def plot_mcf(self, haloprop, **kwargs):
     color = iter(cm.Set1(np.linspace(0, 1, 9)))
     for cat in self.__catlist:
         mcf = cat.calculate_mcf(haloprop, **kwargs)
         binmids = cat.binmids_last
         lowererr = cat.mcf_lowererr
         uppererr = cat.mcf_uppererr
         c = next(color)
         plt.semilogx(binmids, mcf, c=c, linewidth=3.0)
         plt.fill_between(binmids, lowererr, uppererr, color=c, alpha=0.05)
     plt.xlabel(r'r')
     plt.ylabel(r'$\mathcal{M}$')
コード例 #2
0
def plot_bar_FeOx():
    # FeOx
    df = pd.read_csv(
        '../results/dynamic_results/FeOx_vintage_results_0226.csv',
        index_col=[0, 1])
    market_name = [
        'Household & Furniture', 'Automotive', 'Medical', 'Other Industries',
        'Packaging', 'Electronics', 'Construction & Building'
    ]
    amount = [
        df.loc[mat, 'Manufacturing Release']['2010.0'] +
        df.loc[mat, 'In Use']['2010.0'] + df.loc[mat, 'End of Life']['2010.0']
        for mat in market_name
    ]

    width = 0.15
    last_num = 0
    color = iter(cm.Set1(np.linspace(0, 1, 7)))
    for name, num in zip(market_name, amount):
        c = next(color)
        if name == 'Construction & Building':
            plt.bar(0.1,
                    num,
                    width,
                    bottom=last_num,
                    color=c,
                    label=name,
                    yerr=1000,
                    error_kw=dict(ecolor='rosybrown',
                                  lw=2,
                                  capsize=5,
                                  capthick=2))
        else:
            plt.bar(0.1, num, width, bottom=last_num, color=c, label=name)

        last_num += num

    plt.bar(0.7,
            13860,
            width,
            color='salmon',
            label='Static Results (aggregated, all uses)')
    plt.legend(loc='upper left')
    plt.xlim(0, 1)
    plt.xticks((0.18, 0.78), ('Dynamic Model', 'Static Model'))
    plt.tick_params(labelsize=14)
    plt.show()
コード例 #3
0
def plot_bar_TiO2():
    # TiO2
    market_name = [
        'Household & Furniture', 'Automotive', 'Medical', 'Other Industries',
        'Packaging', 'Electronics', 'Construction & Building'
    ]
    amount = [
        1468.35487751, 540.792628124, 1122.57862278, 833.309532892,
        1137.82004151, 863.93634447, 3705.56984166
    ]

    width = 0.15
    last_num = 0
    color = iter(cm.Set1(np.linspace(0, 1, 7)))
    for name, num in zip(market_name, amount):
        c = next(color)
        if name == 'Construction & Building':
            plt.bar(0.1,
                    num,
                    width,
                    bottom=last_num,
                    color=c,
                    label=name,
                    yerr=3000,
                    error_kw=dict(ecolor='rosybrown',
                                  lw=2,
                                  capsize=5,
                                  capthick=2))
        else:
            plt.bar(0.1, num, width, bottom=last_num, color=c, label=name)

        last_num += num

    plt.bar(0.7,
            39600,
            width,
            color='salmon',
            label='Static Results (aggregated, all uses)')
    plt.legend(loc='upper left')
    plt.xlim(0, 1)
    plt.xticks((0.18, 0.78), ('Dynamic Model', 'Static Model'))
    plt.tick_params(labelsize=14)
    plt.show()
コード例 #4
0
 def plot_market_vintage(self,args='Total Release'):
     '''
     Function to plot out the vintage results by markets
     This verion is going to plot out graph depending on the input arguments
     
     Total Release (defult): will plot out the total release (end of life + in use) for each market
     End of Life: will plot out the end of life release for each market
     '''
     color=iter(cm.Set1(np.linspace(0,1,7)))
     if args == 'Total Release':
         fig,ax = plt.subplots(1)
         for each_mak, each_val in self.market_vintage_results.iteritems():
             c=next(color)
             this_tot_release = each_val['Manufacturing Release']+each_val['In Use']+ each_val['End of Life']
             ax.plot(self.years, this_tot_release,label = each_mak, linewidth = 2.5,c=c)
         
         #order legend
         handles, labels = ax.get_legend_handles_labels()
         handles = [handles[6],handles[0],handles[2],handles[3],handles[4],handles[5],handles[1]]
         labels = [labels[6], labels[0], labels[2],labels[3],labels[4],labels[5],labels[1]]
         ax.legend(handles,labels,loc='upper left')
         plt.xlabel('Year', fontsize=20, fontweight='bold')
         plt.ylabel('Total Releases in Tons', fontsize=20, fontweight='bold')
         plt.tick_params(labelsize=14)
         plt.show()
         
