コード例 #1
0
def hub_picture(data, dataset, method):
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 10))
    ax1.set_xticks([])
    ax2.set_xticks([])
    ax1.set_ylabel("Proportion", fontsize=16)
    ax2.set_ylabel("Proportion", fontsize=16)

    width = 0.8
    startposition = 0.8
    color_list = ["tomato", 'deepskyblue', "orange"]
    label_list = ["more than 5 times", "1 to 5 times", "never appear"]
    legend_list = list()
    for i in range(len(method)):
        bottom = 0
        for j in range(3):
            bar1, = ax1.bar(startposition + i * width,
                            height=data[j][i][0],
                            width=0.5,
                            bottom=bottom,
                            color=color_list[j],
                            align="edge",
                            edgecolor="black")
            bottom += data[j][i][0]
        ax1.text(startposition + i * width + 0.1,
                 y=-0.03,
                 s=method[i],
                 fontsize="14",
                 rotation=-90)
    ax1.text(startposition + (len(method) / 2 - 2) * width,
             y=1.08,
             s=dataset[0],
             fontsize="14")

    for i in range(len(method)):
        bottom = 0
        for j in range(3):
            bar2, = ax2.bar(startposition + i * width,
                            height=data[j][i + len(method)][0],
                            width=0.5,
                            bottom=bottom,
                            color=color_list[j],
                            align="edge",
                            edgecolor="black")
            bottom += data[j][i + len(method)][0]
            if i == 0:
                legend_list.append(bar2)
        ax2.text(startposition + i * width + 0.1,
                 y=-0.03,
                 s=method[i],
                 fontsize="14",
                 rotation=-90)

    ax2.text(startposition + (len(method) / 2 - 2) * width,
             y=1.08,
             s=dataset[1],
             fontsize="14")

    plt.figlegend(legend_list, labels=label_list, loc="best")
    # plt.legend()
    plt.show()
コード例 #2
0
ファイル: plot.py プロジェクト: kaixinhuaihuai/deeperbrain
def plot(dataset, grid, trafo):
    assert os.path.exists('results.csv'), 'need to aggregate results first'

    df = pandas.read_csv('results.csv')
    df = df[(df.grid == grid) & (df.data == dataset) & (df.trafo == trafo)]

    fig, ax = pylab.subplots(1, 1, dpi=200)
    # fig.subplots_adjust(left=.1, bottom=.225, right=.98, top=.94, hspace=0.35, wspace=0.25)

    models = [
        NA, NB, NF, 'svm-rbf', 'svm-poly', 'svm-sigmoid', 'svm-primal',
        'logisticregression', 'lda', 'rforest', 'etrees', 'xgb'
    ]

    names = [name_dict[i] for i in models]
    palette = [color_dict[i] for i in models]
    palette = seaborn.xkcd_palette(palette)
    legend = [mpatches.Patch(color=i, label=j) for i, j in zip(palette, names)]

    seaborn.lineplot(x='sample_size',
                     y='test_score',
                     hue='model',
                     hue_order=models,
                     data=df,
                     ax=ax,
                     palette=palette,
                     legend=False,
                     err_style="bars",
                     ci=CI)
    ax.set_title(f'Dataset: {dataset}', fontsize=8)

    ax.set_xscale('log')
    ax.set_xticks(df.sample_size.unique())
    ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
    ax.get_xaxis().set_tick_params(which='minor', size=0)
    ax.get_xaxis().set_tick_params(which='minor', width=0)
    ax.set_ylabel('Accuracy')
    ax.set_xlabel('Sample Size')
    # ax.set_ylim(0.65, 1)

    pylab.figlegend(handles=legend,
                    ncol=2,
                    fontsize=8,
                    loc='lower center',
                    frameon=False)

    fig.savefig(f'plots/{dataset}.png')
コード例 #3
0
def main():
    sns.set_style("whitegrid")
    sns.set_context("notebook")
    n_species=['H', 'He','N','N2', 'O', 'O2']
    Nn = sp.array([22340974.0, 1.170203e+08, 269365.12, 8.7995607e+12,5.6790339e+11,1.9389578e+12])*1e6
    Tn = 179.29138
    n_datablock = sp.zeros((len(Nn),2))
    n_datablock[:,0] = Nn
    n_datablock[:,1] = Tn


    species = ['NO+','O2+','e-']
    Ni = sp.array([1998.2988800000001, 57.700355999999999])*1e6
    Ti = 175.1
    Ne= 2055.9992320000001 *1e6
    Te = 175.1
    datablock = sp.zeros((len(Ni)+1,2))
    datablock[:-1,0] = Ni
    datablock[:-1,1] = Ti
    datablock[-1,0] = Ne
    datablock[-1,1] = Te
    (nuparr,nuperp) = get_collisionfreqs(datablock,species,n_datablock, n_species)

    #
    ISS1 = ISSnew.ISRSpectrum(centerFrequency = 449e6, bMag = 0.4e-4, nspec=256, sampfreq=50e3,dFlag=True)

    (omeg,spec_1)=ISS1.getspecsep(datablock,species,vel = 0.0,rcsflag=False)
    (omeg,spec_2)=ISS1.getspecsep(datablock,species,vel = 0.0,rcsflag=False,col_calc = True)
    (omeg,spec_3)=ISS1.getspecsep(datablock,species,vel = 0.0,rcsflag=False,col_calc = True,n_datablock=n_datablock,n_species=n_species)


