コード例 #1
0
    def drawall(self, **kwargs):
        if not self.n == self.drawax.shape:
            self.drawax = np.ones(self.n, dtype='bool')
        if not self.n[1] == self.hrel.shape[0]:
            self.hrel = np.ones(self.n[1], dtype='float32')
        if not self.n[0] == self.vrel.shape[0]:
            self.vrel = np.ones(self.n[0], dtype='float32')
        if kwargs.has_key('lw'):
            kwargs['linewidth'] = kwargs.pop('lw')
        if not kwargs.has_key('linewidth'):
            kwargs['linewidth'] = self.linewidth
        else:
            self.linewidth = kwargs['linewidth']

        forcesharex = False
        forcesharey = False
        if kwargs.has_key('sharex'):
            forcesharex = True
        if kwargs.has_key('sharey'):
            forcesharey = True
        inter = pylab.isinteractive()
        pylab.interactive(
            False)  # wait to draw the axes, until they've all been created.
        axg = self.axgrid()
        for iv in range(self.n[0]):
            for ih in range(self.n[1]):
                if forcesharex:  # I should put this functionality into a func.
                    pass
                elif self.sharex[iv, ih] and self._sharex_ax[self.sharex[iv,
                                                                         ih]]:
                    kwargs['sharex'] = self._sharex_ax[self.sharex[iv, ih]]
                elif kwargs.has_key('sharex'):
                    kwargs.pop('sharex')
                if forcesharey:
                    pass
                elif self.sharey[iv, ih] and self._sharey_ax[self.sharey[iv,
                                                                         ih]]:
                    kwargs['sharey'] = self._sharey_ax[self.sharey[iv, ih]]
                elif kwargs.has_key('sharey'):
                    kwargs.pop('sharey')
                if self.drawax[iv, ih]:
                    #self.ax[iv,ih]=myaxes(axg[iv,ih,:],**kwargs)
                    self.ax[iv, ih] = axes(axg[iv, ih, :], **kwargs)
                    self.ax[iv, ih].hold(True)
                    if self.sharex[
                            iv,
                            ih] and not self._sharex_ax[self.sharex[iv, ih]]:
                        self._sharex_ax[self.sharex[iv, ih]] = self.ax[iv, ih]
                    if self.sharey[
                            iv,
                            ih] and not self._sharey_ax[self.sharey[iv, ih]]:
                        self._sharey_ax[self.sharey[iv, ih]] = self.ax[iv, ih]

                flag = True

        self._xlabel_ax = self.ax[-1, 0]
        self._ylabel_ax = self._xlabel_ax
        pylab.interactive(inter)
        pylab.draw_if_interactive()
        return self.ax
コード例 #2
0
ファイル: pylabplot.py プロジェクト: ceball/topographica
   def __call__(self, **params):

       p = ParamOverrides(self, params)
       fig = plt.figure(figsize=(5, 5))

       # This one-liner works in Octave, but in matplotlib it
       # results in lines that are all connected across rows and columns,
       # so here we plot each line separately:
       #   plt.plot(x,y,"k-",transpose(x),transpose(y),"k-")
       # Here, the "k-" means plot in black using solid lines;
       # see matplotlib for more info.
       isint = plt.isinteractive() # Temporarily make non-interactive for
       # plotting
       plt.ioff()
       for r, c in zip(p.y[::p.skip], p.x[::p.skip]):
           plt.plot(c, r, "k-")
       for r, c in zip(np.transpose(p.y)[::p.skip],np.transpose(p.x)[::p.skip]):
           plt.plot(c, r, "k-")

       # Force last line avoid leaving cells open
       if p.skip != 1:
           plt.plot(p.x[-1], p.y[-1], "k-")
           plt.plot(np.transpose(p.x)[-1], np.transpose(p.y)[-1], "k-")

       plt.xlabel('x')
       plt.ylabel('y')
       # Currently sets the input range arbitrarily; should presumably figure out
       # what the actual possible range is for this simulation (which would presumably
       # be the maximum size of any GeneratorSheet?).
       plt.axis(p.axis)

       if isint: plt.ion()
       self._generate_figure(p)
       return fig
コード例 #3
0
    def __call__(self, t, text=''):
        """
        Updates the hill_plot at time t. You can provide a title for the figure.
        If bool(title)==False, t is shown.
        """
        layer_f = self.layers.get_fluxes3d(t)
        surf_f = self.surfacewater.get_fluxes3d(t)
        self.q_sub.set_UVC(numpy.asarray(layer_f.X), numpy.asarray(layer_f.Z))
        self.q_surf.set_UVC(numpy.asarray(surf_f.X), numpy.asarray(surf_f.Z))
        for l in self.layers:
            self.polys[l.node_id].set_fc(self.cmap(self.evalfunction(l)))
            x, z = self.__get_layer_shape(l, *self.__cells_of_layer[l.node_id])
            self.polys[l.node_id].set_xy(numpy.column_stack((x, z)))
        self.topline.set_ydata(self.__get_snow_height())
        if not text:
            text = str(t)
        self.title.set_text(text)
        if pylab.isinteractive():
            pylab.draw()

