コード例 #1
0
 def make_scan_plots(self, grid=False, contour=True):
     plt.rcParams.update({'font.size': 20})
     fig = plt.figure(dpi=600)
     if grid:
         pts = np.array(list(self.logData.cartesians.keys()))
         plt.plot(pts[:, 0], pts[:, 1], 'ok', markersize=1.5)
         # plt.close()
     if contour:
         pts = self.logData.rawenergies
         pot = pts[:, 2]
         potwv = Constants.convert(pot, "wavenumbers", to_AU=False)
         potwv[potwv > 24000] = 24000
         plt.tricontourf(pts[:, 0],
                         pts[:, 1],
                         potwv,
                         cmap='viridis',
                         levels=8)
         cb = plt.colorbar()
         cb.set_label("Energy ($\mathrm{cm^{-1}}$)")
         plt.tricontour(pts[:, 0], pts[:, 1], potwv, colors='k', levels=8)
         plt.xlabel("$\mathrm{R_{OO}}$ ($\mathrm{\AA}$)")
         plt.ylabel("$\mathrm{r_{XH}}$ ($\mathrm{\AA}$)")
         # plt.axis("off")
         plt.savefig(
             f"{self.fig_dir}/{self.molecule.MoleculeName}_XH_OOpot.png",
             dpi=fig.dpi,
             bbox_inches="tight")
コード例 #2
0
def my_plot(u,v,t,daystr,levels):
    #boston light swim
    ax= [-71.10, -70.10, 41.70, 42.70] # region to plot
    vel_arrow = 0.2 # velocity arrow scale
    subsample = 8  # subsampling of velocity vectors

    # find velocity points in bounding box
    ind = np.argwhere((lonc >= ax[0]) & (lonc <= ax[1]) & (latc >= ax[2]) & (latc <= ax[3]))

    np.random.shuffle(ind)
    Nvec = int(len(ind) / subsample)
    idv = ind[:Nvec]
    # tricontourf plot of water depth with vectors on top
    plt.figure(figsize=(20,10))
    plt.subplot(111,aspect=(1.0/np.cos(lat[:].mean()*np.pi/180.0)))
    #tricontourf(tri, t,levels=levels,shading='faceted',cmap=plt.cm.gist_earth)
    plt.tricontourf(tri, t,levels=levels,shading='faceted')
    plt.axis(ax)
    plt.gca().patch.set_facecolor('0.5')
    cbar=plt.colorbar()
    cbar.set_label('Forecast Surface Temperature (C)', rotation=-90)
    plt.tricontour(tri, t,levels=[0])
    Q = plt.quiver(lonc[idv],latc[idv],u[idv],v[idv],scale=10)
    maxstr='%3.1f m/s' % vel_arrow
    qk = plt.quiverkey(Q,0.92,0.08,vel_arrow,maxstr,labelpos='W')
    plt.title('NECOFS Surface Velocity, Layer %d, %s UTC' % (ilayer, daystr))
    plt.plot(lon_track,lat_track,'m-o')
    plt.plot(lon_buoy,lat_buoy,'y-o')
コード例 #3
0
ファイル: plot.py プロジェクト: jlee4176901/curvature
def plot_surfaces(data, show_samples=False, path=""):
    alpha_x = data[:, 0]
    alpha_y = data[:, 1]
    losses = data[:, 2]
    accs = data[:, 3]

    fig, ax = plt.subplots(figsize=(12, 9))
    if show_samples:
        plt.plot(alpha_x, alpha_y, 'ko', color='black', ms=2)
    # plt.tricontourf(alpha_x, alpha_y, losses, cmap='viridis', levels=np.arange(0.1, 100, 0.5))
    CS = plt.tricontour(alpha_x, alpha_y, losses, cmap='viridis', levels=np.arange(0.1, 10, 0.5))
    plt.clabel(CS, inline=1, fontsize=8)
    plt.xlim(-1, 1)
    plt.ylim(-1, 1)
    plt.tick_params(labelsize=12)
    plt.tight_layout()
    plt.savefig(path + "_loss_landscape.pdf" if path else "loss_landscape.pdf", format='pdf', dpi=1200)

    fig, ax = plt.subplots(figsize=(12, 9))
    if show_samples:
        plt.plot(alpha_x, alpha_y, 'ko', color='black', ms=2)
    # plt.tricontourf(alpha_x, alpha_y, accs, cmap='plasma', levels=np.arange(0.01, 1, 0.05))
    CS = plt.tricontour(alpha_x, alpha_y, accs, cmap='plasma', levels=np.arange(1, 100, 5))
    plt.clabel(CS, inline=1, fontsize=8)
    plt.xlim(-1, 1)
    plt.ylim(-1, 1)
    plt.tick_params(labelsize=12)
    plt.tight_layout()
    plt.savefig(path + "_accuracy_landscape.pdf" if path else "accuracy_landscape.pdf", format='pdf', dpi=1200)
コード例 #4
0
def plot_frame(df, datforfig, frame):

    """Generates the figure"""
    
    xyzdat, fitraveled, diff = datforfig
    extx = (np.min(xyzdat[0]), np.max(xyzdat[0]), np.min(xyzdat[1]), np.max(xyzdat[1]))
    
    fig = plt.figure(figsize=(8,3))

    plt.subplot(1, 2, 1)

    contour_plot(df) 
    plt.tricontour(xyzdat[0], xyzdat[1], fitraveled, 5, extent=extx, linewidths=1, colors='k')
    plt.title('Fit')
    
    x1d, y1d, z2draw = df_separate(df)
    z2d = np.reshape(diff, (len(y1d), len(x1d)))
    diffdf = df_join(x1d, y1d, z2d.transpose())

    plt.subplot(1, 2, 2)
    contour_plot(diffdf)
    plt.title('Difference')
    
    plt.subplots_adjust(top=0.8, bottom=0.196, left=0.138, right=0.898, hspace=0.2, wspace=0.55)
    fig.patch.set_facecolor('w')
    plt.suptitle(str(frame), verticalalignment = 'top')
    plt.show()
    return fig
コード例 #5
0
def test_tri_smooth_gradient():
    # Image comparison based on example trigradient_demo.

    def dipole_potential(x, y):
        """ An electric dipole potential V """
        r_sq = x**2 + y**2
        theta = np.arctan2(y, x)
        z = np.cos(theta) / r_sq
        return (np.max(z) - z) / (np.max(z) - np.min(z))