    (figmplf, axmat) = plt.subplots(1, 1,figsize=(20, 15), facecolor='w')
    curax = axmat
    lines = [None]*3
    labels = ['Spectrum','Spectrum with Coulomb Collisions','Spectrum with Columb and Neutral Collisions']
    lines[0] = curax.plot(omeg*1e-3,spec_1,label='Output',linewidth=5)[0]
    lines[1] = curax.plot(omeg*1e-3,spec_2,label='Output',linewidth=5)[0]
    lines[2] = curax.plot(omeg*1e-3,spec_3,label='Output',linewidth=5)[0]

    figmplf.suptitle('Spectrums with and without collisions')
    plt.figlegend( lines, labels, loc = 'lower center', ncol=5, labelspacing=0. )

    curpath = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
    imagepath = os.path.join(os.path.split(curpath)[0],'Doc','Figs')
    plt.savefig(os.path.join(imagepath,'Collisions.png'))
コード例 #4
0
def main():
    sns.set_style("whitegrid")
    sns.set_context("notebook")
    n_species=['H', 'He','N','N2', 'O', 'O2']
    Nn = sp.array([22340974.0, 1.170203e+08, 269365.12, 8.7995607e+12,5.6790339e+11,1.9389578e+12])*1e6
    Tn = 179.29138
    n_datablock = sp.zeros((len(Nn),2))
    n_datablock[:,0] = Nn
    n_datablock[:,1] = Tn


    species = ['NO+','O2+','e-']
    Ni = sp.array([1998.2988800000001, 57.700355999999999])*1e6
    Ti = 175.1
    Ne= 2055.9992320000001 *1e6
    Te = 175.1
    datablock = sp.zeros((len(Ni)+1,2))
    datablock[:-1,0] = Ni
    datablock[:-1,1] = Ti
    datablock[-1,0] = Ne
    datablock[-1,1] = Te
    (nuparr,nuperp) = get_collisionfreqs(datablock,species,n_datablock, n_species)

    #
    ISS1 = ISSnew.ISRSpectrum(centerFrequency = 449e6, bMag = 0.4e-4, nspec=256, sampfreq=50e3,dFlag=True)

    (omeg,spec_1)=ISS1.getspecsep(datablock,species,vel = 0.0,rcsflag=False)
    (omeg,spec_2)=ISS1.getspecsep(datablock,species,vel = 0.0,rcsflag=False,col_calc = True)
    (omeg,spec_3)=ISS1.getspecsep(datablock,species,vel = 0.0,rcsflag=False,col_calc = True,n_datablock=n_datablock,n_species=n_species)


    (figmplf, axmat) = plt.subplots(1, 1,figsize=(20, 15), facecolor='w')
    curax = axmat
    lines = [None]*3
    labels = ['Spectrum','Spectrum with Coulomb Collisions','Spectrum with Columb and Neutral Collisions']
    lines[0] = curax.plot(omeg*1e-3,spec_1,label='Output',linewidth=5)[0]
    lines[1] = curax.plot(omeg*1e-3,spec_2,label='Output',linewidth=5)[0]
    lines[2] = curax.plot(omeg*1e-3,spec_3,label='Output',linewidth=5)[0]

    figmplf.suptitle('Spectrums with and without collisions')
    plt.figlegend( lines, labels, loc = 'lower center', ncol=5, labelspacing=0. )

    plt.savefig('Collisions.png')
コード例 #5
0
ファイル: sysspecs.py プロジェクト: zhufengGNSS/ISRSpectrum
def main():
    sns.set_style("whitegrid")
    sns.set_context("notebook")
    Ne = 1e11
    Ti = 3e3
    Te = 3e3
    databloc =  sp.array([[Ne,Ti],[Ne,Te]])
    species = ['O+','e-']

    Cia = sp.sqrt(v_Boltz*(Te+3.*Ti)/16./v_amu)

    #make list of dictionaries
    biglist = [{'name':'AMISR','Fo':449e6,'Fs':50e3,'alpha':70.},
        {'name':'Sondrestrom','Fo':1290e6,'Fs':100e3,'alpha':80.},
        {'name':'Haystack','Fo':440e6,'Fs':50e3,'alpha':65.},
        {'name':'Arecibo','Fo':430e6,'Fs':50e3,'alpha':45.},
        {'name':'Jicamarca','Fo':50e6,'Fs':10e3,'alpha':1.}]

    (figmplf, axmat) = plt.subplots(3, 2,figsize=(20, 15), facecolor='w')
    axvec = axmat.flatten()
    lines = [None]*2
    labels = ['Spectrum','Ion Acoustic Frequency']
    for ima,idict in enumerate(biglist):
        curax = axvec[ima]
        k = 2.0*sp.pi*2*idict['Fo']/v_C_0
        xloc = sp.array([-k*Cia,k*Cia])/2/sp.pi/2
        ISS1 = ISSnew.ISRSpectrum(centerFrequency = idict['Fo'], bMag = 0.4e-4, nspec=256, sampfreq=idict['Fs'],dFlag=True)
        (omeg,spec)=ISS1.getspecsep(databloc,species,vel = 0.0, alphadeg=idict['alpha'],rcsflag=False)

        lines[0] = curax.plot(omeg*1e-3,spec,label='Output',linewidth=5)[0]
        lines[1] = curax.stem(xloc*1e-3, sp.ones(2)*sp.amax(spec), linefmt='g--', markerfmt='go', basefmt=' ')[0]
        curax.set_xlabel('f in kHz')
        curax.set_ylabel('Amp')
        curax.set_title(idict['name']+ ' Spectrtum')
    figmplf.suptitle(r'Spectrums $N_e$ = {0:.1e}m$^{{-3}}$, $T_e$ = {1:.0f}$^o$K, $T_i$ = {2:.0f}$^o$K'.format(Ne,Te,Ti), fontsize=20)
    plt.figlegend( lines, labels, loc = 'lower center', ncol=5, labelspacing=0. )

    curpath = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
    imagepath = os.path.join(os.path.split(curpath)[0],'Doc','Figs')
    plt.savefig(os.path.join(imagepath,'DifferentSystems.png'))
コード例 #6
0
def plotVarsGroupedBySex(varList, varNames, badStringList):
    fig, axes = plt.subplots(1,2)
    for i in range(2):
        group = traindf.groupby([varList[i], 'Sex', 'Survived'])
        group = group.size().unstack()
        group = group.div(group.sum(1), axis=0)
        cols = [[darkpink, darkblue],[lightpink, lightblue]]
        group.plot(kind='barh', stacked=True, ax=axes[i],legend=False, color=cols)
        labels = removeBadStringFromLabels(axes[i], badStringList)
        axes[i].set_yticklabels(labels)
        axes[i].get_xaxis().set_ticks([])
        axes[i].set_ylabel('') 
        axes[i].set_title(varNames[i])
            