        # Collect all matplotlib artist to use the HillPlot in animations
        artists = [self.title]
        artists += list(self.polys.values())
        artists.append(self.topline)
        artists.append(self.q_sub)
        artists.append(self.q_surf)

        return artists
コード例 #4
0
ファイル: superaxes.py プロジェクト: lkilcher/pyTurbSim
    def drawall(self, **kwargs):
        if not self.n == self.drawax.shape:
            self.drawax = np.ones(self.n, dtype='bool')
        if 'lw' in kwargs.keys():
            kwargs['linewidth'] = kwargs.pop('lw', self.linewidth)
        if 'linewidth' not in kwargs.keys():
            kwargs['linewidth'] = self.linewidth
        else:
            self.linewidth = kwargs['linewidth']

        inter = pylab.isinteractive()
        pylab.interactive(False)
                          # wait to draw the axes, until they've all been
                          # created.
        for iv, ih in self._iter_axinds():
            if self.drawax[iv, ih]:
                self.ax[iv, ih] = axes(self.axPlacer(iv, ih),
                                       sharex=self.sharex(iv, ih),
                                       sharey=self.sharey(iv, ih),
                                       **kwargs)
        self._xlabel_ax = self.ax[-1, 0]
        self._ylabel_ax = self._xlabel_ax
        pylab.interactive(inter)
        pylab.draw_if_interactive()
        return self.ax
コード例 #5
0
ファイル: pylabplot.py プロジェクト: sarahcattan/topographica
   def __call__(self, **params):

       p = ParamOverrides(self, params)
       fig = plt.figure(figsize=(5, 5))

       # This one-liner works in Octave, but in matplotlib it
       # results in lines that are all connected across rows and columns,
       # so here we plot each line separately:
       #   plt.plot(x,y,"k-",transpose(x),transpose(y),"k-")
       # Here, the "k-" means plot in black using solid lines;
       # see matplotlib for more info.
       isint = plt.isinteractive() # Temporarily make non-interactive for
       # plotting
       plt.ioff()
       for r, c in zip(p.y[::p.skip], p.x[::p.skip]):
           plt.plot(c, r, "k-")
       for r, c in zip(np.transpose(p.y)[::p.skip],np.transpose(p.x)[::p.skip]):
           plt.plot(c, r, "k-")

       # Force last line avoid leaving cells open
       if p.skip != 1:
           plt.plot(p.x[-1], p.y[-1], "k-")
           plt.plot(np.transpose(p.x)[-1], np.transpose(p.y)[-1], "k-")

       plt.xlabel('x')
       plt.ylabel('y')
       # Currently sets the input range arbitrarily; should presumably figure out
       # what the actual possible range is for this simulation (which would presumably
       # be the maximum size of any GeneratorSheet?).
       plt.axis(p.axis)

       if isint: plt.ion()
       self._generate_figure(p)
       return fig
コード例 #6
0
    def matrix_plot(self, matrix, figure_name='matrix_plot.pdf'):
        import numpy
        from matplotlib import pylab
        def _blob(x,y,area,colour):
            hs = numpy.sqrt(area) / 2
            xcorners = numpy.array([x - hs, x + hs, x + hs, x - hs])
            ycorners = numpy.array([y - hs, y - hs, y + hs, y + hs])
            pylab.fill(xcorners, ycorners, colour, edgecolor=colour)
        reenable = False
        if pylab.isinteractive():
            pylab.ioff()
        pylab.clf()
        
        maxWeight = 2**numpy.ceil(numpy.log(numpy.max(numpy.abs(matrix)))/numpy.log(2))
        height, width = matrix.shape
        pylab.fill(numpy.array([0,width,width,0]),numpy.array([0,0,height,height]),'white')
        pylab.axis('off')
        pylab.axis('equal')
        for x in xrange(width):
            for y in xrange(height):
                _x = x+1
                _y = y+1
                w = matrix[y,x]
                if w > 0:
                    _blob(_x - 0.5, height - _y + 0.5, 0.2,'#0099CC')
                elif w < 0:
                    _blob(_x - 0.5, height - _y + 0.5, 0.2,'#660000')

        if reenable:
            pylab.ion()
        pylab.savefig(figure_name) 
コード例 #7
0
    def matrix_plot(self, matrix, figure_name='matrix_plot.pdf'):
        import numpy
        from matplotlib import pylab

        def _blob(x, y, area, colour):
            hs = numpy.sqrt(area) / 2
            xcorners = numpy.array([x - hs, x + hs, x + hs, x - hs])
            ycorners = numpy.array([y - hs, y - hs, y + hs, y + hs])
            pylab.fill(xcorners, ycorners, colour, edgecolor=colour)

        reenable = False
        if pylab.isinteractive():
            pylab.ioff()
        pylab.clf()

        maxWeight = 2**numpy.ceil(
            numpy.log(numpy.max(numpy.abs(matrix))) / numpy.log(2))
        height, width = matrix.shape
        pylab.fill(numpy.array([0, width, width, 0]),
                   numpy.array([0, 0, height, height]), 'white')
        pylab.axis('off')
        pylab.axis('equal')
        for x in xrange(width):
            for y in xrange(height):
                _x = x + 1
                _y = y + 1
                w = matrix[y, x]
                if w > 0:
                    _blob(_x - 0.5, height - _y + 0.5, 0.2, '#0099CC')
                elif w < 0:
                    _blob(_x - 0.5, height - _y + 0.5, 0.2, '#660000')