     elif args =='End of Life':
         plt.figure()
         for each_mak, each_val in self.market_vintage_results.iteritems():
             plt.plot(self.years, each_val['End of Life'],label = each_mak)
         plt.legend(loc ='upper left')
         plt.xlabel('Year', fontsize=20, fontweight='bold')
         plt.ylabel('End of Life Releases in Tonnes', fontsize=20, fontweight='bold')
         plt.show()
     elif args =='In Use':
         plt.figure()
         for each_mak, each_val in self.market_vintage_results.iteritems():
             plt.plot(self.years, each_val['In Use'],label = each_mak)
         plt.legend(loc ='upper left')
         plt.xlabel('Year', fontsize=20, fontweight='bold')
         plt.ylabel('In Use Releases in Tonnes', fontsize=20, fontweight='bold')
         plt.show()
コード例 #5
0
ファイル: errors.py プロジェクト: Pawci0/iad
def plotChart(data, out):
    colors = iter(cm.Set1(np.linspace(0, 1, len(data))))
    # colors=iter(cm.Dark2(np.linspace(0,1,len(data))))
    fig = plt.figure(figsize=(20, 10))
    ax = fig.add_subplot(111)
    ax.xaxis.set_major_formatter(ticker.FuncFormatter(myticks))
    plt.grid()
    plt.yscale("log")
    plt.xlabel("Ilość iteracji", fontsize="xx-large")
    plt.ylabel("Błąd śreniokwadratowy", fontsize="xx-large")
    for n_of_neurons, lists in data.items():
        c = next(colors)
        ax.plot(lists[0], lists[1], color=c,
                label="Ilość neuronow {0}-błąd dla danych treningowych"
                .format(n_of_neurons))
        ax.plot(lists[0], lists[2], color=c, linestyle=":",
                label="Ilość neuronow {0}-błąd dla danych testowych"
                .format(n_of_neurons))
    legend = plt.legend(loc='upper center',
                        ncol=3, fancybox=True, shadow=True)
    legend.get_frame()
    plt.title(out)
    plt.savefig(out + ".png")
コード例 #6
0
ファイル: cluster.py プロジェクト: xuehangsong/wrr_km
    for ix in range(nx):
        temp_y = abs(datetime.datetime.strptime(x[ix], time_format) -
                     origin).total_seconds()
        y.append(temp_y)
    y = np.asarray(y)


multi_dir = "/media/sf_e/john/optim_5/single_h5/"
results_dir = "/media/sf_e/john/optim_5/"
img_dir = "/media/sf_e/john/optim_5/figures/"
material_file = "/media/sf_e/john/optim_5/300A_material.h5"
river_stage = "/media/sf_e/john/optim_5/DatumH_River_filtered_6h_321.txt"
sampling_file = "/media/sf_e/john/optim_5/Sample_Data_2015_U.csv"
wells_dir = "/media/sf_e/john/wells/"

colors = cm.Set1(np.linspace(0, 1, 9))[np.array([6, 2, 1, 3, 4, 0, 7, 8, 5])]
#colors = np.array(["brown", "green", "blue", "purple", "orange", "red"])

# cluster information from Chris
well = [
    "399-1-10A", "399-1-21A", "399-2-1", "399-2-2", "399-2-23", "399-2-3",
    "399-2-32", "399-2-33", "399-2-5", "399-2-7", "399-3-19", "399-3-9",
    "399-4-9"
]
well_name = [
    "1-10A", "1-21A", "2-01", "2-02", "2-23", "2-03", "2-32", "2-33", "2-05",
    "2-07", "3-19", "3-09", "4-09"
]
well_cluster = [1, 3, 4, 4, 2, 4, 2, 2, 2, 2, 3, 4, 1]
well_coord = np.array([[594346.57, 116733.99], [594160.78, 116183.88],
                       [594467.25, 116121.22], [594385.8, 116282.6],
コード例 #7
0
plt.savefig(pltfolder + 'occupation_systems.eps', format='eps', dpi=1000)
plt.clf()
print('.', end='', flush=True)

### occupation number in levels against level index

occavg = np.loadtxt(pltfolder + 'occ_fluctuation_N' + str(sysVar.N) + '.txt',
                    usecols=(1, ))
plt.xlim(-0.1, sysVar.m - 0.9)
for l in range(0, sysVar.m):
    plt.errorbar(l,
                 occavg[int(7 + 3 * l)] / sysVar.N,
                 xerr=None,
                 yerr=occavg[int(8 + 3 * l)] / sysVar.N,
                 marker='o',
                 color=cm.Set1(0))
plt.ylabel(r'Relative level occupation')
plt.xlabel(r'Level index')
plt.tight_layout(padding)
plt.savefig(pltfolder + 'occupation_distribution.eps', format='eps', dpi=1000)
plt.clf()

plt.xlim(
    np.min(np.arange(sysVar.m)[sysVar.mask]) - 0.1,
    np.max(np.arange(sysVar.m)[sysVar.mask]) + 0.1)
for l in np.arange(sysVar.m)[sysVar.mask]:
    plt.errorbar(l,
                 occavg[int(7 + 3 * l)] / sysVar.N,
                 xerr=None,
                 yerr=occavg[int(8 + 3 * l)] / sysVar.N,
                 marker='o',
コード例 #8
0
def plotData(sysVar):
    print("Plotting datapoints to pdf", end='')