        if i ==1:
            axes[i].yaxis.tick_right()
            axes[i].yaxis.set_label_position("right")
            
    handles, labels = axes[0].get_legend_handles_labels()
    plt.figlegend(handles[0], ['die', 'die'], loc='lower left')
    plt.figlegend(handles[1], ['live','live'], loc='lower right')
    fig.show()
コード例 #7
0
ファイル: plotting.py プロジェクト: cjhopp/EQcorrscan
def pretty_template_plot(template, size=(18.5, 10.5), save=False, title=False,
                         background=False, picks=False):
    r"""Function to make a pretty plot of a single template, designed to work \
    better than the default obspy plotting routine for short data lengths.

    :type template: :class: obspy.Stream
    :param template: Template stream to plot
    :type size: tuple
    :param size: tuple of plot size
    :type save: bool
    :param save: if False will plot to screen, if True will save
    :type title: bool
    :param title: String if set will be the plot title
    :type background: :class: obspy.stream
    :param background: Stream to plot the template within.
    :type picks: list of obspy.core.event.pick
    :param picks: List of obspy type picks.
    """
    fig, axes = plt.subplots(len(template), 1, sharex=True, figsize=size)
    if len(template) > 1:
        axes = axes.ravel()
    else:
        return
    if not background:
        mintime = template.sort(['starttime'])[0].stats.starttime
    else:
        mintime = background.sort(['starttime'])[0].stats.starttime
    template.sort(['network', 'station', 'starttime'])
    lengths = []
    lines = []
    labels = []
    for i, tr in enumerate(template):
        delay = tr.stats.starttime - mintime
        y = tr.data
        x = np.linspace(0, (len(y)-1) * tr.stats.delta, len(y))
        x += delay
        if background:
            btr = background.select(station=tr.stats.station,
                                    channel=tr.stats.channel)[0]
            bdelay = btr.stats.starttime - mintime
            by = btr.data
            bx = np.linspace(0, (len(by)-1) * btr.stats.delta, len(by))
            bx += bdelay
            axes[i].plot(bx, by, 'k', linewidth=1)
            template_line, = axes[i].plot(x, y, 'r', linewidth=1.1,
                                          label='Template')
            if i == 0:
                lines.append(template_line)
                labels.append('Template')
            lengths.append(max(bx[-1], x[-1]))
        else:
            template_line, = axes[i].plot(x, y, 'k', linewidth=1.1,
                                          label='Template')
            if i == 0:
                lines.append(template_line)
                labels.append('Template')
            lengths.append(x[-1])
        # print(' '.join([tr.stats.station, str(len(x)), str(len(y))]))
        axes[i].set_ylabel('.'.join([tr.stats.station, tr.stats.channel]),
                           rotation=0, horizontalalignment='right')
        axes[i].yaxis.set_ticks([])
        # Plot the picks if they are given
        if picks:
            tr_picks = [pick for pick in picks if
                        pick.waveform_id.station_code == tr.stats.station and
                        pick.waveform_id.channel_code[0] +
                        pick.waveform_id.channel_code[-1] ==
                        tr.stats.channel[0] + tr.stats.channel[-1]]
            for pick in tr_picks:
                if 'P' in pick.phase_hint.upper():
                    pcolor = 'red'
                    label = 'P-pick'
                elif 'S' in pick.phase_hint.upper():
                    pcolor = 'blue'
                    label = 'S-pick'
                else:
                    pcolor = 'k'
                    label = 'Unknown pick'
                pdelay = pick.time - mintime
                # print(pdelay)
                line = axes[i].axvline(x=pdelay, color=pcolor, linewidth=2,
                                       linestyle='--', label=label)
                if label not in labels:
                    lines.append(line)
                    labels.append(label)
                # axes[i].plot([pdelay, pdelay], [])
    axes[i].set_xlim([0, max(lengths)])
    axes[len(template)-1].set_xlabel('Time (s) from start of template')
    plt.figlegend(lines, labels, 'upper right')
    if title:
        axes[0].set_title(title)
    else:
        plt.subplots_adjust(top=0.98)
    plt.tight_layout()
    plt.subplots_adjust(hspace=0)
    if not save:
        plt.show()
        plt.close()
    else:
        plt.savefig(save)
コード例 #8
0
                                 fig_width_mm=200,
                                 fig_height_mm=155,
                                 size_axe=[0.13, 0.127, 0.84, 0.835])

ax1.set_xscale('log')
ax1.set_yscale('log')

ax1.set_xlabel('$r$ (km)')
ax1.set_ylabel('$F_T$, $F_L$')

l_FT = ax1.plot(r, flatnessT, 'k', linewidth=2)
l_FL = ax1.plot(r, flatnessL, 'y', linewidth=2)

plt.rc('legend', numpoints=1)
leg1 = plt.figlegend([l_FT[0], l_FL[0]], ['$F_T$', '$F_L$'],
                     loc=(0.2, 0.2),
                     labelspacing=0.18)

cond = np.logical_and(r > 3, r < 2e2)
ax1.plot(r[cond], 6e2 * r[cond]**(-1), 'k', linewidth=1)
ax1.text(1e1, 1.8e1, '$r^{-1}$', fontsize=fontsize)

cond = np.logical_and(r > 3, r < 1e2)
ax1.plot(r[cond], 4e4 * r[cond]**(-3. / 2), 'k--', linewidth=1)
ax1.text(1e1, 1.8e3, '$r^{-3/2}$', fontsize=fontsize)