        if reenable:
            pylab.ion()
        pylab.savefig(figure_name)
コード例 #8
0
    def drawall(self, **kwargs):
        if not self.n == self.drawax.shape:
            self.drawax = np.ones(self.n, dtype='bool')
        if 'lw' in kwargs.keys():
            kwargs['linewidth'] = kwargs.pop('lw', self.linewidth)
        if 'linewidth' not in kwargs.keys():
            kwargs['linewidth'] = self.linewidth
        else:
            self.linewidth = kwargs['linewidth']

        inter = pylab.isinteractive()
        pylab.interactive(False)
        # wait to draw the axes, until they've all been
        # created.
        for iv, ih in self._iter_axinds():
            if self.drawax[iv, ih]:
                self.ax[iv, ih] = axes(self.axPlacer(iv, ih),
                                       sharex=self.sharex(iv, ih),
                                       sharey=self.sharey(iv, ih),
                                       **kwargs)
        self._xlabel_ax = self.ax[-1, 0]
        self._ylabel_ax = self._xlabel_ax
        pylab.interactive(inter)
        pylab.draw_if_interactive()
        return self.ax
コード例 #9
0
ファイル: superaxes.py プロジェクト: jennirinker/pyTurbSim
    def drawall(self, **kwargs):
        if not self.n == self.drawax.shape:
            self.drawax = np.ones(self.n, dtype='bool')
        if not self.n[1] == self.hrel.shape[0]:
            self.hrel = np.ones(self.n[1], dtype='float32')
        if not self.n[0] == self.vrel.shape[0]:
            self.vrel = np.ones(self.n[0], dtype='float32')
        if 'lw' in kwargs.keys():
            kwargs['linewidth'] = kwargs.pop('lw', self.linewidth)
        if 'linewidth' not in kwargs.keys():
            kwargs['linewidth'] = self.linewidth
        else:
            self.linewidth = kwargs['linewidth']

        forcesharex = False
        forcesharey = False
        if 'sharex' in kwargs.keys():
            forcesharex = True
        if 'sharey' in kwargs.keys():
            forcesharey = True
        inter = pylab.isinteractive()
        pylab.interactive(False)
                          # wait to draw the axes, until they've all been
                          # created.
        axg = self.axgrid()
        for iv in range(self.n[0]):
            for ih in range(self.n[1]):
                if forcesharex:  # I should put this functionality into a func.
                    pass
                elif (self.sharex[iv, ih] and
                      self._sharex_ax[self.sharex[iv, ih]]):
                    kwargs['sharex'] = self._sharex_ax[self.sharex[iv, ih]]
                elif 'sharex' in kwargs.keys():
                    kwargs.pop('sharex')
                if forcesharey:
                    pass
                elif (self.sharey[iv, ih] and
                      self._sharey_ax[self.sharey[iv, ih]]):
                    kwargs['sharey'] = self._sharey_ax[self.sharey[iv, ih]]
                elif 'sharey' in kwargs.keys():
                    kwargs.pop('sharey')
                if self.drawax[iv, ih]:
                    # self.ax[iv,ih]=myaxes(axg[iv,ih,:],**kwargs)
                    self.ax[iv, ih] = axes(axg[iv, ih,:], **kwargs)
                    self.ax[iv, ih].hold(True)
                    if self.sharex[iv, ih] and not\
                       self._sharex_ax[self.sharex[iv, ih]]:
                        self._sharex_ax[self.sharex[iv, ih]] = self.ax[iv, ih]
                    if self.sharey[iv, ih] and not\
                       self._sharey_ax[self.sharey[iv, ih]]:
                        self._sharey_ax[self.sharey[iv, ih]] = self.ax[iv, ih]
        self._xlabel_ax = self.ax[-1, 0]
        self._ylabel_ax = self._xlabel_ax
        pylab.interactive(inter)
        pylab.draw_if_interactive()
        return self.ax
コード例 #10
0
    def __call__(self, t=None):
        a = numpy.array
        if t:
            self.t = t
        f = cmf.cell_flux_directions(self.cells, self.t)

        self.quiver.set_UVC(a(f.X), a(f.Y))

        if plt.isinteractive():
            plt.draw()
コード例 #11
0
    def __init__(self, cells, value_function, cmap=default_colormap,
                 hold=True, vmin=None, vmax=None, **kwargs):
        """
        Creates a new map from cells