    avgstyle = 'dashed'
    avgsize = 0.6
    expectstyle = 'solid'
    expectsize = 1

    loavgpercent = sysVar.plotLoAvgPerc  #percentage of time evolution to start averaging
    loavgind = int(loavgpercent * sysVar.dataPoints
                   )  #index to start at when calculating average and stddev
    loavgtime = np.round(
        loavgpercent * (sysVar.deltaT * sysVar.steps * sysVar.plotTimeScale),
        2)

    if sysVar.boolPlotAverages:
        print(' with averaging from Jt=%.2f' % loavgtime, end='')
    fwidth = sysVar.plotSavgolFrame
    ford = sysVar.plotSavgolOrder
    params = {
        'legend.fontsize': sysVar.plotLegendSize,
        'font.size': sysVar.plotFontSize,
        'mathtext.default':
        'rm'  # see http://matplotlib.org/users/customizing.html
    }
    plt.rcParams['agg.path.chunksize'] = 0
    plt.rcParams.update(params)
    plt.rc('text', usetex=True)
    plt.rc('font', **{'family': 'sans-serif', 'sans-serif': ['Arial']})
    pp = PdfPages('./plots/plots.pdf')

    occfile = './data/occupation.txt'
    occ_array = np.loadtxt(occfile)
    #multiply step array with time scale
    step_array = occ_array[:, 0] * sysVar.plotTimeScale

    normfile = './data/norm.txt'
    norm_array = np.loadtxt(normfile)
    #want deviation from 1
    norm_array[:, 1] = 1 - norm_array[:, 1]

    entfile = './data/entropy.txt'
    ent_array = np.loadtxt(entfile)

    if sysVar.boolPlotEngy:
        engies = np.loadtxt('./data/hamiltonian_eigvals.txt')

    if sysVar.boolPlotDecomp:
        stfacts = np.loadtxt('./data/state.txt')

    if sysVar.boolTotalEnt:
        totentfile = './data/total_entropy.txt'
        totent_array = np.loadtxt(totentfile)

    if sysVar.boolTotalEnergy:
        energyfile = './data/energy.txt'
        en_array = np.loadtxt(energyfile)
        en0 = en_array[0, 1]
        en_array[:, 1] -= en0
        #en_micind = find_nearest(engies[:,1], en0)
        #print(' - |(E0 - Emicro)/E0|: %.0e - ' % (np.abs((en0 - engies[en_micind,1])/en0)), end='' )

    if sysVar.boolPlotDiagExp:
        microexpfile = './data/diagexpect.txt'
        microexp = np.loadtxt(microexpfile)

    if sysVar.boolPlotOffDiag:
        offdiagfile = './data/offdiagonal.txt'
        offdiag = np.loadtxt(offdiagfile)

    if sysVar.boolPlotOffDiagDens:
        offdiagdensfile = './data/offdiagonaldens.txt'
        offdiagdens = np.loadtxt(offdiagdensfile)

    if sysVar.boolPlotGreen:
        greenfile = './data/green.txt'
        greendat = np.loadtxt(greenfile)

    def complete_system_enttropy():
        return 0

    #### Complete system Entropy
    if (sysVar.boolTotalEnt):
        plt.plot(totent_array[:, 0] * sysVar.plotTimeScale,
                 totent_array[:, 1] * 1e13,
                 linewidth=0.6,
                 color='r')

        plt.grid()
        plt.xlabel(r'$J\,t$')
        plt.ylabel(r'Total system entropy $/ 10^{-13}$')
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
        print('.', end='', flush=True)

    def subsystem_entropy():
        return 0

    ### Subsystem Entropy
    plt.plot(step_array, ent_array[:, 1], linewidth=0.8, color='r')
    plt.grid()
    if sysVar.boolPlotAverages:
        tavg = savgol_filter(ent_array[:, 1], fwidth, ford)
        plt.plot(step_array,
                 tavg,
                 linewidth=avgsize,
                 linestyle=avgstyle,
                 color='black')
    plt.xlabel(r'$J\,t$')
    plt.ylabel('Subsystem entropy')
    plt.tight_layout()
    pp.savefig()
    plt.clf()
    print('.', end='', flush=True)
    '''
    ###FFT
    print('')
    fourier = np.fft.rfft(ent_array[loavgind:,1])
    print(fourier[0].real)
    freq = np.fft.rfftfreq(np.shape(ent_array[loavgind:,1])[-1], d=step_array[1])
    plt.plot(freq[1:],np.abs(fourier[1:]))
    print('')
    plt.ylabel(r'$A_{\omega}$')
    plt.xlabel(r'$\omega$')
    plt.grid()
    plt.tight_layout()
    ###
    pp.savefig()
    plt.clf()
    print('.',end='',flush=True)
    '''

    def single_level_occ():
        return 0

    ### Single-level occupation numbers
    for i in range(0, sysVar.m):
        plt.plot(step_array,
                 occ_array[:, i + 1],
                 label=r'$n_' + str(i) + '$',
                 linewidth=0.5)
        if sysVar.boolPlotAverages:
            tavg = savgol_filter(occ_array[:, i + 1], fwidth, ford)
            plt.plot(step_array,
                     tavg,
                     linewidth=avgsize,
                     linestyle=avgstyle,
                     color='black')
        if sysVar.boolPlotDiagExp:
            plt.axhline(y=microexp[i, 1],
                        color='purple',
                        linewidth=expectsize,
                        linestyle=expectstyle)

