def printGraph(train, test, name): sns.set_style("darkgrid") epochs = [i+1 for i in range(self.num_epochs)] plt.plot(epochs, test, 'r', label = "Test") plt.plot(epochs, train, 'b', label = "Train") plt.legend(loc = "upper left") plt.title(name+" vs. Epochs") plt.xlabel("Epochs") plt.ylabel(name) plt.savefig("result_graphs/%s_%s_train_vs_test_%i_epochs.png"%(self.run_name, name, self.num_epochs)) plt.clf()
def main(): border_c = 2.0 border = PERIOD * border_c step = 2 * PERIOD / POINT_NUMBER amplitude = 1.0 s_gauss = GaussSignal(SIGMA, amplitude) t_values = [-border + i * step for i in range(int(2 * border / step) + 1)] gauss_values = [s_gauss.value(t) for t in t_values] gauss_noise_values = random.normal(0, 0.05, len(t_values)) impulse_noise_values = noise_impulse(len(gauss_values), 7, 0.4) values_w_gauss = [ val1 + val2 for val1, val2 in zip(gauss_values, gauss_noise_values) ] values_w_impulse = [ val1 + val2 for val1, val2 in zip(gauss_values, impulse_noise_values) ] butterworth_f = butterworth_filter(6, 20, 'high') gauss_f = gauss_filter(4, 20, 'high') plt.subplot(2, 2, 1) plt.plot(t_values, gauss_values, 'r', t_values, values_w_gauss, 'y', t_values, values_w_gauss - signal.filtfilt(gauss_f, 1, values_w_gauss), 'g') plt.legend(['Исходный график', 'Гауссовы помехи', 'Фильтр Гаусса']) plt.subplot(2, 2, 2) plt.plot( t_values, gauss_values, 'r', t_values, values_w_gauss, 'y', t_values, values_w_gauss - signal.filtfilt(butterworth_f, 1, values_w_gauss), 'b') plt.legend(['Исходный график', 'Гауссовы помехи', 'Фильтр Баттеруорта']) plt.subplot(2, 2, 3) plt.plot(t_values, gauss_values, 'r', t_values, values_w_impulse, 'y', t_values, values_w_impulse - signal.filtfilt(gauss_f, 1, values_w_impulse), 'g') plt.legend(['Исходный график', 'Импульсные помехи', 'Фильтр Гаусса']) plt.subplot(2, 2, 4) plt.plot( t_values, gauss_values, 'r', t_values, values_w_impulse, 'y', t_values, values_w_impulse - signal.filtfilt(butterworth_f, 1, values_w_impulse), 'b') plt.legend(['Исходный график', 'Импульсные помехи', 'Фильтр Баттеруорта']) plt.show()
def affichagegraph(slope, intercept, r_value, unit): print(slope, "x + ", intercept) # sortie console du R^2 et Ax + B (optionel) print("r-squared =", r_value**2) y = [ ] # on bricole en creant le y, il est utilisé pour tracer la fitted line for i in range(0, len(speed)): y.append(intercept + slope * speed[i]) pyplot.title('y={0}X+{1} R2={2}'.format(slope, intercept, r_value**2)) pyplot.suptitle( 'Frequence en sortie du capteur en fonction de la Vitesse mesurée') axes = plt.axes() axes.grid() # dessiner une grille pour une meilleur lisibilité du graphe axes.set_xlabel('vitesse({0})'.format(unit)) axes.set_ylabel('Frequence(Hz)') plt.scatter(speed, freq) # speed et freq sont envoyer en param x et y plt.plot(speed, y, 'r', label='fitted line') plt.legend() plt.show() return
import pandas as pd import numpy as np import matplotlib.plt as plt plt.plot(1, 2, '.') plt.show()
def ParameterFunction(parameterSet): SC = exu.SystemContainer() mbs = SC.AddSystem() #default values mass = 1.6 #mass in kg spring = 4000 #stiffness of spring-damper in N/m damper = 8 #damping constant in N/(m/s) u0=-0.08 #initial displacement v0=1 #initial velocity f =80 #force applied to mass #process parameters if 'mass' in parameterSet: mass = parameterSet['mass'] if 'spring' in parameterSet: spring = parameterSet['spring'] iCalc = 'Ref' #needed for parallel computation ==> output files are different for every computation if 'computationIndex' in parameterSet: iCalc = str(parameterSet['computationIndex']) #mass-spring-damper system L=0.5 #spring length (for drawing) x0=f/spring #static displacement # print('resonance frequency = '+str(np.sqrt(spring/mass))) # print('static displacement = '+str(x0)) #node for 3D mass point: n1=mbs.AddNode(Point(referenceCoordinates = [L,0,0], initialCoordinates = [u0,0,0], initialVelocities= [v0,0,0])) #ground node nGround=mbs.AddNode(NodePointGround(referenceCoordinates = [0,0,0])) #add mass point (this is a 3D object with 3 coordinates): massPoint = mbs.AddObject(MassPoint(physicsMass = mass, nodeNumber = n1)) #marker for ground (=fixed): groundMarker=mbs.AddMarker(MarkerNodeCoordinate(nodeNumber= nGround, coordinate = 0)) #marker for springDamper for first (x-)coordinate: nodeMarker =mbs.AddMarker(MarkerNodeCoordinate(nodeNumber= n1, coordinate = 0)) #spring-damper between two marker coordinates nC = mbs.AddObject(CoordinateSpringDamper(markerNumbers = [groundMarker, nodeMarker], stiffness = spring, damping = damper)) #add load: mbs.AddLoad(LoadCoordinate(markerNumber = nodeMarker, load = f)) #add sensor: fileName = 'solution/paramVarDisplacement'+iCalc+'.txt' mbs.AddSensor(SensorObject(objectNumber=nC, fileName=fileName, outputVariableType=exu.OutputVariableType.Force)) #print(mbs) mbs.Assemble() steps = 1000 #number of steps to show solution tEnd = 1 #end time of simulation simulationSettings = exu.SimulationSettings() #simulationSettings.solutionSettings.solutionWritePeriod = 5e-3 #output interval general simulationSettings.solutionSettings.writeSolutionToFile = False simulationSettings.solutionSettings.sensorsWritePeriod = 5e-3 #output interval of sensors simulationSettings.timeIntegration.numberOfSteps = steps simulationSettings.timeIntegration.endTime = tEnd simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 1 #no damping #exu.StartRenderer() #start graphics visualization #mbs.WaitForUserToContinue() #wait for pressing SPACE bar to continue #start solver: exu.SolveDynamic(mbs, simulationSettings) #SC.WaitForRenderEngineStopFlag()#wait for pressing 'Q' to quit #exu.StopRenderer() #safely close rendering window! # #evaluate final (=current) output values # u = mbs.GetNodeOutput(n1, exu.OutputVariableType.Position) # print('displacement=',u) #+++++++++++++++++++++++++++++++++++++++++++++++++++++ #evaluate difference between reference and optimized solution #reference solution: dataRef = np.loadtxt('solution/paramVarDisplacementRef.txt', comments='#', delimiter=',') data = np.loadtxt(fileName, comments='#', delimiter=',') diff = data[:,1]-dataRef[:,1] errorNorm = np.sqrt(np.dot(diff,diff))/steps*tEnd #+++++++++++++++++++++++++++++++++++++++++++++++++++++ #compute exact solution: if False: from matplotlib import plt plt.close('all') plt.plot(data[:,0], data[:,1], 'b-', label='displacement (m)') ax=plt.gca() # get current axes ax.grid(True, 'major', 'both') ax.xaxis.set_major_locator(ticker.MaxNLocator(10)) ax.yaxis.set_major_locator(ticker.MaxNLocator(10)) plt.legend() #show labels as legend plt.tight_layout() plt.show() import os if iCalc != 'Ref': os.remove(fileName) #remove files in order to clean up del mbs del SC return errorNorm
import numpy as np from matplotlib import plt fs1 = input("enter a number-") f1 = input("enter a number-") n = np.arange(0, 2000, 0.1) a1 = np.sin(2 * 3.14 * f1 * n / fs1) plt.plot(a1) plt.show() fs2 = input("enter a number-") f2 = input("enter a number-") n2 = np.arange(0, 2000, 0.1) a2 = np.sin(2 * 3.14 * f2 * n2 / fs2) plt.plot(a2) plt.show() y = a1 + a2 print("y") plt.plot(y) plt.show()
fx_1 = 27.0 / (b - a) #f(25) fx_2 = 25.0 / (b - a) #Our answer is then ans = fx_1 - fx_2 #print print( ' The probability that the taxi ride will last at least 25 minutes is %2.1f%%' % (100 * ans)) # Doing this with schipy # Import the following from scipy.stats import uniform import numpy as np from matplotlib import plt #Let's set an A and B A = 0 B = 5 # Set x as 100 linearly spaced points between A and B x = np.linspace(A, B, 100) # Use uniform(loc=start point,scale=endpoint) rv = uniform(loc=A, scale=B) #Plot the PDF of that uniform distirbution plt.plot(x, rv.pdf(x))
] # Instantiate a Gaussian Process model gp = GaussianProcessRegressor(kernel=kernel, alpha=dy**2, n_restarts_optimizer=10) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE plt.figure() plt.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') plt.plot(x, y_pred, 'b-', label=u'Prediction') plt.fill(np.concatenate([x, x[::-1]]), np.concatenate( [y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()