    # Creating a Triangulation
    n_angles = 30
    n_radii = 10
    min_radius = 0.2
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi / n_angles
    x = (radii * np.cos(angles)).flatten()
    y = (radii * np.sin(angles)).flatten()
    V = dipole_potential(x, y)
    triang = mtri.Triangulation(x, y)
    xmid = x[triang.triangles].mean(axis=1)
    ymid = y[triang.triangles].mean(axis=1)
    mask = np.where(xmid * xmid + ymid * ymid < min_radius * min_radius, 1, 0)
    triang.set_mask(mask)

    # Refine data - interpolates the electrical potential V
    refiner = mtri.UniformTriRefiner(triang)
    tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3)

    # Computes the electrical field (Ex, Ey) as gradient of -V
    tci = mtri.CubicTriInterpolator(triang, -V)
    (Ex, Ey) = tci.gradient(triang.x, triang.y)
    E_norm = np.sqrt(Ex**2 + Ey**2)

    # Plot the triangulation, the potential iso-contours and the vector field
    plt.figure()
    plt.gca().set_aspect('equal')
    plt.triplot(triang, color='0.8')

    levels = np.arange(0., 1., 0.01)
    cmap = cm.get_cmap(name='hot', lut=None)
    plt.tricontour(tri_refi,
                   z_test_refi,
                   levels=levels,
                   cmap=cmap,
                   linewidths=[2.0, 1.0, 1.0, 1.0])
    # Plots direction of the electrical vector field
    plt.quiver(triang.x,
               triang.y,
               Ex / E_norm,
               Ey / E_norm,
               units='xy',
               scale=10.,
               zorder=3,
               color='blue',
               width=0.007,
               headwidth=3.,
               headlength=4.)
コード例 #6
0
ファイル: vis_mpl.py プロジェクト: mdecourse/calfem-python
def draw_nodal_values_contour(values,
                              coords,
                              edof,
                              levels=12,
                              title=None,
                              dofs_per_node=None,
                              el_type=None,
                              draw_elements=False):
    """Draws element nodal values as filled contours. Element topologies
    supported are triangles, 4-node quads and 8-node quads."""

    edof_tri = topo_to_tri(edof)

    ax = plt.gca()
    ax.set_aspect('equal')

    x, y = coords.T
    v = np.asarray(values)
    plt.tricontour(x, y, edof_tri - 1, v.ravel(), levels)

    if draw_elements:
        if dofs_per_node != None and el_type != None:
            draw_mesh(coords,
                      edof,
                      dofs_per_node,
                      el_type,
                      color=(0.2, 0.2, 0.2))
        else:
            info(
                "dofs_per_node and el_type must be specified to draw the mesh."
            )

    if title != None:
        ax.set(title=title)
コード例 #7
0
def plot_patch(mesh_container, x, d, vmin=0, vmax=1, contours=True):
    px = zkronv(tt.xfun(2, d), tt.ones(2, d))
    py = zkronv(tt.ones(2, d), tt.xfun(2, d))
    px = px.full().flatten('F').astype(np.int)
    py = py.full().flatten('F').astype(np.int)

    pts = np.array([mesh_container._pts(ex, ey) for ex, ey in zip(px, py)])
    tri = Delaunay(pts)
    plt.tripcolor(pts[:, 0],
                  pts[:, 1],
                  tri.simplices.copy(),
                  x,
                  shading='gouraud',
                  vmin=vmin,
                  vmax=vmax)
    if contours:
        plt.tricontour(pts[:, 0],
                       pts[:, 1],
                       tri.simplices.copy(),
                       x,
                       np.linspace(vmin, vmax, 11),
                       colors='k')
    d = mesh_container.d
    p1 = mesh_container._pts(0, 0)
    p2 = mesh_container._pts(2**d - 1, 0)
    p3 = mesh_container._pts(2**d - 1, 2**d - 1)
    p4 = mesh_container._pts(0, 2**d - 1)
    plt.plot([p1[0], p2[0], p3[0], p4[0]], [p1[1], p2[1], p3[1], p4[1]], 'm')
コード例 #8
0
ファイル: plot-vtk.py プロジェクト: mrklein/vtk-plot
def plot(filename):
    import os
    from matplotlib.pyplot import clf, tricontour, tricontourf, \
        gca, savefig, rc, minorticks_on

    if not os.path.exists(filename):
        return -1

    rc('text', usetex=True)
    clf()
    x, y, tri, ux, uy = load_velocity(filename)
    tricontourf(x, y, tri, ux, 16)
    tricontour(x, y, tri, ux, 16, linestyles='-',
               colors='black', linewidths=0.5)
    minorticks_on()
    gca().set_aspect('equal')
    gca().tick_params(direction='out', which='both')
    gca().set_xticklabels([])
    gca().set_yticklabels([])

    name, _ = os.path.splitext(filename)
    name = os.path.basename(name)

    savefig('{0}.png'.format(name), dpi=300, bbox_inches='tight')
    savefig('{0}.pdf'.format(name), bbox_inches='tight')
コード例 #9
0
def plot2():

    with open("data_plate_thing.txt", 'r') as f:
        s = f.read().splitlines()

    non_zero_data = np.array(
        [split_line(line) for line in s[1:] if split_line(line)[8] != 0])
    min_char_interval = non_zero_data[:, 0]
    max_char_interval = non_zero_data[:, 1]
    min_plate_interval = non_zero_data[:, 2]
    max_plate_interval = non_zero_data[:, 3]
    tempo = non_zero_data[:, 4]
    acertos = non_zero_data[:, 8]

    # Definição dos objetos de triangulação para plotagem
    triang = tri.Triangulation(min_plate_interval, max_plate_interval)