    plt.ylabel(r'Occupation number')
    plt.xlabel(r'$J\,t$')
    plt.legend(loc='upper right')
    plt.grid()
    plt.tight_layout()
    ###
    pp.savefig()
    plt.clf()
    print('.', end='', flush=True)
    '''
    ###FFT
    print('')
    for i in range(0,sysVar.m):
        plt.xlim(xmax=30)
        #GK = -i(2n-1)
        fourier = (rfft(occ_array[loavgind:,i+1],norm='ortho'))*2 -1
        print(fourier[0].real)
        freq = rfftfreq(np.shape(occ_array[loavgind:,i+1])[-1], d=step_array[1])
        plt.plot(freq,fourier.real,linewidth = 0.05)
        plt.plot(freq,fourier.imag,linewidth = 0.05)
        plt.ylabel(r'$G^K_{\omega}$')
        plt.xlabel(r'$\omega$')
        plt.grid()
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
    print('.',end='',flush=True)
    '''

    def bath_occ():
        return 0

    ### Traced out (bath) occupation numbers
    for i in sysVar.kRed:
        plt.plot(step_array,
                 occ_array[:, i + 1],
                 label=r'$n_' + str(i) + '$',
                 linewidth=0.6)
        if sysVar.boolPlotDiagExp:
            plt.axhline(y=microexp[i, 1],
                        color='purple',
                        linewidth=expectsize,
                        linestyle=expectstyle)
        if sysVar.boolPlotAverages:
            tavg = savgol_filter(occ_array[:, i + 1], fwidth, ford)
            plt.plot(step_array,
                     tavg,
                     linewidth=avgsize,
                     linestyle=avgstyle,
                     color='black')

    plt.ylabel(r'Occupation number')
    plt.xlabel(r'$J\,t$')
    plt.legend(loc='lower right')
    plt.grid()
    plt.tight_layout()
    ###
    pp.savefig()
    plt.clf()
    print('.', end='', flush=True)

    def system_occ():
        return 0

    ### Leftover (system) occupation numbers
    for i in np.arange(sysVar.m)[sysVar.mask]:
        plt.plot(step_array,
                 occ_array[:, i + 1],
                 label=r'$n_' + str(i) + '$',
                 linewidth=0.6)
        if sysVar.boolPlotDiagExp:
            plt.axhline(y=microexp[i, 1],
                        color='purple',
                        linewidth=expectsize,
                        linestyle=expectstyle)
        if sysVar.boolPlotAverages:
            tavg = savgol_filter(occ_array[:, i + 1], fwidth, ford)
            plt.plot(step_array,
                     tavg,
                     linewidth=avgsize,
                     linestyle=avgstyle,
                     color='black')

    plt.ylabel(r'Occupation number')
    plt.xlabel(r'$J\,t$')
    plt.legend(loc='lower right')
    plt.grid()
    plt.tight_layout()
    ###
    pp.savefig()
    plt.clf()
    print('.', end='', flush=True)

    def subsystem_occupation():
        return 0

    ### Subsystems occupation numbers
    #store fluctuations in a data
    fldat = open('./data/fluctuation.txt', 'w')
    fldat.write('N_tot: %i\n' % (sysVar.N))
    tmp = np.zeros(len(step_array))
    for i in sysVar.kRed:
        tmp += occ_array[:, i + 1]
    plt.plot(step_array, tmp, label="bath", linewidth=0.8, color='magenta')

    if sysVar.boolPlotAverages:
        tavg = savgol_filter(tmp, fwidth, ford)
        plt.plot(step_array,
                 tavg,
                 linewidth=avgsize,
                 linestyle=avgstyle,
                 color='black')

    if sysVar.boolPlotDiagExp:
        mictmp = 0
        for i in sysVar.kRed:
            mictmp += microexp[i, 1]
        plt.axhline(y=mictmp,
                    color='purple',
                    linewidth=expectsize,
                    linestyle=expectstyle)

    avg = np.mean(tmp[loavgind:], dtype=np.float64)
    stddev = np.std(tmp[loavgind:], dtype=np.float64)
    fldat.write('bath_average: %.16e\n' % avg)
    fldat.write('bath_stddev: %.16e\n' % stddev)
    fldat.write('bath_rel._fluctuation: %.16e\n' % (stddev / avg))

    tmp.fill(0)
    for i in np.arange(sysVar.m)[sysVar.mask]:
        tmp += occ_array[:, i + 1]
    plt.plot(step_array, tmp, label="system", linewidth=0.8, color='darkgreen')

    if sysVar.boolPlotAverages:
        tavg = savgol_filter(tmp, fwidth, ford)
        plt.plot(step_array,
                 tavg,
                 linewidth=avgsize,
                 linestyle=avgstyle,
                 color='black')