        :param cells:
        :param value_function:
        :param cmap:
        :param hold:
        :param vmin:
        :param vmax:
        :param kwargs:
        """

        if not hasattr(cmf.Cell, 'geometry'):
            raise NotImplementedError('The geometry of the cells can not be used, shapely is not installed')
        self.cmap = cmap
        self.cells = [c for c in cells if c.geometry]
        self.__f = value_function

        was_interactive = plt.isinteractive()

        if was_interactive:
            plt.ioff()

        self.polygons = {}

        def flatten_multipolygons(shape):
            if hasattr(shape, "geoms"):
                return shape.geoms
            else:
                return [shape]

        geos = [flatten_multipolygons(c.geometry) for c in self.cells]
        values = [self.f(c) for c in self.cells]
        self.maxvalue = vmax or max(values)
        self.minvalue = vmin or min(values)

        if self.minvalue >= self.maxvalue:
            self.minvalue = self.maxvalue - 1

        if not hold:
            plt.cla()

        for cell, shapes, v in zip(self.cells, geos, values):
            c = self.cmap(float(v - self.minvalue) / float(self.maxvalue - self.minvalue))
            self.polygons[cell] = [self.draw_shapes(s, c, **kwargs) for s in shapes]

        plt.axis('equal')
        norm = Normalize(self.minvalue, self.maxvalue)
        plt.matplotlib.cm.ScalarMappable.__init__(self, norm, cmap)

        if was_interactive:
            plt.draw()
            plt.ion()
コード例 #12
0
    def __call__(self, recalc_range=False):
        if recalc_range:
            self.maxvalue = max((self.f(c) for c in self.cells))
            self.minvalue = min((self.f(c) for c in self.cells))

        for cell, polys in self.polygons.items():
            v = self.f(cell)
            c = self.cmap((v - self.minvalue) / (self.maxvalue - self.minvalue))
            for poly in polys:
                poly.set_fc(c)
        if plt.isinteractive():
            plt.draw()
コード例 #13
0
ファイル: pylabplot.py プロジェクト: dhbachh/topographica
    def __call__(self, **params):

        p = ParamOverrides(self, params)
        name = p.plot_template.keys().pop(0)
        plot = make_template_plot(p.plot_template,
                                  p.sheet.views.Maps,
                                  p.sheet.xdensity,
                                  p.sheet.bounds,
                                  p.normalize,
                                  name=p.plot_template[name])
        fig = plt.figure(figsize=(5, 5))
        if plot:
            bitmap = plot.bitmap
            isint = plt.isinteractive(
            )  # Temporarily make non-interactive for plotting
            plt.ioff()  # Turn interactive mode off

            plt.imshow(bitmap.image, origin='lower', interpolation='nearest')
            plt.axis('off')

            for (t, pref, sel, c) in p.overlay:
                v = plt.flipud(p.sheet.views.Maps[pref].view()[0])
                if (t == 'contours'):
                    plt.contour(v, [sel, sel], colors=c, linewidths=2)

                if (t == 'arrows'):
                    s = plt.flipud(p.sheet.views.Maps[sel].view()[0])
                    scale = int(np.ceil(np.log10(len(v))))
                    X = np.array([x for x in xrange(len(v) / scale)])
                    v_sc = np.zeros((len(v) / scale, len(v) / scale))
                    s_sc = np.zeros((len(v) / scale, len(v) / scale))
                    for i in X:
                        for j in X:
                            v_sc[i][j] = v[scale * i][scale * j]
                            s_sc[i][j] = s[scale * i][scale * j]
                    plt.quiver(scale * X,
                               scale * X,
                               -np.cos(2 * np.pi * v_sc) * s_sc,
                               -np.sin(2 * np.pi * v_sc) * s_sc,
                               color=c,
                               edgecolors=c,
                               minshaft=3,
                               linewidths=1)

            p.title = '%s overlaid with %s at time %s' % (plot.name, pref,
                                                          topo.sim.timestr())
            if isint: plt.ion()
            p.filename_suffix = "_" + p.sheet.name
            self._generate_figure(p)
            return fig
コード例 #14
0
ファイル: pylabplot.py プロジェクト: sarahcattan/topographica
   def __call__(self, **params):

       p=ParamOverrides(self,params)
       name=p.plot_template.keys().pop(0)
       plot=make_template_plot(p.plot_template,
                               p.sheet.views.Maps, p.sheet.xdensity,p.sheet.bounds,
                               p.normalize,name=p.plot_template[name])
       fig = plt.figure(figsize=(5,5))
       if plot:
           bitmap=plot.bitmap
           isint=plt.isinteractive() # Temporarily make non-interactive for plotting
           plt.ioff()                                         # Turn interactive mode off

           plt.imshow(bitmap.image,origin='lower',interpolation='nearest')
           plt.axis('off')

           for (t,pref,sel,c) in p.overlay:
               v = plt.flipud(p.sheet.views.Maps[pref].view()[0])
               if (t=='contours'):
                   plt.contour(v,[sel,sel],colors=c,linewidths=2)

               if (t=='arrows'):
                   s = plt.flipud(p.sheet.views.Maps[sel].view()[0])
                   scale = int(np.ceil(np.log10(len(v))))
                   X = np.array([x for x in xrange(len(v)/scale)])
                   v_sc = np.zeros((len(v)/scale,len(v)/scale))
                   s_sc = np.zeros((len(v)/scale,len(v)/scale))
                   for i in X:
                       for j in X:
                           v_sc[i][j] = v[scale*i][scale*j]
                           s_sc[i][j] = s[scale*i][scale*j]
                   plt.quiver(scale*X, scale*X, -np.cos(2*np.pi*v_sc)*s_sc,
                              -np.sin(2*np.pi*v_sc)*s_sc, color=c,
                              edgecolors=c, minshaft=3, linewidths=1)

           p.title='%s overlaid with %s at time %s' %(plot.name,pref,topo.sim.timestr())
           if isint: plt.ion()
           p.filename_suffix="_"+p.sheet.name
           self._generate_figure(p)
           return fig
コード例 #15
0
def hinton(W, maxWeight=None):
    reenable = False
    if P.isinteractive():
        P.ioff()
    P.clf()
    height, width = W.shape
    if not maxWeight:
        maxWeight = 2**numpy.ceil(numpy.log(numpy.max(numpy.abs(W)))/numpy.log(2))