    # Plot 1 - Curvas de nível
    plt.subplot(1, 2, 2)
    # plt.gca().set_aspect('equal')
    plt.tricontourf(triang,
                    acertos,
                    levels=np.linspace(np.min(acertos), np.max(acertos), 30))
    plt.colorbar()
    plt.tricontour(triang, acertos, colors='k')
コード例 #10
0
def drawplot(filein, fileout, model, offtot=0, offBs=0, offRK=0):
    '''
	Draw the plot using shaded areas for the global fit and contour lines for Bs-only and RK-only fits
	'''
    fig = texfig.figure()

    trgtot, ztot = triang(readfile(filein, -1, 9, offtot))
    plt.tricontourf(trgtot,
                    ztot,
                    levels=[0.0, 1.0, 4.0, 9.0],
                    colors=('#00B400', '#00FF00', '#BFFF80'))
    trgBs, zBs = triang(readfile(filein, -2, 6, offBs))
    plt.tricontour(trgBs,
                   zBs,
                   levels=[1.0, 4.0],
                   colors='b',
                   linestyles=('-', '--'))
    trgRK, zRK = triang(readfile(filein, -3, 6, offRK))
    plt.tricontour(trgRK,
                   zRK,
                   levels=[1.0, 4.0],
                   colors='#800000',
                   linestyles=('-.', ':'))

    if model == 'LQ':
        plt.xlabel(r"$M_{S_3} [\mathrm{TeV}]$")
        plt.ylabel(r'$\mathrm{Im}\ y^{QL}_{32}y^{QL*}_{32}$')
    if model == 'Z':
        plt.xlabel(r"$M_{Z'} [\mathrm{TeV}]$")
        plt.ylabel(r'$\mathrm{Im}\ \lambda^Q_{23}$')
    texfig.savefig(fileout)
コード例 #11
0
 def plot(self, N=6, cm=plt.cm.jet):
     plt.figure()
     plt.gca().set_aspect('equal')
     plt.tricontourf(self.triang, self.density, N, cm=cm)
     plt.colorbar()
     plt.tricontour(self.triang, self.density, N, colors='k')
     plt.show()
コード例 #12
0
ファイル: contour_plot.py プロジェクト: katyhuff/cyder
    def plot_tricontour(self):
        # tricontour.
        x = self._x
        y = self._y
        z = self._z
        n_labels = self._n_labels
        zi = self._zi
        x_min = self._x_min
        y_min = self._y_min
        x_max = self._x_max
        y_max = self._y_max
        title = self._title
        x_label = self._x_label
        y_label = self._y_label

        plt.subplot(111)  # change this if you want to plot both
        triang = tri.Triangulation(x, y)
        plt.tricontour(x, y, z, n_labels, linewidths=0.5, colors='k')
        plt.tricontourf(x,
                        y,
                        z,
                        n_labels,
                        cmap=plt.cm.rainbow,
                        norm=plt.normalize(vmax=abs(zi).max(),
                                           vmin=-abs(zi).max()))
        plt.colorbar()
        plt.plot(x, y, 'ko', ms=3)
        plt.xlim(x_min, x_max)
        plt.ylim(y_min, y_max)
        plt.xlabel(x_label)
        plt.ylabel(y_label)
        plt.title(title)
        print('tricontour plotted')
コード例 #13
0
ファイル: plotting.py プロジェクト: stenotech/apsg
 def plot(self, N=6, cm=plt.cm.jet):
     plt.figure()
     plt.gca().set_aspect('equal')
     plt.tricontourf(self.triang, self.density, N, cm=cm)
     plt.colorbar()
     plt.tricontour(self.triang, self.density, N, colors='k')
     plt.show()
コード例 #14
0
def test_tri_smooth_gradient():
    # Image comparison based on example trigradient_demo.

    def dipole_potential(x, y):
        """ An electric dipole potential V """
        r_sq = x ** 2 + y ** 2
        theta = np.arctan2(y, x)
        z = np.cos(theta) / r_sq
        return (np.max(z) - z) / (np.max(z) - np.min(z))

    # Creating a Triangulation
    n_angles = 30
    n_radii = 10
    min_radius = 0.2
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi / n_angles
    x = (radii * np.cos(angles)).flatten()
    y = (radii * np.sin(angles)).flatten()
    V = dipole_potential(x, y)
    triang = mtri.Triangulation(x, y)
    xmid = x[triang.triangles].mean(axis=1)
    ymid = y[triang.triangles].mean(axis=1)
    mask = np.where(xmid * xmid + ymid * ymid < min_radius * min_radius, 1, 0)
    triang.set_mask(mask)

    # Refine data - interpolates the electrical potential V
    refiner = mtri.UniformTriRefiner(triang)
    tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3)

    # Computes the electrical field (Ex, Ey) as gradient of -V
    tci = mtri.CubicTriInterpolator(triang, -V)
    (Ex, Ey) = tci.gradient(triang.x, triang.y)
    E_norm = np.sqrt(Ex ** 2 + Ey ** 2)

    # Plot the triangulation, the potential iso-contours and the vector field
    plt.figure()
    plt.gca().set_aspect("equal")
    plt.triplot(triang, color="0.8")

    levels = np.arange(0.0, 1.0, 0.01)
    cmap = cm.get_cmap(name="hot", lut=None)
    plt.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap, linewidths=[2.0, 1.0, 1.0, 1.0])
    # Plots direction of the electrical vector field
    plt.quiver(
        triang.x,
        triang.y,
        Ex / E_norm,
        Ey / E_norm,
        units="xy",
        scale=10.0,
        zorder=3,
        color="blue",
        width=0.007,
        headwidth=3.0,
        headlength=4.0,
    )
コード例 #15
0
def genPredPlot(X, Y):
    plt.style.use('bmh')
    feature1, feature2 = X[:, 1], X[:, 2]

    feature1Neg = [
        feature1.item(i) for i in range(Y.shape[1]) if Y.item(i) == 0
    ]
    feature1Pos = [
        feature1.item(i) for i in range(Y.shape[1]) if Y.item(i) == 1
    ]
    feature2Neg = [
        feature2.item(i) for i in range(Y.shape[1]) if Y.item(i) == 0
    ]
    feature2Pos = [
        feature2.item(i) for i in range(Y.shape[1]) if Y.item(i) == 1
    ]

    # plot scatters of original data
    plt.subplot(2, 1, 1)
    negPlot, = plt.plot(feature1Neg, feature2Neg, 'bo')
    posPlot, = plt.plot(feature1Pos, feature2Pos, 'ro')

    xAxis = np.linspace(np.min(feature1) - 1, np.max(feature1) + 1, num=11)

    # generate samples of theta
    sampleSize = 8000
    thetas = generateSamplesMat(
        [theta_opt.item(i) for i in range(theta_opt.shape[0])],
        np.linalg.inv(hessian_opt), sampleSize)