    if sysVar.boolPlotDiagExp:
        mictmp = 0
        for i in np.arange(sysVar.m)[sysVar.mask]:
            mictmp += microexp[i, 1]
        plt.axhline(y=mictmp,
                    color='purple',
                    linewidth=expectsize,
                    linestyle=expectstyle)

    avg = np.mean(tmp[loavgind:], dtype=np.float64)
    stddev = np.std(tmp[loavgind:], dtype=np.float64)
    fldat.write('system_average: %.16e\n' % avg)
    fldat.write('system_stddev: %.16e\n' % stddev)
    fldat.write('system_rel._fluctuation: %.16e\n' % (stddev / avg))

    for i in range(sysVar.m):
        avg = np.mean(occ_array[loavgind:, i + 1], dtype=np.float64)
        stddev = np.std(occ_array[loavgind:, i + 1], dtype=np.float64)
        fldat.write('n%i_average: %.16e\n' % (i, avg))
        fldat.write('n%i_stddev: %.16e\n' % (i, stddev))
        fldat.write('n%i_rel._fluctuation: %.16e\n' % (i, (stddev / avg)))

    avg = np.mean(ent_array[loavgind:, 1], dtype=np.float64)
    stddev = np.std(ent_array[loavgind:, 1], dtype=np.float64)
    fldat.write('ssentropy_average: %.16e\n' % avg)
    fldat.write('ssentropy_stddev: %.16e\n' % stddev)
    fldat.write('ssentropy_rel._fluctuation: %.16e\n' % (stddev / avg))

    fldat.close()

    plt.ylabel(r'Occupation number')
    plt.xlabel(r'$J\,t$')
    plt.legend(loc='center right')
    plt.grid()
    plt.tight_layout()
    ###
    pp.savefig()
    plt.clf()
    print('.', end='', flush=True)

    def occ_distribution():
        return 0

    #occupation number in levels against level index
    occavg = np.loadtxt('./data/fluctuation.txt', usecols=(1, ))
    plt.xlim(-0.1, sysVar.m - 0.9)
    for l in range(0, sysVar.m):
        plt.errorbar(l,
                     occavg[int(7 + 3 * l)] / sysVar.N,
                     xerr=None,
                     yerr=occavg[int(8 + 3 * l)] / sysVar.N,
                     marker='o',
                     color=cm.Set1(0))
    plt.ylabel(r'Relative level occupation')
    plt.xlabel(r'Level index')
    plt.grid()
    plt.tight_layout()
    ###
    pp.savefig()
    plt.clf()
    print('.', end='', flush=True)

    def sum_offdiagonals():
        return 0

    #sum of off diagonal elements in energy eigenbasis
    if sysVar.boolPlotOffDiag:
        for i in range(0, sysVar.m):
            plt.plot(step_array,
                     offdiag[:, i + 1],
                     label=r'$n_' + str(i) + '$',
                     linewidth=0.5)
        plt.ylabel(r'Sum of off diagonals')
        plt.xlabel(r'$J\,t$')
        plt.legend(loc='upper right')
        plt.grid()
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()

        dt = offdiag[1, 0] - offdiag[0, 0]
        nrm = offdiag[:, 0] / dt
        nrm[1:] = 1 / nrm[1:]
        for i in range(0, sysVar.m):
            ###### only sum (subsystem-thermalization)
            plt.ylabel('Sum of off diagonals in $n^{%i}$' % (i))
            # start at 10% of the whole x-axis
            lox = (offdiag[-1, 0] - offdiag[0, 0]) / 10 + offdiag[0, 0]
            hiy = offdiag[int(len(offdiag[:, 0]) / 10), 0] * 1.1
            plt.plot(offdiag[:, 0], offdiag[:, i + 1], linewidth=0.5)
            plt.xlim(xmin=lox)
            plt.ylim(ymax=hiy)
            plt.grid()
            plt.tight_layout()
            ###inlay with the whole deal
            a = plt.axes([0.62, 0.6, 0.28, 0.28])
            a.plot(offdiag[:, 0], offdiag[:, i + 1], linewidth=0.8)
            a.set_xticks([])
            a.set_yticks([])
            ###
            pp.savefig()
            plt.clf()

            plt.ylabel('Sum of off diagonals in $n^{%i}$' % (i))
            plt.semilogy(offdiag[:, 0],
                         np.abs(offdiag[:, i + 1]),
                         linewidth=0.5)
            plt.xlim(xmin=lox)
            plt.ylim(ymin=1e-2)
            plt.grid()
            plt.tight_layout()
            ###inlay with the whole deal
            a = plt.axes([0.62, 0.6, 0.28, 0.28])
            a.semilogy(offdiag[:, 0], offdiag[:, i + 1], linewidth=0.8)
            a.set_ylim(ymin=1e-2)
            a.set_xticks([])
            a.set_yticks([])
            ###
            pp.savefig()
            plt.clf()