r1 = 1
r2 = 3e3

ax1.set_xlim([r1, r2])
ax1.set_ylim([1, 8e3])
コード例 #9
0
ax1.set_yscale('log')

linewidth = 2.2
l_FT = ax1.plot(radim, flatnessT, 'k', linewidth=linewidth)
l_FL = ax1.plot(radim, flatnessL, 'y', linewidth=linewidth)

cond = np.logical_and(radim > 1.4e-2, radim < 2e-1)
ax1.plot(radim[cond], 4e0 * rxs[cond]**(-1), 'k', linewidth=1)
ax1.text(4e-2, 1e1, '$r^{-1}$', fontsize=fontsize)

ax1.set_xlim([r1, r2])
# ax1.set_ylim([1, 10])

plt.rc('legend', numpoints=1)
leg1 = plt.figlegend([l_FT[0], l_FL[0]], ['$F_T$', '$F_L$'],
                     loc=(0.2, 0.2),
                     labelspacing=0.18)

ax2 = fig.add_axes([0.62, 0.6, 0.32, 0.32])
ax2.set_xscale('log')
ax2.plot(radim, flatnessT / flatnessL, 'k', linewidth=linewidth)
value_shocks = 1.5
ax2.plot([r1, r2], [value_shocks, value_shocks], 'k:', linewidth=linewidth)

ax2.set_xlim([r1, r2])
ax2.set_ylim([0, 1.7])
ax2.set_yticks([0, 0.5, 1, 1.5])

ax2.set_xlabel('$r/L_f$')
ax2.set_ylabel('$F_T/F_L$')
コード例 #10
0
ファイル: sysspecs.py プロジェクト: scivision/ISRSpectrum
def main():

    Ne = 1e11
    Ti = 3e3
    Te = 3e3
    databloc = sp.array([[Ne, Ti], [Ne, Te]])
    species = ['O+', 'e-']

    Cia = sp.sqrt(v_Boltz * (Te + 3. * Ti) / 16. / v_amu)

    #make list of dictionaries
    biglist = [{
        'name': 'AMISR',
        'Fo': 449e6,
        'Fs': 50e3,
        'alpha': 70.
    }, {
        'name': 'Sondrestrom',
        'Fo': 1290e6,
        'Fs': 100e3,
        'alpha': 80.
    }, {
        'name': 'Haystack',
        'Fo': 440e6,
        'Fs': 50e3,
        'alpha': 65.
    }, {
        'name': 'Arecibo',
        'Fo': 430e6,
        'Fs': 50e3,
        'alpha': 45.
    }, {
        'name': 'Jicamarca',
        'Fo': 50e6,
        'Fs': 10e3,
        'alpha': 1.
    }]

    (figmplf, axmat) = plt.subplots(3, 2, figsize=(20, 15), facecolor='w')
    axvec = axmat.flatten()
    lines = [None] * 2
    labels = ['Spectrum', 'Ion Acoustic Frequency']
    for ima, idict in enumerate(biglist):
        curax = axvec[ima]
        k = 2.0 * sp.pi * 2 * idict['Fo'] / v_C_0
        xloc = sp.array([-k * Cia, k * Cia]) / 2 / sp.pi / 2
        ISS1 = ISSnew.ISRSpectrum(centerFrequency=idict['Fo'],
                                  bMag=0.4e-4,
                                  nspec=256,
                                  sampfreq=idict['Fs'],
                                  dFlag=True)
        (omeg, spec) = ISS1.getspecsep(databloc,
                                       species,
                                       vel=0.0,
                                       alphadeg=idict['alpha'],
                                       rcsflag=False)

        lines[0] = curax.plot(omeg * 1e-3, spec, label='Output',
                              linewidth=5)[0]
        lines[1] = curax.stem(xloc * 1e-3,
                              sp.ones(2) * sp.amax(spec),
                              linefmt='g--',
                              markerfmt='go',
                              basefmt=' ')[0]
        curax.set_xlabel('f in kHz')
        curax.set_ylabel('Amp')
        curax.set_title(idict['name'] + ' Spectrtum')
    figmplf.suptitle(
        r'Spectrums $N_e$ = {0:.1e}m$^{{-3}}$, $T_e$ = {1:.0f}$^o$K, $T_i$ = {2:.0f}$^o$K'
        .format(Ne, Te, Ti),
        fontsize=20)
    plt.figlegend(lines, labels, loc='lower center', ncol=5, labelspacing=0.)

    plt.savefig('DifferentSystems.png')
コード例 #11
0
def running_time(dir, method_list, dataset_list):
    user_cmap = config_color_map()
    color_map = cm.get_cmap("tab20c")
    print()
    cnorm = matplotlib.colors.Normalize(vmin=0, vmax=20)
    sclarmap = cm.ScalarMappable(norm=cnorm, cmap=color_map)

    data = xlrd.open_workbook(dir)
    tabel = data.sheet_by_name("run_time")
    # *****************行*******************
    left_row_start = 3
    left_row_end = 14
    right_row_start = 3
    right_row_end = 9
    # ***********************列坐标*************
    left_col_start = 3
    left_col_end = 31
    right_col_start = 34
    right_col_end = 65
    data_kind = [
        "DBP_en_DBP_de", "DBP_en_DBP_fr", "DBP_en_WD_en", "DBP_en_YG_en"
    ]
    left_data = []
    right_data = []
    plt.figure(figsize=(32, 6))
    sub_i = 1
    for dataset in dataset_list:
        remove = data_kind.index(dataset)
        left_col_start += 11 * remove
        left_col_end += 11 * remove
        right_col_start += 6 * remove
        right_col_end += 6 * remove
        for i in range(left_row_start, left_row_end):
            line_all_row = tabel.row_slice(i, left_col_start, left_col_end)
            left_data.append(line_all_row)
        for i in range(right_row_start, right_row_end):
            line_all_row = tabel.row_slice(i, right_col_start, right_col_end)
            right_data.append(line_all_row)
        print(left_data)
        print(right_data)
    all_data = left_data + right_data
    #     ****************************************开始画图相关工作*********************
    x_label_list = [["15K_V1", "15K_V2"], ["100K_V1", "100K_V2"]]

    color_list = [
        "darkorange", "forestgreen", "lightsteelblue", "rosybrown", "gold",
        "indigo", "red", "sienna", "skyblue", "deeppink", "slategray", "peru",
        "grey", "olive", "cyan", "blue", "lightpink"
    ]
    color_list = [sclarmap.to_rgba(i) for i in range(17)]
    # ****************现在是17个方法******************
    first_x_position = [
        0.5,
        12,
    ]
    width = 0.5

