def draw_pie(grades): labels = ['A', 'B', 'C', 'D', 'E'] gradeGroup = {} for grade in grades: gradeGroup[grade] = gradeGroup.get(grade, 0) + 1 #创建饼形图 #第一个参数为扇形的面积 #labels参数为扇形的说明文字 #autopct参数为扇形占比的显示格式 plt.pie([gradeGroup.get(label, 0) for label in labels], labels=labels, autopct='%1.1f%%') plt.title('Grades Of Male Students') plt.show()
visual_unique_countries.append('Others') visual_confirmed_cases.append(others) # Visualize the 10 countries plt.figure(figsize=(32, 18)) plt.barh(visual_unique_countries, visual_confirmed_cases) plt.title('Number of Covid-19 Confirmed Cases in Countries/Regions',size=20) plt.show() # Create a pie chart to see the total confirmed cases in 10 different countries c = random.choices(list(mcolors.CSS4_COLORS.values()),k = len()unique_countries) plt.figure(figsize=(20,20)) plt.title('Covid-19 Confirmed Cases per Country') plt.pie(visual_confirmed_cases,colors=c) plt.legend(visual_unique_countries,loc='best') plt.show() # Create a pie chart to see the total confirmed cases in 10 different countries outside china c = random.choices(len(mcolors.CSS4_COLORS.values()), k = len(unique_countries)) plt.figure(figsize=(20,20)) plt.title('Covid-19 Confirmed Cases in Countries Outside of Mainlend China') plt.pie(visual_confirmed_cases[1:], colors=c) plt.legend(visual_unique_countries[1:],loc = 'best') plt.show() # Building the SVM model
import matplotlib.pylot as plt labels = 'Python', 'C++', 'Ruby', 'Java', 'PHP', 'Perl' sizes = [33, 52, 12, 17, 62, 48] separated = (.1, .3, 0, 0, .6, 0) plt.pie(sizes, labels=labels, autopct='%1.1f%%', explode=separated) plt.axis('equal') plt.show()
negative = percentage(negative, noOfSearchTerms) neutral = percentage(neutral, noOfSearchTerms) positive = format(positive, '.2f') negative = format(negative, '.2f') neutral = format(neutral, '.2f') print("How are poeple reacting on " + searchTerm + " by analyzing " + str(noOfSearchTerms) + "Tweets.") if (polarity == 0.00): print("Neutral") elif (polarity < 0.00): print("Negative") elif (polarity > 0.00): print("Positive") labels = [ 'Positive [' + str(positive) + '%]', 'Neutral [' + str(neutral) + '%]', 'Negative [' + str(negative) + '%]' ] sizes = [positive, neutral, negative] colors = ['yellowgreen', 'gold', 'red'] patches, texts = plt.pie(sizes, colors=colors, startangle=90) plt.legend(patches, labels, loc="best") plt.title('How people are reacting on ' + searchTerm + ' by analyzing ' + str(noOfSearchTerms) + ' Tweets.') plt.axis('equal') plt.tight.layout() plt.show()
import covid import matplotlib.pylot as plt cov=covid.Covid() name = input("ENTER the country name") print(name) virusdata=covid.get_status_by_country active=virusdata['active'] recover=virusdata['recovered'] deaths=virusdata['deaths'] plt.pie([active,recover,deaths]).labels plt.title(name) plt.legend() plt.show
import matplotlib.pylot as plt inport pandas as pd raw_data={'name': ['Nick','Cedric','Jules', 'Donald'], 'jan_ir': [124, 112, 110, 180], 'feb_ir': [122, 132, 144, 98], 'march_ir': [65, 88, 12, 32]} df = pd.DataFrame(raw_data, columns=['name','jan_ir', 'feb_ir', 'march_ir']) df['total_ir'] = df['jan_ir'] + df['feb_ir'] + df['march_ir'] color = [(1, .4, .4), (1, .6, 1), (.5, .3, 1), (.3, 1, .5)] plt.pie(df['total_ir'], labels=df['names'], colors=color, autopct='%1.1f%%') plt.show() print(df)
percent_popular = len(np_ratings[popular_apps]) / len(np_ratings) * 100 print("percent_popular") unpopular_apps = np_ratings < 4 print("percent_unpopular", len(np_ratings[unpopular_apps])) percent_unpopular = 100 - (np_ratings[unpopular_apps]) / len(np_ratings) * 100 print("percent_unpopular") somewhat_popular = 100 - (percent_popular + percent_unpopular) print("somewhat_popular") # do a visualization with out new data labels = "Sucks", "Meh", "Love it!" sizes = [unpopular_apps, somewhat_popular, popular_apps] colors = ['yellowgreen', 'lightgreen', 'lightskyblue'] explode = (0.1, 0.1, 0.15) plt.pie(sizes, explode=explode, colors=color, autopct='%1.1%', shadow=True, startangle=140) plt.axis('equal') plt.legend(labels, loc=1) plt.title("Do we love our apps?") plt.xlabel("User Ratings - App Installs (10,000+ apps)") plt.show() # print ('processed', line_count, 'lines of data') print(categories) print('first row of data', installs [0]) print('last row of data', installs [-1])