            ###### average (eigenstate-thermalization)
            f, (ax1, ax2) = plt.subplots(2, sharex=False, sharey=False)
            tmp = cumtrapz(offdiag[:, i + 1],
                           offdiag[:, 0],
                           initial=offdiag[0, i + 1])
            tmp = np.multiply(tmp, nrm)
            f.text(0.03,
                   0.5,
                   'Average of summed off diagonals in $n^{%i}$' % (i),
                   ha='center',
                   va='center',
                   rotation='vertical')
            ax1.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
            ax1.plot(offdiag[:, 0], tmp, linewidth=0.5)
            ax1.grid()

            ax2.loglog(offdiag[:, 0], np.abs(tmp), linewidth=0.5)
            ax2.set_ylim(bottom=1e-4)
            ax2.grid()

            plt.tight_layout()
            plt.subplots_adjust(left=0.12)
            ###
            pp.savefig()
            plt.clf()

        print('.', end='', flush=True)

    def sum_offdiagonalsdens():
        return 0

    if sysVar.boolPlotOffDiagDens:
        plt.plot(step_array, offdiagdens[:, 1], linewidth=0.5)
        plt.ylabel(r'Sum of off diagonals (red. dens. mat.)')
        plt.xlabel(r'$J\,t$')
        plt.grid()
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()

    def total_energy():
        return 0

    ### Total system energy
    if sysVar.boolTotalEnergy:
        plt.title('$E_{tot}, \; E_0$ = %.2e' % en0)
        plt.plot(en_array[:, 0] * sysVar.plotTimeScale,
                 en_array[:, 1] * 1e10,
                 linewidth=0.6)
        plt.ylabel(r'$E_{tot} - E_0 / 10^{-10}$')
        plt.xlabel(r'$J\,t$')
        plt.grid()
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
        print('.', end='', flush=True)

    def norm_deviation():
        return 0

    ### Norm deviation
    plt.plot(step_array, norm_array[:, 1], "ro", ms=0.5)
    plt.ylabel('norm deviation from 1')
    plt.xlabel(r'$J\,t$')
    plt.grid(False)
    plt.tight_layout()
    ###
    pp.savefig()
    plt.clf()
    print('.', end='', flush=True)
    ###
    plt.title('State Norm multiplied (deviation from 1)')
    plt.plot(step_array, norm_array[:, 2] - 1, linewidth=0.6, color='r')

    plt.ylabel('correction factor - 1')
    plt.xlabel(r'$J\,t$')
    plt.grid()
    plt.tight_layout()
    ###
    pp.savefig()
    plt.clf()
    print('.', end='', flush=True)

    def eigenvalues():
        return 0

    ### Hamiltonian eigenvalues (Eigenenergies)
    if sysVar.boolPlotEngy:
        linearize = False
        if linearize:
            tap = []
            lal = -1
            for e in engies[:, 1]:
                if lal == -1:
                    tap.append(e)
                    lal += 1
                elif np.abs(e - tap[lal]) > 1:
                    lal += 1
                    tap.append(e)
            plt.plot(tap, linestyle='none', marker='o', ms=0.5, color='blue')
        else:
            plt.plot(engies[:, 0],
                     engies[:, 1],
                     linestyle='none',
                     marker='o',
                     ms=0.5,
                     color='blue')

        plt.ylabel(r'E/J')
        plt.xlabel(r'\#')
        plt.grid(False)
        plt.xlim(xmin=-(len(engies[:, 0]) * (2.0 / 100)))
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
        print('.', end='', flush=True)

    def density_of_states():
        return 0

    ### DOS
    if sysVar.boolPlotDOS:
        dos = np.zeros(sysVar.dim)
        window = 50
        iw = window
        for i in range(iw, sysVar.dim - iw):
            dos[i] = (window) * 2 / (engies[i + iw, 1] - engies[i - iw, 1])
        dos /= (sysVar.dim - iw)
        print(scint.simps(dos[iw:], engies[iw:, 1]))
        plt.plot(engies[:, 1], dos, lw=0.005)
        plt.ylabel(r'DOS')
        plt.xlabel(r'E')
        plt.grid(False)
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
        print('.', end='', flush=True)