    P.fill(numpy.array([0,width,width,0]),numpy.array([0,0,height,height]),'gray')
    P.axis('off')
    P.axis('equal')
    for x in xrange(width):
        for y in xrange(height):
            _x = x+1
            _y = y+1
            w = W[y,x]
            if w > maxWeight/2:
                _blob(_x - 0.5, height - _y + 0.5, min(1,w/maxWeight),'white')
            elif w <= maxWeight/2:
                _blob(_x - 0.5, height - _y + 0.5, min(1,w/maxWeight),'black')
    if reenable:
        P.ion()
    P.show()
コード例 #16
0
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as nd
from scipy.ndimage.filters import median_filter as mf
import matplotlib.pylab as pd
d1=sys.argv[1];d2=sys.argv[2]
path=os.path.join(d1,d2)
img_ml=nd.imread(path)

pd.ion()
print pd.isinteractive()

fig1, ax1 = plt.subplots(num=1,figsize=(6,1.0*img_ml.shape[0]/img_ml.shape[1]*6))
fig1.subplots_adjust(0,0,1,1);ax1.grid('off')
ax1.axis('off')
fig1.canvas.set_window_title(d2)
im1 = ax1.imshow(img_ml)
fig1.canvas.draw()

fig2, ax2 = plt.subplots(3,1,num=2,figsize=[14,10])
ax2[0].hist(img_ml[:,:,0].reshape(img_ml.shape[0]*img_ml.shape[1]),bins=256,color='r')
ax2[0].set_xlim([0,256])
ax2[1].hist(img_ml[:,:,1].reshape(img_ml.shape[0]*img_ml.shape[1]),bins=256,color='g')
ax2[1].set_xlim([0,256])
ax2[2].hist(img_ml[:,:,2].reshape(img_ml.shape[0]*img_ml.shape[1]),bins=256,color='b')
ax2[2].set_xlim([0,256])
plt.show(block=False)

print 'yes Im running'
コード例 #17
0
    def particle_size_distribution(struct,t_index,z_index):
        """plot particle size distribution"""

        ptv,particle_parameters = get_data_at_index(struct,t_index,z_index)


        alpha_water =  particle_parameters['alpha_water']
        alpha_ice   =  particle_parameters['alpha_ice']
        g_ice = particle_parameters['g_ice']
        g_water = particle_parameters['g_water']
        Dr      = particle_parameters['Dr']
        print 'Default processing'
        print 'effective_diameter_prime = %4i (microns)' %(ptv.eff_diameter_prime[0,0]*1e6)
        print 'effective_diameter       = %4i (microns)' %(ptv.effective_diameter[0,0]*1e6)
        print 'mode diameter            = %4i (microns)' %(ptv.dmode[0,0]*1e6)
        print 'mean diameter            = %4i (microns)' %(ptv.mean_diameter[0,0]*1e6)
        print 'Doppler velocity         = %4.2f (m/s)' %ptv.MeanDopplerVelocity[0,0]
        print 'rw_fall_vel              = %4.2f (m/s)' %ptv.rw_fall_velocity[0,0]
        print 'mw_fall_vel              = %4.2f (m/s)' %ptv.mw_fall_velocity[0,0]
        print 'model_spectral_width     = %4.2f (m/s)' %ptv.model_spectral_width[0,0]
        print 'radar_spectral_width     = %4.2f (m/s)' %ptv.radar_spectral_width[0,0]
        print 'alpha_water = ' ,alpha_water
        print 'alpha_ice   = ',alpha_ice
        print 'gamma_water = ',g_water
        print 'gamma_ice   = ',g_ice
        print 'zeta        = ',ptv.zeta[0,0]
    
        rho_ice = 0.91 *1000.0 # kg/m^3
        gas_constant = 287 #J/(kg K)
        #vector of diameters in m from 1 micron to 1 cm
        D = np.logspace(0.0,4.0,200)/1e6
        dD = np.zeros_like(D)
        dD[1:] = D[1:]-D[:-1]

    
        if ptv.phase[0,0]:
            alpha = alpha_ice
            gam = g_ice        
        else:    
             alpha = alpha_water
             gam = g_water
             
        colors = ['b','g','r','c']
        lwidth = 1.0
        while 1:
             #recalculate size distribution with new alpha?
            alpha_gamma_str = raw_input('new params:  alpha,gamma,zeta = ? or map ')
            #strip all blanks
            #alpha_gamma_str.lstrip()
            