    # plot predicted boundary
    XPredMat = 7 * np.random.rand(10000, 2) - 3
    X_bias = np.hstack((np.ones((XPredMat.shape[0], 1)), XPredMat)).transpose()
    yPred = predict(X_bias, np.matrix(thetas))
    n_levels = 20
    levels = np.linspace(1.1 * np.min(yPred), 1.1 * np.max(yPred), n_levels)
    plt.tricontour(X_bias[1, :],
                   X_bias[2, :],
                   [yPred.item(i) for i in range(yPred.shape[1])],
                   levels=levels)

    plt.axis([
        1.1 * np.min(feature1), 1.1 * np.max(feature1), 1.1 * np.min(feature2),
        1.1 * np.max(feature2)
    ])
    plt.xlabel('hours studied')
    plt.ylabel('grade in class')
    plt.legend((negPlot, posPlot), ('failed', 'passed'), loc=3)
    plt.title('Posterior Predictive Distribution')

    plt.subplot(2, 1, 2)
    value = sigmoid(theta_opt.transpose() * X_bias) - yPred
    plt.hist([value.item(i) for i in range(value.shape[1])], bins=100)
    plt.title('Histogram of Prediction Difference in MCMC and MAP')
    plt.savefig('p3.pdf', format='pdf')

    plt.tight_layout()
    plt.show()
コード例 #16
0
ファイル: graphics.py プロジェクト: yedam-Lee/pyomo
def _add_SSE_contour(x, y, color, label, columns, SSE, compare):
    ax = plt.gca()
    xvar, yvar, loc = _get_variables(ax, columns)

    x = SSE[xvar]
    y = SSE[yvar]
    z = SSE['SSE']
    triang = tri.Triangulation(x, y)
    plt.tricontour(triang, z, [compare], colors='r')
コード例 #17
0
ファイル: graphics.py プロジェクト: Pyomo/pyomo
def _add_LR_contour(x,y,color,label,columns,data,theta_star,threshold):
    ax = plt.gca()
    xvar, yvar, loc = _get_variables(ax,columns)
    
    X, Y, Z = _get_data_slice(xvar,yvar,columns,data,theta_star)
    
    triang = tri.Triangulation(X, Y)
    
    plt.tricontour(triang,Z,[threshold], colors='r')
コード例 #18
0
def main():
    loaded_matrix = unpickle_elevation_matrix("matrix_pickle_k2.bin")
    x, y, z = convert_matrix(loaded_matrix, 300)

    plot_mlab(x, y, z)

    plt.tricontour(x.ravel(), y.ravel(), z.ravel(), 100)
    plt.show()
    print("stop")
コード例 #19
0
def _add_LR_contour(x, y, color, label, columns, data, theta_star, threshold):
    ax = plt.gca()
    xvar, yvar, loc = _get_variables(ax, columns)

    X, Y, Z = _get_data_slice(xvar, yvar, columns, data, theta_star)

    triang = tri.Triangulation(X, Y)

    plt.tricontour(triang, Z, [threshold], colors='r')
コード例 #20
0
def plot_surf_disp(m,
                   side,
                   field,
                   name,
                   vmin=None,
                   vmax=None,
                   filename=None,
                   view_R=1.0,
                   proj=None,
                   latlon_step=0.5):
    fC, R = get_fault_centered_view(m)

    if vmin is None:
        vmin = np.min(field)
    if vmax is None:
        vmax = np.max(field)
    cmap = 'PuOr_r'
    levels = np.linspace(vmin, vmax, 17)

    plt.figure(figsize=(10, 10))
    fault_start_idx = m.get_start('fault')
    for i in range(2):
        which_tris = np.where(
            np.logical_or(side[:fault_start_idx] == 0,
                          side[:fault_start_idx] == i + 1))[0]
        reduced_m = mesh_fncs.remove_unused_pts((m.pts, m.tris[which_tris]))
        soln_vals = np.empty(reduced_m[0].shape[0])
        soln_vals[reduced_m[1]] = field[which_tris]

        triang = tri.Triangulation(reduced_m[0][:, 0],
                                   reduced_m[0][:, 1],
                                   triangles=reduced_m[1])
        tri_refi, interp_vals = triang, soln_vals
        cntf = plt.tricontourf(tri_refi,
                               interp_vals,
                               cmap=cmap,
                               levels=levels,
                               extend='both')
        plt.tricontour(tri_refi,
                       interp_vals,
                       levels=levels,
                       colors='#333333',
                       linestyles='solid',
                       linewidths=0.75)

    plot_fault_trace(m)

    cbar = plt.colorbar(cntf)
    cbar.set_label('$\\text{displacement (m)}$')

    map_axis(fC, R, view_R, proj, latlon_step)

    plt.title(name)
    if filename is not None:
        plt.savefig(filename)
    plt.show()
コード例 #21
0
def plot_fnc(triang, f):
    levels = np.linspace(np.min(f) - 1e-12, np.max(f) + 1e-12, 21)
    cntf = plt.tricontourf(triang, f, levels=levels, cmap='RdBu')
    plt.tricontour(triang,
                   f,
                   levels=levels,
                   linestyles='solid',
                   colors='k',
                   linewidths=0.5)
    plt.colorbar(cntf)
コード例 #22
0
ファイル: llc.py プロジェクト: christophernhill/MITgcm66h
def contour(*arguments, **kwargs):
    """Call signatures::

    contour(X, Y, C, N, **kwargs)
    contour(X, Y, C, V, **kwargs)
    
    Create a contour plot of a 2-D llc array (with tricontour).
    
    *C* is the array of color values.

    *N* is the number of levels

    *V* is a list of levels
    
    *X* and *Y*, specify the (*x*, *y*) coordinates of
    the grid points

    **kwargs are passed to tricontour.
    
    """

    arglen = len(arguments)
    h = []
    if arglen >= 3:
        data = arguments[2].flatten()
        x = arguments[0].flatten()
        y = arguments[1].flatten()

        # Create the Triangulation; 
        # no triangles so Delaunay triangulation created. 
        triang = tri.Triangulation(x, y)
        ntri = triang.triangles.shape[0]

        # Mask off unwanted triangles.
        mask = np.where(data[triang.triangles].prod(axis=1)==0., 1, 0)
        triang.set_mask(mask)
                        
        if arglen == 3:
            h = plt.tricontour(triang, data, **kwargs)
        elif arglen == 4:
            h = plt.tricontour(triang, data, arguments[3], **kwargs)
        else:
            print("wrong number of arguments")
            print("need at least 3 or 4 arguments")
            sys.exit(__doc__)
        
        # show the triangles for debugging
        #plt.triplot(triang, color='0.7')

    else:
        print("wrong number of arguments")
        print("need at least x,y,fld")
        sys.exit(__doc__)

    return h
コード例 #23
0
def contour(*arguments, **kwargs):
    """Call signatures::

    contour(X, Y, C, N, **kwargs)
    contour(X, Y, C, V, **kwargs)
    
    Create a contour plot of a 2-D llc array (with tricontour).
    
    *C* is the array of color values.