    def greensfunction():
        return 0

    ### Greensfunction
    if sysVar.boolPlotGreen:
        gd = greendat
        '''
        gd = np.zeros((np.shape(greendat)[0]*2,np.shape(greendat)[1]))
        gd[int(np.shape(greendat)[0]/2):-int(np.shape(greendat)[0]/2 + np.shape(greendat)[0]%2)] = greendat[:,:].copy()
        '''
        spec = []
        discpoints = len(gd[:, 0])
        print('')
        for i in range(0, sysVar.m):
            plt.title(r'two time Green function of level $%i$' % (i))
            ind = 2 * i + 1
            plt.plot(greendat[:, 0] * sysVar.plotTimeScale,
                     greendat[:, ind],
                     lw=0.1,
                     color='red',
                     label='real')
            plt.plot(greendat[:, 0] * sysVar.plotTimeScale,
                     greendat[:, ind + 1],
                     lw=0.1,
                     color='blue',
                     label='imaginary')
            #plt.xlim(xmax=10)
            plt.ylabel(r'$G^R(\tau)$')
            plt.xlabel(r'$J\,\tau$')
            plt.legend(loc='lower right')
            plt.grid()
            plt.tight_layout()
            ###
            pp.savefig()
            plt.clf()
            ###
            plt.title(r'Spectral function of level $%i$' % (i))
            green_ret = gd[:, ind] + 1j * gd[:, ind + 1]
            green_ret_freq = fft(np.hanning(len(green_ret)) * green_ret,
                                 norm='ortho')
            spec_tmp = np.abs(-2 * fftshift(green_ret_freq.imag))[::-1]
            if i == 0:
                samp_spacing = sysVar.deltaT * (
                    sysVar.steps / sysVar.dataPoints) * sysVar.plotTimeScale
                hlpfrq = fftshift(fftfreq(
                    len(spec_tmp))) * (2 * np.pi) / samp_spacing
            ### !!! normalize by hand! this might be strange but is necessary here
            spec_tmp /= (np.trapz(spec_tmp, x=hlpfrq) / (2 * np.pi))
            if i == 0:
                spec_total = spec_tmp[:]
                # scale on x-axis is frequency
            else:
                spec_total += spec_tmp
            spec.append(spec_tmp)
            print(i, np.trapz(spec_tmp, x=hlpfrq) / (2 * np.pi))
            #exit()
            plt.plot(hlpfrq, spec_tmp, color='red', lw=0.1)
            plt.minorticks_on()
            plt.ylabel(r'$A$')
            plt.xlabel(r'$\omega / J$')

            plt.grid()
            plt.grid(which='minor', color='blue', linestyle='dotted', lw=0.2)
            plt.tight_layout()
            ###
            pp.savefig()
            plt.clf()
        plt.title(r'Spectral function')
        plt.plot(hlpfrq, spec_total, color='red', lw=0.1)
        plt.ylabel(r'$A$')
        plt.xlabel(r'$\omega / J$')
        #plt.xlim([-100,100])
        plt.grid()
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
        plt.plot(hlpfrq, np.abs(spec_total), color='red', lw=0.1)
        plt.ylabel(r'$|A|$')
        plt.xlabel(r'$\omega / J$')
        #plt.xlim([-100,100])
        plt.grid()
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()

        print('.', end='', flush=True)

        print()
        weights = np.zeros(len(spec))
        for s in range(0, len(spec)):
            print(np.average(hlpfrq, weights=spec[s]),
                  np.average(hlpfrq, weights=np.abs(spec[s])))
            weights[s] = np.abs(np.average(hlpfrq, weights=np.abs(spec[s])))
        print('')
        '''
        # the integrated version
        def occno(spec,freq,temp,mu):
            rt = []
            for i in range(0,len(freq)):
                rt.append(spec[i]/(np.exp((freq[i]-mu)/temp)-1.0))
            return np.trapz(np.array(rt), x=freq)
        '''

        # the averaged version
        def occno(freq, temp, mu):
            return (1 / (np.exp((freq - mu) / temp) - 1.0))

        def bestatd(args):
            temp = args[0]
            mu = args[1]
            ret = []
            for i in range(0, sysVar.m):
                ret.append(
                    occno(weights[i], temp, mu) - occavg[int(7 + 3 * i)])
            return np.array(ret)

        def bestat(args):
            temp = args[0]
            mu = args[1]
            ret = []
            for i in range(0, sysVar.m):
                ret.append(occno(weights[i], temp, mu))
            return np.array(ret)

        strt = np.array([10, -0.1])
        bnds = np.array([[0.0001, -500], [1000, weights[0]]])
        rgs = least_squares(bestatd, x0=strt, bounds=bnds, loss='soft_l1')
        print(rgs)
        print(rgs.x)
        print(bestat(rgs.x))
        a = []
        for i in range(0, sysVar.m):
            a.append(occavg[int(7 + 3 * i)])
        print(a)

        #occupation number in levels against renormalized energy
        plt.title('Bose-Einstein distribution fit')
        ws = np.sort(weights)
        lo = ws[0] - ws[0] / 100
        hi = ws[-1] + ws[-1] / 100
        plt.xlim(lo, hi)
        xvals = np.linspace(lo, hi, 1e3)
        yvals = occno(xvals, rgs.x[0], rgs.x[1]) / sysVar.N
        for l in range(0, sysVar.m):
            plt.errorbar(weights[l],
                         occavg[int(7 + 3 * l)] / sysVar.N,
                         xerr=None,
                         yerr=occavg[int(8 + 3 * l)] / sysVar.N,
                         marker='o',
                         color=cm.Set1(0))
        plt.plot(xvals, yvals, color='blue', lw=0.4)
        plt.ylabel(r'Relative level occupation')
        plt.xlabel(r'energy')
        plt.grid()
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
        print('.', end='', flush=True)

    if sysVar.boolPlotDecomp:

        def eigendecomposition():
            return 0

        ### Hamiltonian eigenvalues (Eigenenergies) with decomposition
        fig, ax1 = plt.subplots()
        ax1.plot(engies[:, 0],
                 engies[:, 1],
                 linestyle='none',
                 marker='o',
                 ms=0.7,
                 color='blue')
        ax1.set_ylabel(r'Energy')
        ax1.set_xlabel(r'\#')
        ax2 = ax1.twinx()
        ax2.bar(engies[:, 0],
                engies[:, 2],
                alpha=0.8,
                color='red',
                width=0.03,
                align='center')
        ax2.set_ylabel(r'$|c_n|^2$')
        plt.grid(False)
        ax1.set_xlim(xmin=-(len(engies[:, 0]) * (5.0 / 100)))
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
        print('.', end='', flush=True)
        ### Eigenvalue decomposition with energy x-axis
        plt.bar(engies[:, 1],
                engies[:, 2],
                alpha=0.8,
                color='red',
                width=0.03,
                align='center')
        plt.xlabel(r'Energy')
        plt.ylabel(r'$|c_n|^2$')
        plt.grid(False)
        plt.xlim(xmin=-(np.abs(engies[0, 1] - engies[-1, 1]) * (5.0 / 100)))
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
        print('.', end='', flush=True)
        # omit this in general
        '''
        ### Eigenvalue decomposition en detail
        n_rows = 3 #abs**2, phase/2pi, energy on a range from 0 to 1 
        n_rows += 1 #spacer
        n_rows += sysVar.m #occupation numbers
        
        index = np.arange(sysVar.dim)
        bar_width = 1
        plt.xlim(0,sysVar.dim)
    
        # Initialize the vertical-offset for the stacked bar chart.
        y_offset = np.array([0.0] * sysVar.dim)
        spacing = np.array([1] * sysVar.dim)
        enInt = np.abs(engies[-1,1] - engies[0,1])
        cmapVar = plt.cm.OrRd
        cmapVar.set_under(color='black')    
        plt.ylim(0,n_rows)
        #energy
        plt.bar(index, spacing , bar_width, bottom=y_offset, color=cmapVar((engies[:,1]-engies[0,1])/enInt), linewidth=0.00, edgecolor='gray')
        y_offset = y_offset + spacing
        #abs squared
        plt.bar(index, spacing , bar_width, bottom=y_offset, color=cmapVar(engies[:,2]/np.amax(engies[:,2]) - 1e-16), linewidth=0.00, edgecolor='gray')
        y_offset = y_offset + spacing
        #phase / 2pi
        plt.bar(index, spacing , bar_width, bottom=y_offset, color=cmapVar(engies[:,3] - 1e-16), linewidth=0.00, edgecolor='gray')
        y_offset = y_offset + spacing
        
        plt.bar(index, spacing, bar_width, bottom=y_offset, color='white', linewidth=0)
        y_offset = y_offset + np.array([1] * sysVar.dim)
        
        #expectation values
        for row in range(4, n_rows):
            plt.bar(index, spacing , bar_width, bottom=y_offset, color=cmapVar(engies[:,row]/sysVar.N - 1e-16), linewidth=0.00, edgecolor='gray')
            y_offset = y_offset + spacing
        
        plt.ylabel("tba")
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
        print('.',end='',flush=True)
        ### Occupation number basis decomposition en detail
        n_rows = 2 #abs**2, phase/2pi
        n_rows += 1 #spacer
        n_rows += sysVar.m #occupation numbers
        
        index = np.arange(sysVar.dim)
        bar_width = 1
        plt.xlim(0,sysVar.dim)
    
        # Initialize the vertical-offset for the stacked bar chart.
        y_offset = np.array([0.0] * sysVar.dim)
        spacing = np.array([1] * sysVar.dim)
        cmapVar = plt.cm.OrRd
        cmapVar.set_under(color='black')    
        plt.ylim(0,n_rows)
        # abs squared
        plt.bar(index, spacing , bar_width, bottom=y_offset, color=cmapVar(stfacts[:,1]/np.amax(stfacts[:,1]) - 1e-16), linewidth=0.00, edgecolor='gray')
        y_offset = y_offset + spacing
        # phase / 2pi
        plt.bar(index, spacing , bar_width, bottom=y_offset, color=cmapVar(stfacts[:,2] - 1e-16), linewidth=0.00, edgecolor='gray')
        y_offset = y_offset + spacing
        
        plt.bar(index, spacing, bar_width, bottom=y_offset, color='white', linewidth=0)
        y_offset = y_offset + np.array([1] * sysVar.dim)
        
        for row in range(3, n_rows):
            plt.bar(index, spacing , bar_width, bottom=y_offset, color=cmapVar(stfacts[:,row]/sysVar.N - 1e-16), linewidth=0.00, edgecolor='gray')
            y_offset = y_offset + spacing
        
        plt.ylabel("tba")
        plt.tight_layout()
        ###
        pp.savefig()
        plt.clf()
        print('.',end='',flush=True)
        '''

    def densmat_spectral():
        return 0

    ####### Density matrix in spectral repesentation
    if sysVar.boolPlotSpectralDensity:
        ###
        plt.title('Density matrix spectral repres. abs')
        dabs = np.loadtxt('./data/spectral/dm.txt')
        cmapVar = plt.cm.Reds
        cmapVar.set_under(color='black')
        plt.imshow(dabs, cmap=cmapVar, interpolation='none', vmin=1e-16)
        plt.colorbar()
        ###
        pp.savefig()
        plt.clf()
        print('.', end='', flush=True)
    ###
    pp.close()
    print(" done!")