            alpha_gamma_str.replace(" ","")
            n_alpha = 1
            n_gam = 1
            print alpha_gamma_str
            if not alpha_gamma_str == 'map':
                n_times=[2,2]
                if len(alpha_gamma_str) == 0:
                    break                
                elif alpha_gamma_str.find(',')>= 0:
                    index = alpha_gamma_str.find(',')
                    index2 = alpha_gamma_str[(index+1):].find(',')
                    index2 = index +index2+1
                    alpha = np.float(alpha_gamma_str[:index])
                    gam = np.float(alpha_gamma_str[index +1:index2])
                    ptv.zeta[0,0] = np.float(alpha_gamma_str[index2+1:len(alpha_gamma_str)])
            else:
                n_alpha = 20
                n_gam   = 40
                n_times = [n_alpha,n_gam]
            cost_func = np.zeros((n_alpha,n_gam))
            print n_times, n_times[0]
            print n_alpha,n_gam,ptv.zeta[0,0]
            if alpha_gamma_str == 'map':
               for i in range(1,n_times[0]):
                  for k in range(1,n_times[1]):
                    alpha = np.float(i)/2.0
                    gam =   .05 * np.float(k)
                    print
                    print 'alpha = ',alpha,' gamma= ',gam

                    particle_parameters['alpha_water'] = alpha
                    particle_parameters['alpha_ice'] = alpha
                    particle_parameters['g_water'] = gam
                    particle_parameters['g_ice'] = gam

                    beta_ext_radar = np.NaN * np.zeros((1,1))
                    beta_ext_lidar = np.NaN * np.zeros((1,1))
                    zeta =np.NaN * np.zeros((1,1))
                    beta_ext_lidar = rs_inv['beta_a_backscat'][t_index,z_index]/0.05

                    beta_ext_radar = rs_mmcr['Backscatter'][t_index,z_index] * 8 * np.pi/3.0
                    zeta            = rs_spheroid_particle['zeta'][t_index,z_index]

                    print beta_ext_lidar.shape
                    dmode = spu.dmode_from_lidar_radar(beta_ext_lidar,beta_ext_radar,particle_parameters
                           ,ptv.zeta,ptv.phase,8.6e-3)
                    print dmode
                    
                    
                    mode_dia,effective_dia,size_dist,mw_size_dist,aw_size_dist,rw_size_dist\
                      ,mw_fall_vel,rw_fall_vel,LWC_ext,LWC_p180 = precip_computation(\
                      alpha
                      ,gam
                      ,D
                      ,extinction
                      ,beta_a_backscat
                      ,eff_dia_prime
                      ,phase  
                      ,temperature
                      ,pressure)
            else: #single value not mapping cost function
                particle_parameters['alpha_water'] = alpha
                particle_parameters['alpha_ice'] = alpha
                particle_parameters['g_water'] = gam
                particle_parameters['g_ice'] = gam

               
                
                
                #eff dia prime from radar and lidar
                #ptv.eff_diameter_prime[0,0] = edp.lidar_radar_eff_diameter_prime(
                #      ptv.beta_ext_lidar
                #     ,ptv.beta_ext_radar
                #     ,ptv.phase
                #     ,8.6e-3)
               
                print 'source',particle_parameters['ext_source']
                print ptv.beta_a_backscat
                print particle_parameters['p180_ice']
                print ptv.beta_ext_radar
                print ptv.zeta
                print ptv.phase
                if ptv.phase[0,0] == 1:
                    p180 = particle_parameters['p180_ice']
                else:
                    p180 = 0.05
                print 'beta_ext' , ptv.beta_a_backscat/p180
                
                if particle_parameters['ext_source'] == 'bs/p180':
                    ptv.dmode = spu.dmode_from_lidar_radar(
                             ptv.beta_a_backscat/p180
                            ,ptv.beta_ext_radar
                            ,particle_parameters
                            ,ptv.zeta
                            ,ptv.phase
                            ,8.6e-3)
                else:    
                    ptv.dmode = spu.dmode_from_lidar_radar(
                            ptv.beta_ext_lidar
                           ,ptv.beta_ext_radar
                           ,particle_parameters
                           ,ptv.zeta
                           ,ptv.phase
                           ,8.6e-3)
               
                

                #compute effective diameter from mode_diameter
                ptv.effective_diameter[0,0],ptv.mean_diameter[0,0],ptv.mean_mass_diameter[0,0]\
                    = spu.effective_diameter(
                      ptv.dmode
                     ,particle_parameters
                     ,ptv.zeta
                     ,ptv.phase)

                #compute liquid water content (kg/m^3)
                LWC_ext = spu.liquid_water_content(
                      ptv.effective_diameter
                     ,ptv.beta_ext_lidar,ptv.phase)
                if ptv.phase[0,0] == 1:
                    ptv.LWC_p180 = spu.liquid_water_content(
                        ptv.effective_diameter
                        ,ptv.beta_a_backscat/particle_parameters['p180_ice']
                        ,ptv.phase)
                elif ptv.phase[0,0] == 0 :
                    ptv.LWC_p180 = spu.liquid_water_content(
                        ptv.effective_diameter
                        ,ptv.beta_a_backscat/0.05
                        ,ptv.phase)
                else:
                    ptv.LWC_p180 = np.NaN
                    