    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
    ax1.set_xticks([])
    ax2.set_xticks([])
    ax1.set_ylabel("Time(s)", fontsize=16)
    ax2.set_ylabel("Time(s)", fontsize=16)
    for method_pos in range(len(first_x_position)):
        for i in range(len(all_data)):
            bar1, = ax1.bar(first_x_position[method_pos] + i * (width),
                            height=all_data[i][5 + method_pos * 7].value,
                            width=0.5,
                            bottom=0,
                            color=color_list[i],
                            edgecolor="black",
                            label=method_list[i])
    ax1.text(x=3.5, y=-120, s=x_label_list[0][0], fontsize="16")
    ax1.text(x=15.5, y=-120, s=x_label_list[0][1], fontsize="16")

    legend_bar = list()
    for method_pos in range(len(first_x_position)):
        for i in range(len(all_data)):
            bar2, = ax2.bar(first_x_position[method_pos] + i * (width),
                            height=all_data[i][14 + 5 + method_pos * 7].value,
                            width=0.5,
                            bottom=0,
                            color=color_list[i],
                            edgecolor="black",
                            label=method_list[i])
            if i < len(first_x_position) / 2:
                legend_bar.append(bar2)
    ax2.text(x=3.5, y=-2400, s=x_label_list[1][0], fontsize="16")
    ax2.text(x=15.5, y=-2400, s=x_label_list[1][1], fontsize="16")

    plt.figlegend(legend_bar,
                  labels=method_list,
                  loc="upper center",
                  ncol=10,
                  bbox_to_anchor=(0.5, 0.95))
    # plt.legend()
    plt.show()
コード例 #12
0
def plot_methods_recall_ratio(datasets, methods, method_labels):
    n_datasets = len(datasets)
    fig = plt.figure(figsize=(0.55 + 3.333 * len(datasets), 6.))
    plt.rcParams.update({'font.size': 13})
    plt.subplots_adjust(bottom=0.15, top=0.85, hspace=0.35)

    for di, (dataset, dataset_label) in enumerate(zip(datasets,
                                                      dataset_labels)):
        ax_recall = plt.subplot(2, n_datasets, di + 1)
        plt.xlabel('Recall (%)')
        plt.title(dataset_label)
        if di == 0:
            plt.ylabel('Query time (ms)')
        plt.xlim(0, 100)

        plt.title(dataset_label)
        ax_ratio = plt.subplot(2, n_datasets, n_datasets + di + 1)
        plt.xlabel('Ratio')
        ax_ratio.set_xlim(1., 1.5)
        ax_ratio.set_xticks([1., 1.1, 1.2, 1.3, 1.4, 1.5])
        #         plt.xlim(0, 100)
        if di == 0:
            plt.ylabel('Query time (ms)')


#         plt.ylim(ymin=0)

        for method, method_label, method_color, method_marker in zip(
                methods, method_labels, method_colors, method_markers):
            filename_prefix = get_file_prefix(dataset, method, distance)
            filename = get_latest_res(filename_prefix)
            if filename is None:
                continue
            print(filename)
            time_recalls = []
            time_ratios = []
            settings = []
            ress = []
            for setting, res in parse_res(filename):
                #                 print(setting, res)
                time_recalls += [[gettime(res), getrecall(res)]]
                time_ratios += [[gettime(res), getratio(res)]]
                ress += [res]
                settings += [setting]
            time_recalls = np.array(time_recalls)
            time_ratios = np.array(time_ratios)
            #             print(xys)

            lower_x, lower_y = lower_bound_curve(time_recalls)
            ax_recall.semilogy(lower_x,
                               lower_y,
                               '-',
                               color=method_color,
                               marker=method_marker,
                               label=method_label if di == 0 else "",
                               markevery=10,
                               markerfacecolor='none',
                               markersize=10)

            #             lower_x, lower_y = lower_bound_curve2(time_ratios[:, 0], time_ratios[:, 1])
            qtime_ratio_lower = lower_bound_curve2(time_ratios[:, 0],
                                                   time_ratios[:, 1])
            ax_ratio.semilogy(qtime_ratio_lower[:, 1],
                              qtime_ratio_lower[:, 0],
                              '-',
                              color=method_color,
                              marker=method_marker,
                              label="",
                              markevery=5,
                              markerfacecolor='none',
                              markersize=10)

    plt.figlegend(fontsize=16,
                  bbox_to_anchor=(0.07, 0.85, 0.75, 0.2),
                  loc="center",
                  mode="expand",
                  borderaxespad=0,
                  ncol=len(methods))
    plt.savefig('saved_figure/time_recall_ratio_%s.png' % distance,
                bbox_inches='tight',
                pad_inches=0.27,
                dpi=fig.dpi)
    plt.savefig('saved_figure/time_recall_ratio_%s.eps' % distance,
                bbox_inches='tight',
                pad_inches=0.27,
                dpi=fig.dpi)
    plt.show()
コード例 #13
0
ファイル: Driver_HW2.py プロジェクト: jmandel/coursework
from  Simulator import Simulator
from States import S_Start, S_DeadAge, S_DeadCancer
from numpy import average
from math import exp,log
import matplotlib.pylab as p

import HW2_model as Model


for cancer_mortality_rate in [0,.02,.05,.10]:
    points = []