    *N* is the number of levels

    *V* is a list of levels
    
    *X* and *Y*, specify the (*x*, *y*) coordinates of
    the grid points

    **kwargs are passed to tricontour.
    
    """

    arglen = len(arguments)
    h = []
    if arglen >= 3:
        data = arguments[2].flatten()
        x = arguments[0].flatten()
        y = arguments[1].flatten()

        # Create the Triangulation;
        # no triangles so Delaunay triangulation created.
        triang = tri.Triangulation(x, y)
        ntri = triang.triangles.shape[0]

        # Mask off unwanted triangles.
        mask = np.where(data[triang.triangles].prod(axis=1) == 0., 1, 0)
        triang.set_mask(mask)

        if arglen == 3:
            h = plt.tricontour(triang, data, **kwargs)
        elif arglen == 4:
            h = plt.tricontour(triang, data, arguments[3], **kwargs)
        else:
            print("wrong number of arguments")
            print("need at least 3 or 4 arguments")
            sys.exit(__doc__)

        # show the triangles for debugging
        #plt.triplot(triang, color='0.7')

    else:
        print("wrong number of arguments")
        print("need at least x,y,fld")
        sys.exit(__doc__)

    return h
コード例 #24
0
def CreateFig(dt_output=0.1):
    from tables import  open_file
    archive = open_file('dambreak.h5','r')
    import dambreak
    dambreak.outputStepping.dt_output=dt_output
    dambreak.outputStepping.nDTout=None
    dambreak.outputStepping.setOutputStepping()
    dambreak.myTpFlowProblem.initializeAll()
    import matplotlib.tri as mtri
    from matplotlib import pyplot as  plt
    import numpy as np
    domain = dambreak.domain
    domain.L = dambreak.tank_dim
    domain.x = (0.,0.,0.)
    nodes = archive.get_node("/nodesSpatial_Domain0")
    x=nodes[:,0]
    y=nodes[:,1]
    elements = archive.get_node("/elementsSpatial_Domain0")
    triang = mtri.Triangulation(x, y, elements)
    xg = np.linspace(0, domain.L[0], 20)
    yg = np.linspace(0, domain.L[1], 20)
    xi, yi = np.meshgrid(xg,yg)
    plt.figure()
    for it,t in enumerate(dambreak.myTpFlowProblem.so.tnList[:]):
        phi = archive.get_node("/phi_t{0:d}".format(it))
        vof = archive.get_node("/vof_t{0:d}".format(it))
        wvof = np.ones(vof.shape,'d')
        wvof -= vof
        u = archive.get_node("/u_t{0:d}".format(it))
        v = archive.get_node("/v_t{0:d}".format(it))
        plt.clf()
        plt.xlabel(r'z[m]')
        plt.ylabel(r'x[m]')
        colors = ['w','b', 'g','r','c','m','y','k']*(max(domain.segmentFlags)//8 + 1)
        plt.xlim(domain.x[0]-0.1*domain.L[0],domain.x[0]+domain.L[0]+0.1*domain.L[0])    
        for si,s in enumerate(domain.segments):
            plt.plot([domain.vertices[s[0]][0],
                     domain.vertices[s[1]][0]],
                    [domain.vertices[s[0]][1],
                     domain.vertices[s[1]][1]],
                    color=colors[domain.segmentFlags[si]-1],
                    linewidth=2,
                    marker='o')
        plt.tricontourf(x,y,elements,wvof*np.sqrt(u[:]**2 + v[:]**2))
        plt.tricontour(x,y,elements,phi,[0], linewidths=4)
        u_interp_lin = mtri.LinearTriInterpolator(triang, u[:])
        v_interp_lin = mtri.LinearTriInterpolator(triang, v[:])
        u_lin = u_interp_lin(xi, yi)
        v_lin = v_interp_lin(xi, yi)
        plt.streamplot(xg, yg, u_lin, v_lin,color='k')
        plt.title('T={0:2.2f}'.format(t))
        plt.axis('equal')
        plt.xlim((0,domain.L[0]))
        plt.savefig('phi{0:04d}.png'.format(it))
コード例 #25
0
 def contour(self, *args, **kwargs):
     """ Show contours of values."""
     fig, ax = plt.subplots(figsize=settings["figsize"])
     # Projection circle
     ax.text(0, 1.02, "N", ha="center", va="baseline", fontsize=16)
     ax.add_artist(plt.Circle((0, 0), 1, color="w", zorder=0))
     ax.add_artist(plt.Circle((0, 0), 1, color="None", ec="k", zorder=3))
     ax.set_aspect("equal")
     plt.tricontour(self.triang, self.values, *args, **kwargs)
     plt.colorbar()
     plt.axis('off')
     plt.show()
コード例 #26
0
def CreateFig():
    from tables import  openFile
    archive = openFile('linear_waves.h5','r')
    import linear_waves
    import linear_waves_so
    import matplotlib.tri as mtri
    from matplotlib import pyplot as  plt
    import numpy as np
    domain = linear_waves.domain
    nodes = archive.getNode("/nodesSpatial_Domain0")
    x=nodes[:,0]
    y=nodes[:,1]
    elements = archive.getNode("/elementsSpatial_Domain0")
    triang = mtri.Triangulation(x, y, elements)
    domain.L=linear_waves.tank_dim
    domain.x=[0.,0.]
    xg = np.linspace(0, domain.L[0], 20)
    yg = np.linspace(0, domain.L[1], 20)
    xi, yi = np.meshgrid(xg,yg)
    plt.figure()
    for it,t in enumerate(linear_waves_so.tnList[:]):
        phi = archive.getNode("/phi_t"+`it`)
        vof = archive.getNode("/vof_t"+`it`)
        wvof = np.ones(vof.shape,'d')
        wvof -= vof
        u = archive.getNode("/u_t"+`it`)
        v = archive.getNode("/v_t"+`it`)
        plt.clf()
        plt.xlabel(r'z[m]')
        plt.ylabel(r'x[m]')
        colors = ['b','g','r','c','m','y','k','w']
        plt.xlim(domain.x[0]-0.1*domain.L[0],domain.x[0]+domain.L[0]+0.1*domain.L[0])    
        for si,s in enumerate(domain.segments):
            plt.plot([domain.vertices[s[0]][0],
                     domain.vertices[s[1]][0]],
                    [domain.vertices[s[0]][1],
                     domain.vertices[s[1]][1]],
                    color=colors[domain.segmentFlags[si]-1],
                    linewidth=2,
                    marker='o')
        plt.tricontourf(x,y,elements,wvof*np.sqrt(u[:]**2 + v[:]**2))
        plt.tricontour(x,y,elements,phi,[0], linewidth=4)
        u_interp_lin = mtri.LinearTriInterpolator(triang, u[:])
        v_interp_lin = mtri.LinearTriInterpolator(triang, v[:])
        u_lin = u_interp_lin(xi, yi)
        v_lin = v_interp_lin(xi, yi)
        plt.streamplot(xg, yg, u_lin, v_lin,color='k')
        plt.title('T=%2.2f' % (t,))
        plt.xlim((0,domain.L[0]))
        plt.ylim(0,domain.L[1])
        plt.savefig('phi%4.4d.png' % (it,))
コード例 #27
0
 def stab_plot(self):
     x = self.x
     y = self.y
     z = self.z
     # initialize the delauney triangulation:
     triang = tri.Triangulation(x, y)
     # do the plots:
     plt.tricontourf(triang, z, colors=self.color, alpha=0.3, levels=[1.0, 2.0])
     plt.tricontour(triang, z, colors=self.color, levels=[1.0, 2.0])
     # title of the plot
     plt.title("Stability of " + self.model_name, fontsize=16)
     # labels
     plt.xlabel(self.param_names[0], fontsize=18)
     plt.ylabel(self.param_names[1], fontsize=18)
コード例 #28
0
ファイル: FEM2.py プロジェクト: kewitz/mestrado
 def plotResult(self, **k):
     x = []
     y = []
     z = []
     for n in self.nodes:
         x.append(n.x)
         y.append(n.y)
         z.append(k['r'][n.i-1])
     t = tri.Triangulation(x, y)
     plt.tricontour(t, z, 15, linewidths=0.5)
     #plt.tricontourf(t, z, 15, cmap=plt.cm.rainbow)
     plt.colorbar()
     #plt.plot(x, y, 'ko', ms=3)
     