                
                #compute precip rate (m/s)
                #precip_rate = 1/density (m^3/kg) * LWC (kg/m^3) * fall_velocity (m/s)
                ptv.hsrl_radar_precip_rate[0,0] = 0.001 * ptv.LWC_p180[0,0] * ptv.MeanDopplerVelocity[0,0] 
                #LR_precip_rate[0,0]= 0.001 * LWC_p180[0,0] * MeanDopplerVelocity[0,0 

               
                ptv.rw_fall_velocity[0,0],ptv.mw_fall_velocity[0,0],ptv.model_spectral_width[0,0]\
                     = spu.weighted_fall_velocity( 
                      ptv.dmode
                      ,particle_parameters
                      ,ptv.zeta
                      ,ptv.temps
                      ,ptv.pressures
                      ,ptv.phase)
     
          


            size_dist = D**alpha * np.exp(-(alpha/gam) * (D/ptv.dmode[0,0])**gam)
            norm      = np.sum(size_dist * dD)
            size_dist /=norm
            print 'norm',norm
            #area weighted distribution  
            aw_size_dist = D**(alpha+2.0) * np.exp(-(alpha/gam) * (D/ptv.dmode[0,0])**gam)
            norm = np.sum(aw_size_dist * dD)
            aw_size_dist /= norm
            print norm
            #mass weighted distribution
            mw_size_dist = D**(alpha+ ptv.zeta + 2.0) * np.exp(-(alpha/gam) * (D/ptv.dmode[0,0])**gam)
            norm = np.sum(mw_size_dist * dD)
            mw_size_dist /= norm
            print norm
            #radar weighted distribution
            rw_size_dist = D**(alpha+ 2.0 * ptv.zeta + 4.0) * np.exp(-(alpha/gam) * (D/ptv.dmode[0,0])**gam)
            norm = np.sum(rw_size_dist * dD)
            rw_size_dist /= norm
           
            #compute model fall velocity at this point
             #constants, program works in mks 
            rho_ice=0.91 * 1000.0 #kg/m^3
            rho_water = 1000.0 #kg/m^3
            gas_constant = 287 #J/(kg K)
            rho_air = 100.0 *ptv.pressures/(gas_constant * ptv.temps) #in kg/m^3
            eta = spu.dynamic_viscosity(ptv.temps)
            
            #X = spu.best_number(D,Dr,ptv.zeta,rho_ice,rho_air,eta)

            X_const = spu.best_constant(rho_air,eta)
            if ptv.phase == 1:
                X = spu.best_number(D,Dr,X_const,ptv.zeta,rho_ice)
            else:
                X = spu.best_number(D,Dr,X_const,1.0,rho_water)
                
            Vf = spu.spheroid_fall_velocity(D,X,ptv.zeta,rho_air,eta,ptv.phase)
            
            #cost_func[i,k] = (doppler_vel-rw_fall_vel)**2 + (spectral_width-model_spectral_width)**2
            #print 'cost function = ',cost_func[i,k]
            if alpha_gamma_str == 'map':
                 plt.figure(999)
                 imgplot = plt.imshow(np.log(cost_func))

            
            plt.figure(1000)
            #plt.ioff()
            lines=plt.plot(D*1e6  ,np.transpose(size_dist), colors[0]
                     ,D*1e6,np.transpose(aw_size_dist),colors[1]
                     ,D*1e6,np.transpose(mw_size_dist),colors[2]
                     ,D*1e6,np.transpose(rw_size_dist),colors[3])
            plt.grid(True)             
            ax=plt.gca()
            plt.setp(lines,linewidth=lwidth)
            plt.legend(['number','area','mass','radar'])
            ax.set_xlim(0,4500)
            plt.ylabel('weighted size distributions')
            plt.xlabel('Diameter (microns)')
        

            #plt.ion()
            plt.figure(1001)
            #plt.ioff()
            lines1=plt.plot(D*1e6  ,np.transpose(size_dist), colors[0]
                     ,D*1e6,np.transpose(aw_size_dist),colors[1]
                     ,D*1e6,np.transpose(mw_size_dist),colors[2]
                     ,D*1e6,np.transpose(rw_size_dist),colors[3])
            plt.grid(True)             
            ax=plt.gca()
            plt.setp(lines1,linewidth=lwidth)
            plt.legend(['number','area','mass','radar'])
            plt.xlabel('Diameter (microns)')
            ax.set_xscale('log')
            #plt.show(False)
            
            plt.figure(1002)
            #plt.ioff()
            lines2=plt.plot(D*1e6,np.transpose(Vf),'r')
            plt.grid(True)
            ax=plt.gca()
            plt.setp(lines2,linewidth=lwidth)
            plt.xlabel('diameter (microns)')
            plt.ylabel('fall velocity (m/s)')
            ax.set_xscale('log')
            