    Model.TR[S_Start][S_DeadCancer]= lambda pt: \
                1 - exp(-cancer_mortality_rate * pt.time_increment)
                
    for start_age in range(25, 100):
        s= Simulator(iters=5000, age=start_age, model=Model, time_increment = 1.0)
        s.run()
        le = average([pt.Age()-start_age for pt in s.patients])
        points.append((start_age, le))
        
    p.plot([x[0] for x in points],
           [y[1] for y in points], 
           label="Gompertz plus cancer mortality = %s"%cancer_mortality_rate)
     
lines = p.gca().lines
p.figlegend(lines,
              [l.get_label() for l in lines],
              'upper right')
   
p.show()
コード例 #14
0
ファイル: titanicePlots.py プロジェクト: hardyce/TitanicDS
    for Pclass in classes:
        if gender=='male':
            colorscheme = [lightblue, darkblue] #blue for boys
            row=0
        else:
            colorscheme = [lightpink, darkpink] #pink for a girl
            row=1
        group = train[(train.Sex==gender)&(train.Pclass==Pclass)]
        group = group.groupby(['Embarked', 'Survived']).size().unstack()
        group = group.div(group.sum(1), axis=0)
        group.plot(kind='barh', ax=axes2[row, (int(Pclass)-1)], color=colorscheme, stacked=True, legend=False).set_title("{} {}".format("Class", Pclass)).axes.get_xaxis().set_ticks([])

plt.subplots_adjust(wspace=0.4, hspace=1.3)
fhandles, flabels = axes2[1,2].get_legend_handles_labels()
mhandles, mlabels = axes2[0,2].get_legend_handles_labels()
plt.figlegend(fhandles, ('die', 'live'), title='Female', loc='center', bbox_to_anchor=(0.06, 0.2, 1.1, .50))
plt.figlegend(mhandles, ('die', 'live'), 'center', title='Male',bbox_to_anchor=(-0.15, 0.2, 1.1, .50))
fig2.show()

bins = [0,5,14, 25, 40, 60, 100]
binNames =['Young Child', 'Child', 'Young Adult', 'Adult', 'Middle Aged', 'Older']
binAge = pd.cut(train.Age, bins, labels=binNames)
#cut uses the given bins, or if passed an integer, divides the range evenly
binFare = pd.qcut(train.Fare, 3, labels=['Cheap', 'Middle', 'Expensive'])
#qcut does quantiles

fig3, axes3 = plt.subplots(1,2)
binVars = [binAge, binFare]
varNames = ['Age', 'Fare']
badStringList=['(', ')', 'female', 'male', ',']
def removeBadStringFromString(string, badStringList):
コード例 #15
0
def plot_data(data):
    def proportionSurvived(discreteVar):
        by_var = data.groupby([discreteVar, 'Survived'])

        table = by_var.size()
        table = table.unstack()
        normedtable = table.div(table.sum(1), axis=0)
        return normedtable

    discreteVarList = ['Sex', 'Pclass', 'Embarked']
    fig1, axes1 = plt.subplots(3, 1)

    for i in range(3):
        var = discreteVarList[i]
        table = proportionSurvived(var)
        table.plot(kind='barh', stacked=True, ax=axes1[i])
    #fig1.show()

    # Plot based on categories
    fig2, axes2 = plt.subplots(2, 3)
    genders = data.Sex.unique()
    classes = data.Pclass.unique()
    def normrgb(rgb):
        rgb = [float(x)/255 for x in rgb]
        return rgb
    
    darkpink, lightpink = normrgb([255, 20, 147]), normrgb([255, 182, 193])
    darkblue, lightblue = normrgb([0, 0, 128]), normrgb([135, 206, 250])
    for gender in genders:
        for pclass in classes:
            if gender == 'male':
                colorscheme = [lightblue, darkblue]
                row = 0
            else:
                colorscheme = [lightpink, darkpink]
                row = 1
            group = data[(data.Sex==gender)&(data.Pclass==pclass)]
            group = group.groupby(['Embarked', 'Survived']).size().unstack()
            group = group.div(group.sum(1), axis=0)
            group.plot(kind='barh', ax=axes2[row, (int(pclass)-1)], color=colorscheme, stacked=True, legend=False).set_title('Class '+str(pclass)).axes.get_xaxis().set_ticks([])

    plt.subplots_adjust(wspace=0.4, hspace=1.3)
    fhandles, flabels = axes2[1,2].get_legend_handles_labels()
    mhandles, mlabels = axes2[0,2].get_legend_handles_labels()
    plt.figlegend(fhandles, ('die', 'live'), title='Female', loc='center', bbox_to_anchor=(0.06, 0.45, 1.1, .102))
    plt.figlegend(mhandles, ('die', 'live'), 'center', title='Male',bbox_to_anchor=(-0.15, 0.45, 1.1, .102))
    #fig2.show()

    # Plots using bins
    bins = [0, 5, 14, 25, 40, 60, 100]
    binNames = ['Young Child', 'Child', 'Young Adult', 'Adult', 'Middle Aged', 'Older']
    binAge = pd.cut(data.Age, bins, labels=binNames)
    binFare = pd.qcut(data.Fare, 3, labels=['Cheap', 'Middle', 'Expensive'])

    fig3, axes3 = plt.subplots(1, 2)
    binVars = [binAge, binFare]
    varNames = ['Age', 'Fare']
    badStringList = ['(', ')', 'female', 'male', ',']

    def removeBadStringFromString(string):
        for badString in ['(', ')', 'female', 'male']:
            string = string.replace(badString, '')
        return string
    
    def removeBadStringFromLabels(ax, badStringList):
        labels = [item.get_text() for item in ax.get_yticklabels()]
        labels = [removeBadStringFromString(label) for label in labels]
        return labels

