's.positionD': [self.s.positionD], 's.positionDD': [self.s.positionDD], 's.angle': [self.s.angle], 's.angleD': [self.s.angleD], 's.angleDD': [self.s.angleDD], 'u': [self.u], 'Q': [self.Q], 'target_position': [self.target_position], 's.angle.sin': [np.sin(self.s.angle)], 's.angle.cos': [np.cos(self.s.angle)] } # region Get and set timescales # Makes sure that when dt is updated also related variables are updated @property def dt_simulation(self): return self._dt_simulation @dt_simulation.setter def dt_simulation(self, value): self._dt_simulation = value if self._dt_controller is not None: self.dt_controller_number_of_steps = np.rint( self._dt_controller / value).astype(np.int32) if self.dt_controller_number_of_steps == 0: self.dt_controller_number_of_steps = 1 # Initialize counter at max value to start with update self.dt_controller_steps_counter = self.dt_controller_number_of_steps - 1 if self._dt_save is not None: self.dt_save_number_of_steps = np.rint(self._dt_save / value).astype(np.int32) if self.dt_save_number_of_steps == 0: self.dt_save_number_of_steps = 1 self.dt_save_steps_counter = 0 @property def dt_controller(self): return self._dt_controller @dt_controller.setter def dt_controller(self, value): self._dt_controller = value if self._dt_simulation is not None: self.dt_controller_number_of_steps = np.rint( value / self._dt_simulation).astype(np.int32) if self.dt_controller_number_of_steps == 0: self.dt_controller_number_of_steps = 1 # Initialize counter at max value to start with update self.dt_controller_steps_counter = self.dt_controller_number_of_steps - 1 @property def dt_save(self): return self._dt_save @dt_save.setter def dt_save(self, value): self._dt_save = value if self._dt_simulation is not None: self.dt_save_number_of_steps = np.rint( value / self._dt_simulation).astype(np.int32) if self.dt_save_number_of_steps == 0: self.dt_save_number_of_steps = 1 # This counter is initialized at 0 - 0th step is saved manually self.dt_save_steps_counter = 0 # endregion # endregion # region 5. Methods needed to display CartPole in GUI """ This section contains methods related to displaying CartPole in GUI of the simulator. One could think of moving these function outside of CartPole class and connecting them rather more tightly with GUI of the simulator. We leave them however as a part of CartPole class as they rely on variables of the CartPole. """ # This method initializes CartPole elements to be plotted in CartPole GUI def init_graphical_elements(self): self.CartLength = 10.0 self.WheelRadius = 0.5 self.WheelToMiddle = 4.0 self.y_plane = 0.0 self.y_wheel = self.y_plane + self.WheelRadius self.MastHight = 10.0 # For drawing only. For calculation see L self.MastThickness = 0.05 self.HalfLength = 50.0 # Length of the track self.y_acceleration_arrow = 1.5 * self.WheelRadius self.scaling_dx_acceleration_arrow = 20.0 self.x_acceleration_arrow = ( self.s.position + # np.sign(self.Q) * (self.CartLength / 2.0) + self.scaling_dx_acceleration_arrow * self.Q) # Initialize elements of the drawing self.Mast = FancyBboxPatch( xy=(self.s.position - (self.MastThickness / 2.0), 1.25 * self.WheelRadius), width=self.MastThickness, height=self.MastHight, fc='g') self.Chassis = FancyBboxPatch( (self.s.position - (self.CartLength / 2.0), self.WheelRadius), self.CartLength, 1 * self.WheelRadius, fc='r') self.WheelLeft = Circle( (self.s.position - self.WheelToMiddle, self.y_wheel), radius=self.WheelRadius, fc='y', ec='k', lw=5) self.WheelRight = Circle( (self.s.position + self.WheelToMiddle, self.y_wheel), radius=self.WheelRadius, fc='y', ec='k', lw=5) self.Acceleration_Arrow = FancyArrowPatch( (self.s.position, self.y_acceleration_arrow), (self.x_acceleration_arrow, self.y_acceleration_arrow), arrowstyle='simple', mutation_scale=10, facecolor='gold', edgecolor='orange') self.Slider_Arrow = FancyArrowPatch((self.slider_value, 0), (self.slider_value, 0), arrowstyle='fancy', mutation_scale=50) self.Slider_Bar = Rectangle((0.0, 0.0), self.slider_value, 1.0) self.t2 = transforms.Affine2D().rotate( 0.0) # An abstract container for the transform rotating the mast # This method accepts the mouse position and updated the slider value accordingly # The mouse position has to be captured by a function not included in this class def update_slider(self, mouse_position): # The if statement