            
           

            print
            print 'effective_diameter_prime = %4.0f (microns)' %(1e6 * ptv.eff_diameter_prime) 
            print 'effective diameter       = %4.0f (micons)' %(ptv.effective_diameter * 1e6)
            print 'mode diameter            = %4.0f (microns)' %(ptv.dmode * 1e6)
            print 'mean diameter            = %4.0f (microns)' %(ptv.mean_diameter *1e6)
            print 'LWC , extinction         = %6.4f (gr/m^3)' %(ptv.LWC_ext * 1e3)
            print 'LWC ,p(180)/4pi = %4.2f   = %6.4f (gr/m^3)' \
                             %(particle_parameters['p180_ice'],ptv.LWC_p180 * 1e3)
            if ptv.phase[0,0] == 1:
                print 'phase                    = ice'
            elif ptv.phase[0,0] == 0:
                print 'phase                    = water'
            else:
                print 'phase                    = NaN'
            print 'Doppler velocity         = %4.2f (m/s)' %ptv.MeanDopplerVelocity
            print 'rw_fall_vel              = %4.2f (m/s)' %ptv.rw_fall_velocity
            print 'mw_fall_vel              = %4.2f (m/s)' %ptv.mw_fall_velocity
            print 'model_spectral_width     = %4.2f (m/s)' %ptv.model_spectral_width
            print 'radar_spectral_width     = %4.2f (m/s)' %ptv.radar_spectral_width
            print 'alpha = ' ,alpha
            print 'gamma = ',gam
            print 'zeta  = ',ptv.zeta[0,0]
        
           
            
        
            lwidth = lwidth + 1.0
            if not plt.isinteractive():   
               plt.show(False)
            #plt.ion()
           
            
                
        return
コード例 #18
0
 def _start_report(self):
     self.was_interactive = plt.isinteractive()
     plt.ioff()
     self.f = plt.figure(figsize=(self.figwidth, self.figheight))
     self.pageno = 1
コード例 #19
0
    def __init__(self, cells, t, solute=None, cmap=default_color_map):
        """
        Creates a new HillPlot on the active figure, showing the state of each layer
         - cells: The a sequence of cmf cells to use in this hill_plot. You can
                  use the whole project if you like
         - t:     Current time step. Needed to retrieve the fluxes
         - solute:The solute concentration to show. If None, the wetness of the 
                  layer will be shown
         - cmap:  a matplotlib colormap (see module cm) for coloring
        """
        was_interactive = pylab.isinteractive()
        if was_interactive:
            pylab.ioff()
        self.cells = cells
        self.layers = cmf.node_list(chain(*[c.layers for c in cells]))
        self.surfacewater = cmf.node_list(c.surfacewater for c in cells)

        x_pos = [self.__x(c.x, c.y) for c in cells]

        self.topline = pylab.plot(x_pos, self.__get_snow_height(), 'k-',
                                  lw=2)[0]

        self.__cells_of_layer = {}
        self.polys = {}

        # Get standard evaluation functions
        if isinstance(solute, cmf.solute):
            self.evalfunction = lambda layer: layer.conc(solute)
        else:
            self.evalfunction = lambda layer: layer.wetness

        self.cmap = cmap
        self.figure = pylab.gcf()

        for i, c in enumerate(cells):
            c_left = cells[i - 1] if i else c
            c_right = cells[i + 1] if i < len(cells) - 1 else c

            for l in c.layers:
                x, z = self.__get_layer_shape(l, c, c_left, c_right)
                self.polys[l.node_id], = pylab.fill(x,
                                                    z,
                                                    fc=self.cmap(
                                                        self.evalfunction(l)),
                                                    ec='none',
                                                    zorder=0)
                self.__cells_of_layer[l.node_id] = (c, c_left, c_right)

        layer_pos = self.layers.get_positions()
        surf_pos = self.surfacewater.get_positions()

        layer_f = self.layers.get_fluxes3d(t)
        surf_f = self.surfacewater.get_fluxes3d(t)
        scale = max(numpy.linalg.norm(surf_f.X), numpy.linalg.norm(
            layer_f.X)) * 10

        layer_x = self.__x(numpy.asarray(layer_pos.X),
                           numpy.asarray(layer_pos.Y))

        surf_x = self.__x(numpy.asarray(surf_pos.X), numpy.asarray(surf_pos.Y))

        self.q_sub = pylab.quiver(layer_x,
                                  layer_pos.Z,
                                  layer_f.X + layer_f.Y,
                                  layer_f.Z,
                                  scale=scale,
                                  minlength=0.1,
                                  pivot='middle',
                                  zorder=1)
        self.q_surf = pylab.quiver(surf_x,
                                   surf_pos.Z,
                                   surf_f.X + surf_f.Y,
                                   surf_f.Z,
                                   color='b',
                                   scale=scale,
                                   minlength=0.1,
                                   pivot='middle',
                                   zorder=1)

        self.title = pylab.title(t)
        if was_interactive:
            pylab.draw()
            pylab.ion()
コード例 #20
0
model.compile(loss="binary_crossentropy",
              optimizer="adam",
              metrics=['accuracy'])

# call the function to fit to the data (training the network)
history = model.fit(x_train,
                    y_train,
                    epochs=1000,
                    batch_size=20,
                    validation_data=(x_test, y_test))

scores = model.evaluate(X, Y)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))

plt.figure()
plt.isinteractive()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='best')

plt.figure()

plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('acc')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='best')
コード例 #21
0
 def f(self, funct):
     self.__f = funct
     if plt.isinteractive():
         self(True)