コード例 #29
0
ファイル: plotting.py プロジェクト: hahohe1892/Plotting
def plotcontour(md, par, **kwargs):
    if hasattr(md.results, 'TransientSolution'):
        if hasattr(md.results.TransientSolution[-1], 'catch_mesh'):
            lens = []
            for q in range(len(md.results.TransientSolution[-1].catch_mesh)):
                lens.append(
                    len(md.results.TransientSolution[-1].catch_mesh[q][0]))
    try:
        tricontour(md.mesh.x, md.mesh.y, np.squeeze(par), **kwargs)
    except:
        right_index = int(
            np.nonzero(lens == np.intersect1d(lens, len(par)))[0])
        tricontour(md.results.TransientSolution[-1].catch_mesh[right_index][0],
                   md.results.TransientSolution[-1].catch_mesh[right_index][1],
                   np.squeeze(par), **kwargs)
コード例 #30
0
    def splineContourPlot(self,
                          cmap='twilight_shifted',
                          save=False,
                          axis=False,
                          showLift=False,
                          lvs=40):
        # Visualizza curve di livello su grafico 2D della superficie B-spline.
        # showLift: se true mostra i triangoli di sollevamento utilizzati nella costruzione della superficie;
        # lvs: numero di livelli da mostrare.
        if not axis:
            plt.axis('off')
        plt.axis('equal')

        # Settaggio dei livelli.
        (mn, mx) = (min(self.plotHeights), max(self.plotHeights))
        tol = 6e-3
        if mn < -tol:
            lvs = int(lvs / 2)
            levels = np.block(
                [np.linspace(mn, -tol, lvs),
                 np.linspace(tol, mx, lvs)])
        else:
            levels = np.linspace(tol, mx, lvs)

        # Visualizzazione delle curve di livello.
        plt.tricontour(self.plotTriangulation,
                       self.plotHeights,
                       levels=levels,
                       cmap=cmap,
                       linewidths=0.4)

        # Visualizzazione del dominio e dei triangoli di sollevamento, se richiesti.
        self.domain.domainPlot(labels=False,
                               legend=False,
                               showExecute=False,
                               color='#000000',
                               colorPS='#000000')
        if showLift:
            self.lift_triangles.liftPlot(onlyLifts=True,
                                         legend=False,
                                         labels=False,
                                         showExecute=False)

        # Salvo l'immagine, se richiesto.
        if save:
            name = input('Nome del file?\n')
            plt.savefig(name, dpi=600)
        plt.show()
コード例 #31
0
 def computeContours(self):
     extend = self.uExtend.itemText(self.uExtend.currentIndex())
     data = self.getData()
     if not data:
         return
     x, y, z = data
     levels = self.getLevels()
     if not levels:
         return
     try:
         if self._isMPLOk(
         ) == True:  # If so, we can use the tricontour function
             try:
                 cs = plt.tricontour(x, y, z, levels, extend=extend)
             except:
                 raise ContourGenerationError()
         else:
             gx = x.reshape(self._nr, self._nc)
             gy = y.reshape(self._nr, self._nc)
             gz = z.reshape(self._nr, self._nc)
             cs = plt.contour(gx, gy, gz, levels, extend=extend)
     except:
         raise
     lines = list()
     levels = [float(l) for l in cs.levels]
     for i, line in enumerate(cs.collections):
         linestrings = []
         for path in line.get_paths():
             if len(path.vertices) > 1:
                 linestrings.append(path.vertices)
         lines.append([i, levels[i], linestrings])
         self.progressBar.setValue(i + 1)
     return lines
コード例 #32
0
def chi_sq_contour(analysis_dict):
    plt.figure()

    cnorm = mpl.colors.Normalize(vmin=0., vmax=20.)  #40.)

    x = analysis_dict['r_eff']
    y = analysis_dict['COT']
    z = analysis_dict['difference']
    b = plt.tricontour(x, y, z, 70, norm=cnorm)  #70)

    plt.xlabel('Cloud Particle Effective Radius (r_eff) (um)', fontsize=18)
    plt.ylabel('Cloud Optical Thickness (COT)', fontsize=18)
    plt.title(analysis_dict['phase'] +
              ' Cloud {} Wavelength Retrieval Values'.format(
                  str(analysis_dict['num_retrieval_wavelengths'])),
              fontsize=20)
    plt.clabel(b, inline=1, fontsize=15)

    reff_best = analysis_dict['best_reff']
    COT_best = analysis_dict['best_COT']
    label = 'COT: ' + str(round(COT_best,
                                2)) + ', r_eff: ' + str(reff_best) + 'um'
    bbox = dict(boxstyle="round", fc="0.8", alpha=1)
    arrow = dict(facecolor='black', shrink=0.05)
    plt.annotate(label,[reff_best,COT_best],xytext=(reff_best+2,COT_best+0.5),\
        bbox=bbox,fontsize=15,arrowprops=arrow)
    plt.scatter(reff_best, COT_best, marker="X", c='k', s=70)
    return
コード例 #33
0
ファイル: plotting.py プロジェクト: hahohe1892/Plotting
def along_width(md, par, **kwargs):