formulates a saturation condition if mouse_position > self.slider_max: self.slider_value = self.slider_max elif mouse_position < -self.slider_max: self.slider_value = -self.slider_max else: self.slider_value = mouse_position # This method draws elements and set properties of the CartPole figure # which do not change at every frame of the animation def draw_constant_elements(self, fig, AxCart, AxSlider): # Delete all elements of the Figure AxCart.clear() AxSlider.clear() ## Upper chart with Cart Picture # Set x and y limits AxCart.set_xlim((-self.HalfLength * 1.1, self.HalfLength * 1.1)) AxCart.set_ylim((-1.0, 15.0)) # Remove ticks on the y-axes AxCart.yaxis.set_major_locator(plt.NullLocator( )) # NullLocator is used to disable ticks on the Figures # Draw track Floor = Rectangle((-self.HalfLength, -1.0), 2 * self.HalfLength, 1.0, fc='brown') AxCart.add_patch(Floor) # Draw an invisible point at constant position # Thanks to it the axes is drawn high enough for the mast InvisiblePointUp = Rectangle((0, self.MastHight + 2.0), self.MastThickness, 0.0001, fc='w', ec='w') AxCart.add_patch(InvisiblePointUp) # Apply scaling AxCart.axis('scaled') ## Lower Chart with Slider # Set y limits AxSlider.set(xlim=(-1.1 * self.slider_max, self.slider_max * 1.1)) # Remove ticks on the y-axes AxSlider.yaxis.set_major_locator(plt.NullLocator( )) # NullLocator is used to disable ticks on the Figures # Apply scaling AxSlider.set_aspect("auto") return fig, AxCart, AxSlider # This method updates the elements of the Cart Figure which change at every frame. # Not that these elements are not ploted directly by this method # but rather returned as objects which can be used by another function # e.g. animation function from matplotlib package def update_drawing(self): self.x_acceleration_arrow = ( self.s.position + # np.sign(self.Q) * (self.CartLength / 2.0) + self.scaling_dx_acceleration_arrow * self.Q) self.Acceleration_Arrow.set_positions( (self.s.position, self.y_acceleration_arrow), (self.x_acceleration_arrow, self.y_acceleration_arrow)) # Draw mast mast_position = (self.s.position - (self.MastThickness / 2.0)) self.Mast.set_x(mast_position) # Draw rotated mast t21 = transforms.Affine2D().translate(-mast_position, -1.25 * self.WheelRadius) if ANGLE_CONVENTION == 'CLOCK-NEG': t22 = transforms.Affine2D().rotate(self.s.angle) elif ANGLE_CONVENTION == 'CLOCK-POS': t22 = transforms.Affine2D().rotate(-self.s.angle) else: raise ValueError('Unknown angle convention') t23 = transforms.Affine2D().translate(mast_position, 1.25 * self.WheelRadius) self.t2 = t21 + t22 + t23 # Draw Chassis self.Chassis.set_x(self.s.position - (self.CartLength / 2.0)) # Draw Wheels self.WheelLeft.center = (self.s.position - self.WheelToMiddle, self.y_wheel) self.WheelRight.center = (self.s.position + self.WheelToMiddle, self.y_wheel) # Draw SLider if self.controller_name == 'manual-stabilization': self.Slider_Bar.set_width(self.slider_value) else: self.Slider_Arrow.set_positions((self.slider_value, 0), (self.slider_value, 1.0)) return self.Mast, self.t2, self.Chassis, self.WheelRight, self.WheelLeft,\ self.Slider_Bar, self.Slider_Arrow, self.Acceleration_Arrow # A function redrawing the changing elements of the Figure def run_animation(self, fig): def init(): # Adding variable elements to the Figure fig.AxCart.add_patch(self.Mast) fig.AxCart.add_patch(self.Chassis) fig.AxCart.add_patch(self.WheelLeft) fig.AxCart.add_patch(self.WheelRight) fig.AxCart.add_patch(self.Acceleration_Arrow) fig.AxSlider.add_patch(self.Slider_Bar) fig.AxSlider.add_patch(self.Slider_Arrow) return self.Mast, self.Chassis, self.WheelLeft, self.WheelRight,\ self.Slider_Bar, self.Slider_Arrow, self.Acceleration_Arrow def animationManage(i): # Updating variable elements self.update_drawing() # Special care has to be taken of the mast rotation self.t2 = self.t2 + fig.AxCart.transData self.Mast.set_transform(self.t2) return self.Mast, self.Chassis, self.WheelLeft, self.WheelRight,\ self.Slider_Bar, self.Slider_Arrow, self.Acceleration_Arrow # Initialize animation object anim = animation.FuncAnimation( fig, animationManage, init_func=init, frames=300, # fargs=(CartPoleInstance,), # It was used when this function was a part of GUI class. Now left as an example how to add arguments to FuncAnimation interval=10, blit=True, repeat=True) return anim