    for i in range(2):
        group = data.groupby([binVars[i], 'Sex', 'Survived'])
        group = group.size().unstack()
        group = group.div(group.sum(1), axis=0)
        cols = [[lightpink, lightblue],[darkpink, darkblue]]
        group.plot(kind='barh', stacked=True, ax=axes3[i], legend=False, color=cols)
        labels = removeBadStringFromLabels(axes3[i], badStringList)
        axes3[i].set_yticklabels(labels)
        axes3[i].get_xaxis().set_ticks([])
        axes3[i].set_ylabel('')
        axes3[i].set_title(varNames[i])

        if i==1:
            axes3[i].yaxis.tick_right()
            axes3[i].yaxis.set_label_position("right")

    handles, labels = axes3[0].get_legend_handles_labels()
    plt.figlegend(handles[0], ['die', 'die'], loc='upper center')
    plt.figlegend(handles[1], ['live', 'live'], loc='lower center')

    fig3.show()
コード例 #16
0
        if gender=='male':
            colorscheme = [lightblue, darkblue]
            row=0
        else:
            colorscheme = [lightpink, darkpink]
            row=1
        group = traindf[(traindf.Sex==gender)&(traindf.Pclass==pclass)]
        group = group.groupby(['Embarked', 'Survived']).size().unstack()
        group = group.div(group.sum(1), axis=0)
        group.plot(kind='barh', ax=axes2[row, (int(pclass)-1)], color=colorscheme, stacked=True, legend=False).set_title('Class '+str(pclass)).axes.get_xaxis().set_ticks([])

plt.subplots_adjust(wspace=0.4, hspace=1.3)

fhandles, flabels = axes2[1,2].get_legend_handles_labels()
mhandles, mlabels = axes2[0,2].get_legend_handles_labels()
plt.figlegend(fhandles, ('die', 'live'), title='Female', loc='center', bbox_to_anchor=(0.06, 0.45, 1.1, .102))
plt.figlegend(mhandles, ('die', 'live'), 'center', title='Male',bbox_to_anchor=(-0.15, 0.45, 1.1, .102))

fig2.show()

def removeBadStringFromString(string, badStringList):
    for badString in badStringList:
        string = string.replace(badString, '')
    return string

def removeBadStringFromLabels(ax, badStringList):
    labels = [item.get_text() for item in ax.get_yticklabels()]
    labels = [removeBadStringFromString(label, badStringList) for label in labels]
    return labels

def plotVarsGroupedBySex(varList, varNames, badStringList):
コード例 #17
0
def plot_gene_coverage(ke, f, x_exon, gene
                       , chrom, sample_ids=None
                       , save_dir=None, **kwargs):
    """
    Plot a gene's DegNorm-estimated and original coverage matrices. Option to save image.

    :param ke: estimated coverage matrix
    :param f: original coverage matrix
    :param x_exon: numpy array with two columns, the first - start positions of exons comprising the gene,
    the second - end positions of the exons started in the first column.
    :param gene: str name of gene whose coverage is being plotted
    :param chrom: str name of chromosome gene is on
    :param sample_ids: list of str names of samples corresponding to coverage curves
    :param save_dir: str path to output directory where gene coverage plot should be saved as
    save_dir/<chromosome>/<gene>_coverage.png (optional, default None returns plt.Figure)
    :param kwargs: keyword arguments to pass to matplotlib.pylab.figure (e.g. figsize)
    :return: matplotlib.figure.Figure if save_dir is not specified, otherwise, a filepath to saved .png file
    """
    # quality control.
    if ke.shape != f.shape:
        raise ValueError('ke and f arrays do not have the same shape.')

    if sample_ids:
        if not len(sample_ids) == ke.shape[0]:
            raise ValueError('Number of supplied sample IDs does not match number'
                             'of samples in gene coverage matrix.')
    else:
        sample_ids = ['sample_{0}'.format(i + 1) for i in range(ke.shape[0])]

    # get union of intersecting exons to prevent confusion when plotting exon junctions.
    x_exon = get_exon_unions(x_exon)

    # establish exon positioning on chromosome and junction break points.
    rel_start = x_exon.min()
    start = rel_start

    if x_exon.shape[0] > 1:
        diffs = x_exon[:, 1] - x_exon[:, 0]
        rel_end = rel_start + np.sum(diffs)
        end = x_exon.max()

    else:
        rel_end = x_exon.max()
        end = rel_end

    # before/after plot consists of 4 subplots, establish them.
    fig = plt.figure(**kwargs)
    fig.suptitle('Gene {0} coverage -- chromosome {1}'.format(gene, chrom))
    gs = gridspec.GridSpec(2, 2,
                           width_ratios=[1, 1],
                           height_ratios=[20, 1])

    with sns.axes_style('darkgrid'):

        # upper-left subplot: original coverage curves
        ax1 = plt.subplot(gs[0])
        for i in range(f.shape[0]):
            ax1.plot(f[i, :], label=sample_ids[i])

        ax1.set_title('Original')

        # upper-right subplot: DegNorm-estimated coverage curves
        ax2 = plt.subplot(gs[1])
        for i in range(ke.shape[0]):
            ax2.plot(ke[i, :], label=sample_ids[i])

        ax2.set_title('Normalized')
        handles, labels = ax2.get_legend_handles_labels()

        for ax in [ax1, ax2]:
            ax.margins(x=0)

        # lower-left subplot: exon positioning
        ax3 = plt.subplot(gs[2])
        ax3.set_xlim(start, end)
        ax3.add_patch(Rectangle((start, 0)
                                , width=start + (rel_end - rel_start)
                                , height=1, fill=True, facecolor='red', lw=1))

        # lower-right subplot: exon positioning
        ax4 = plt.subplot(gs[3])
        ax4.set_xlim(start, end)
        ax4.add_patch(Rectangle((start, 0)
                                , width=start + (rel_end - rel_start)
                                , height=1, fill=True, facecolor='red', lw=1))