    cont = tricontour(md.mesh.x, md.mesh.y, par, **kwargs)

    lines = cont.__dict__['allsegs'][0]

    if len(lines) == 2:

        upper = np.transpose(lines[0])[:, :len(lines[1])]

        lower = np.transpose(list(reversed(lines[1])))[:, :len(lines[0])]

        width = [(np.array(upper[1]) - np.array(lower[1])), upper[0]]

    else:

        x_coords = np.transpose(lines)[0]

        x_coords = x_coords[:int(len(x_coords) / 2)]

        w = np.transpose(lines)[1]

        width = [
            w[:int(ceil(len(w) / 2))] - w[int(len(w) / 2):len(w)], x_coords
        ]

        width[0] = width[0][:len(width[1])]

        width[1] = width[1][:len(width[0])]

    return width
コード例 #34
0
def plot_mesh(mesh,
              dims=2,
              node_labels=False,
              vals=None,
              with_colorbar=False,
              levels=None,
              border=None):
    if not isinstance(mesh.points, np.ndarray):
        mesh.points = np.array(mesh.points)
    nodes_x = mesh.points[:, 0]
    nodes_y = mesh.points[:, 1]
    if dims == 2:
        elements_tris = [c for c in mesh.cells if c.type == "triangle"][0].data
        #plt.figure(figsize=(8, 8))
        if vals is None:
            plt.triplot(nodes_x, nodes_y, elements_tris, alpha=0.9, color='r')
        else:
            triangulation = tri.Triangulation(nodes_x, nodes_y, elements_tris)
            p = plt.tricontourf(triangulation, vals, 30)
            if with_colorbar: plt.colorbar()
            if levels:
                cn = plt.tricontour(triangulation, vals, levels, colors='w')
                plt.clabel(cn, fmt='%0.2f', colors='k', fontsize=10)
        if border:
            plt.hlines(1 - border, -1 + border, 1 - border, 'r')
            plt.hlines(-1 + border, -1 + border, 1 - border, 'r')
            plt.vlines(1 - border, -1 + border, 1 - border, 'r')
            plt.vlines(-1 + border, -1 + border, 1 - border, 'r')

    if node_labels:
        for i, (x, y) in enumerate(zip(nodes_x, nodes_y)):
            plt.text(x, y, i)

    if vals is not None:
        return p
コード例 #35
0
def contour(data, x, y, label=None, log=False):

    tri=Triangulation(x,y)

    plt.close('all')
    plt.figure()
    ax=plt.subplot(111)
    ax.minorticks_on()
    if(log):
        ax.set_xscale("log",nonposx='clip')
        ax.set_yscale("log",nonposy='clip')

    ax.set_xlim([min(x.min(),y.min()),max(x.max(),y.max())])
    ax.set_ylim([min(x.min(),y.min()),max(x.max(),y.max())])
    plt.xlabel('r [AU]')
    plt.ylabel('z [AU]')

    nmax=data.max()
    nmin=data.min()
    levels=np.logspace(np.log10(nmin),np.log10(nmax),num=12)

    plt.tricontourf(tri, data, levels, norm=colors.LogNorm(vmin=nmin, vmax=nmax))
    cbar=plt.colorbar(format='%.2e')
    cbar.set_label(label)

    CS=plt.tricontour(tri, data, levels, colors='black', linewidths=1.5)
    plt.clabel(CS, fontsize=8, inline=1)
    cbar.add_lines(CS)

    plt.triplot(tri, color='black', alpha=0.2)

    plt.show(block=False)
コード例 #36
0
def plotiso_SubTh2simp2D(q, me, u, **kwargs):
    plane = kwargs.pop('plane', True)
    niso = kwargs.pop('niso', 15)
    isorange = kwargs.pop('isorange', None)
    color = check_color(kwargs.pop('color', None))
    cmap = kwargs.pop('cmap', plt.cm.get_cmap(name='viridis'))
    if isorange is None and niso > 1:
        isorange = np.linspace(min(u), max(u), num=niso)
    else:
        if np.isscalar(isorange):
            isorange = np.array([isorange])
        else:
            isorange = np.sort(isorange)
    if color is not None:
        kwargs['colors'] = np.tile(color, (len(isorange), 1))
    else:
        kwargs['cmap'] = cmap
    #kwargs['vmin']=kwargs.get('vmin',np.min(u))
    #kwargs['vmax']=kwargs.get('vmax',np.max(u))
    fig = plt.gcf()
    if plane:
        return plt.tricontour(
            q[:, 0], q[:, 1], me, u, isorange,
            **kwargs)  #vmin=vmin,vmax=vmax, shading=shading,**kwargs)
    nq = q.shape[0]
    assert isinstance(u, np.ndarray) and u.shape[0] == nq
    Q = np.concatenate((q, u.reshape((nq, 1))), axis=1)
    assert False, "Not yet implemented"
    return plotiso_SubTh2simp3D(Q, me, u, isorange=isorange, **kwargs)
コード例 #37
0
 def update(step_i):
     t_step = trajectory[step_i]
     t_x = t_step[:, 0]
     t_y = t_step[:, 1]
     t = np.multiply(t_x, t_y)
     cont = plt.tricontour(nodes_x, nodes_y, t)
     return cont
コード例 #38
0
ファイル: plot_atlas_voronoi.py プロジェクト: josujosu/Gradu
def plot_quantity(filename_bin, filename_non, plotnum, qty='vel', limits=[-20, 20]):
    
    hdu_v = fits.open(filename_bin)
    hdu = fits.open(filename_non)
    
    data_v = hdu_v[1].data
    data = hdu[2].data

    if qty == 'vel':
        v = data_v['VPXF'] - np.mean(data_v['VPXF'])
    elif qty == 'sigma':
        v = data_v['SPXF']
    elif qty == 'h3':
        v = data_v['H3PXF']
    else:
        v = data_v['H4PXF']

    plt.subplot(220 + plotnum)

    img = display_bins_generators(data_v['YS'], data_v['XS'], v, data['D'], data['A'], vmin=limits[0], vmax=limits[1], pixelsize=None)
    plt.tricontour(data_v['YS'], data_v['XS'], -2.5*np.log10(data_v['FLUX']/np.max(data_v['FLUX'])), levels=np.arange(20), colors='k', linewidths=contourthickness)