        # exon splicing y-axis has no meaning, so remove it.
        ax3.get_yaxis().set_visible(False)
        ax4.get_yaxis().set_visible(False)

        # only include start + end position of gene transcript in exon splicing map.
        for ax in [ax3, ax4]:
            ax.get_yaxis().set_visible(False)
            ax.set_xticks([start, end])
            ax.set_xticklabels([str(start), str(end)])

            for i in range(x_exon.shape[0] - 1):
                ax.axvline(x=x_exon[i, 1]
                           , ymin=0
                           , ymax=1
                           , color='w'
                           , lw=2)

    # configure legend: determine if labels expand vertically or horizontally.
    ncol = len(labels) if len(labels) < 6 else 1
    loc = 'upper right' if ncol == 1 else 'lower center'
    bbox_to_anchor = (1.1, 0.85) if ncol == 1 else None

    plt.figlegend(handles
                  , labels
                  , loc=loc
                  , title='Sample'
                  , ncol=ncol
                  , bbox_to_anchor=bbox_to_anchor)

    fig.tight_layout(rect=[0, 0.07, 1, 0.95])

    # if save directory specified, save coverage plots to file save_dir/chrom/<gene>_coverage.png and close figure.
    if not save_dir:
        return fig

    else:
        if not os.path.isdir(os.path.join(save_dir, str(chrom))):
            os.makedirs(os.path.join(save_dir, str(chrom)))

        fig_path = os.path.abspath(os.path.join(save_dir, str(chrom), '{0}_coverage.png'.format(gene)))
        fig.savefig(fig_path
                    , dpi=150
                    , bbox_inches='tight')
        plt.close(fig)

        return fig_path
コード例 #18
0
ファイル: plotting.py プロジェクト: tperol/EQcorrscan
def pretty_template_plot(template,
                         size=(10.5, 7.5),
                         save=False,
                         savefile=None,
                         title=False,
                         background=False,
                         picks=False):
    r"""Function to make a pretty plot of a single template, designed to work \
    better than the default obspy plotting routine for short data lengths.

    :type template: :class: obspy.Stream
    :param template: Template stream to plot
    :type size: tuple
    :param size: tuple of plot size
    :type save: bool
    :param save: if False will plot to screen, if True will save
    :type savefile: str
    :param savefile: String to save plot as, required if save=True.
    :type title: bool
    :param title: String if set will be the plot title
    :type background: :class: obspy.stream
    :param background: Stream to plot the template within.
    :type picks: list of obspy.core.event.pick
    :param picks: List of obspy type picks.
    """
    _check_save_args(save, savefile)
    fig, axes = plt.subplots(len(template), 1, sharex=True, figsize=size)
    if len(template) > 1:
        axes = axes.ravel()
    if not background:
        mintime = template.sort(['starttime'])[0].stats.starttime
    else:
        mintime = background.sort(['starttime'])[0].stats.starttime
    template.sort(['network', 'station', 'starttime'])
    lengths = []
    lines = []
    labels = []
    for i, tr in enumerate(template):
        # Cope with a singe channel template case.
        if len(template) > 1:
            axis = axes[i]
        else:
            axis = axes
        delay = tr.stats.starttime - mintime
        y = tr.data
        x = np.linspace(0, (len(y) - 1) * tr.stats.delta, len(y))
        x += delay
        if background:
            btr = background.select(station=tr.stats.station,
                                    channel=tr.stats.channel)[0]
            bdelay = btr.stats.starttime - mintime
            by = btr.data
            bx = np.linspace(0, (len(by) - 1) * btr.stats.delta, len(by))
            bx += bdelay
            axis.plot(bx, by, 'k', linewidth=1)
            template_line, = axis.plot(x,
                                       y,
                                       'r',
                                       linewidth=1.1,
                                       label='Template')
            if i == 0:
                lines.append(template_line)
                labels.append('Template')
            lengths.append(max(bx[-1], x[-1]))
        else:
            template_line, = axis.plot(x,
                                       y,
                                       'k',
                                       linewidth=1.1,
                                       label='Template')
            if i == 0:
                lines.append(template_line)
                labels.append('Template')
            lengths.append(x[-1])
        # print(' '.join([tr.stats.station, str(len(x)), str(len(y))]))
        axis.set_ylabel('.'.join([tr.stats.station, tr.stats.channel]),
                        rotation=0,
                        horizontalalignment='right')
        axis.yaxis.set_ticks([])
        # Plot the picks if they are given
        if picks:
            tr_picks = [
                pick for pick in picks
                if pick.waveform_id.station_code == tr.stats.station
                and pick.waveform_id.channel_code[0] +
                pick.waveform_id.channel_code[-1] == tr.stats.channel[0] +
                tr.stats.channel[-1]
            ]
            for pick in tr_picks:
                if 'P' in pick.phase_hint.upper():
                    pcolor = 'red'
                    label = 'P-pick'
                elif 'S' in pick.phase_hint.upper():
                    pcolor = 'blue'
                    label = 'S-pick'
                else:
                    pcolor = 'k'
                    label = 'Unknown pick'
                pdelay = pick.time - mintime
                # print(pdelay)
                line = axis.axvline(x=pdelay,
                                    color=pcolor,
                                    linewidth=2,
                                    linestyle='--',
                                    label=label)
                if label not in labels:
                    lines.append(line)
                    labels.append(label)
                # axes[i].plot([pdelay, pdelay], [])
    axis.set_xlim([0, max(lengths)])
    if len(template) > 1:
        axis = axes[len(template) - 1]
    else:
        axis = axes
    axis.set_xlabel('Time (s) from start of template')
    plt.figlegend(lines, labels, 'upper right')
    if title:
        if len(template) > 1:
            axes[0].set_title(title)
        else:
            axes.set_title(title)
    else:
        plt.subplots_adjust(top=0.98)
    plt.tight_layout()
    plt.subplots_adjust(hspace=0)
    if not save:
        plt.show()
        plt.close()
    else:
        plt.savefig(savefile)