    if plotnum == 1:
        plt.title("$ \langle V \\rangle $ [km/s]", fontsize=titlesize, y=1.04)
        plt.ylabel("arcsec", fontsize=textsize)
    if plotnum == 2:
        plt.title("$\sigma$ [km/s]", fontsize=titlesize, y=1.04)
    if plotnum == 3:
        plt.title("$h_3$", fontsize=titlesize, y=1.04)
        plt.ylabel("arcsec", fontsize=textsize)
        plt.xlabel("arcsec", fontsize=textsize)
    if plotnum == 4:
        plt.title("$h_4$", fontsize=titlesize, y=1.04)
        plt.xlabel("arcsec", fontsize=textsize)

    ax = plt.gca()
    
    divider = mplax.make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.05)
    cticks = np.array([limits[0], np.sum(limits)/2, limits[1]])
    
    cb = plt.colorbar(img, cax = cax, ticks = cticks)

    ax.tick_params(direction = 'in', which='both', right=True, top=True, labelleft=False, labelsize=digitsize)
    ax.set_aspect('equal')
    
    cax.tick_params(direction = 'in', labelsize=digitsize*1.05)
コード例 #39
0
ファイル: nonnormal.py プロジェクト: andrenarchy/pseudopy
 def contour_paths(self, epsilon):
     '''Extract the polygon patches for the provided epsilon'''
     figure = pyplot.figure()
     contours = pyplot.tricontour(self.triang, self.vals, levels=[epsilon])
     paths = Paths()
     if len(contours.collections) == 0:
         return paths
     for path in contours.collections[0].get_paths():
         paths.append(Path(path.vertices[:, 0] + 1j*path.vertices[:, 1]))
     pyplot.close(figure)
     return paths
コード例 #40
0
ファイル: results.py プロジェクト: haibiao/pybinding
    def plot_contour(self, **kwargs):
        """Contour plot of the xy plane

        Parameters
        ----------
        **kwargs
            Forwarded to `plt.tricontour()`.
        """
        x, y, _ = self.pos
        contour = plt.tricontour(x, y, self.data, **kwargs)
        self._decorate_plot()
        return contour
コード例 #41
0
def test_tri_smooth_contouring():
    # Image comparison based on example tricontour_smooth_user.
    n_angles = 20
    n_radii = 10
    min_radius = 0.15

    def z(x, y):
        r1 = np.sqrt((0.5 - x) ** 2 + (0.5 - y) ** 2)
        theta1 = np.arctan2(0.5 - x, 0.5 - y)
        r2 = np.sqrt((-x - 0.2) ** 2 + (-y - 0.2) ** 2)
        theta2 = np.arctan2(-x - 0.2, -y - 0.2)
        z = -(
            2 * (np.exp((r1 / 10) ** 2) - 1) * 30.0 * np.cos(7.0 * theta1)
            + (np.exp((r2 / 10) ** 2) - 1) * 30.0 * np.cos(11.0 * theta2)
            + 0.7 * (x ** 2 + y ** 2)
        )
        return (np.max(z) - z) / (np.max(z) - np.min(z))

    # First create the x and y coordinates of the points.
    radii = np.linspace(min_radius, 0.95, n_radii)
    angles = np.linspace(0 + n_angles, 2 * np.pi + n_angles, n_angles, endpoint=False)
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    angles[:, 1::2] += np.pi / n_angles
    x0 = (radii * np.cos(angles)).flatten()
    y0 = (radii * np.sin(angles)).flatten()
    triang0 = mtri.Triangulation(x0, y0)  # Delaunay triangulation
    z0 = z(x0, y0)
    xmid = x0[triang0.triangles].mean(axis=1)
    ymid = y0[triang0.triangles].mean(axis=1)
    mask = np.where(xmid * xmid + ymid * ymid < min_radius * min_radius, 1, 0)
    triang0.set_mask(mask)

    # Then the plot
    refiner = mtri.UniformTriRefiner(triang0)
    tri_refi, z_test_refi = refiner.refine_field(z0, subdiv=4)
    levels = np.arange(0.0, 1.0, 0.025)
    plt.triplot(triang0, lw=0.5, color="0.5")
    plt.tricontour(tri_refi, z_test_refi, levels=levels, colors="black")
コード例 #42
0
ファイル: plotter.py プロジェクト: nasseralkmim/eldypy
def tricontourf_deformed(a, mesh, d,  name, cmap, dpi, magf):
    """Plot contour with the tricoutour function and the boundary line with
    the boundary node.

    """
    fig = plt.figure(name, dpi=dpi)
    ax1 = fig.add_subplot(1, 1, 1, aspect='equal')
    c = mesh.nodes_coord
    bn = mesh.boundary_nodes

    xx, yy, zz = c[:, 0]+d[::2]*magf, c[:, 1]+d[1::2]*magf, a

    dx = d[::2]*magf
    dy = d[1::2]*magf

    ccx = np.append(c[bn[:, 1], 0]+dx[bn[:, 1]], c[bn[0, 1], 0]+dx[bn[0, 1]])
    ccy = np.append(c[bn[:, 1], 1]+dy[bn[:, 1]], c[bn[0, 1], 1]+dy[bn[0, 1]])
    plt.plot(ccx, ccy, '-k')

    triangles = []
    for n1, n2, n3, n4 in mesh.ele_conn:
        triangles.append([n1, n2, n3])
        triangles.append([n1, n3, n4])

    triangles = np.asarray(triangles)

    CS2 = plt.tricontourf(xx, yy, triangles, zz, N=10, origin='lower',
                          cmap=cmap)

    CS3 = plt.tricontour(xx, yy, triangles, zz, N=10, origin='lower',colors='k')


    plt.xlabel(r'$x$', fontsize=14)
    plt.ylabel(r'$y$', fontsize=14)

    divider = make_axes_locatable(ax1)
    cax = divider.append_axes("right", size=0.3, pad=0.1)

    cbar = plt.colorbar(CS2, cax=cax)
    cbar.ax.set_label(name, fontsize=12)

    plt.clabel(CS3, fontsize=8, colors='k', fmt='%1.1f')

    limits=plt.axis('off')
    # plt.savefig('1.png', transparent=True, dpi=300)
    #plt.axes().set_aspect('equal')
    #plt.axes().autoscale_view(True, True, True)

    plt.draw()
コード例 #43
0
ファイル: normal.py プロジェクト: francispoulin/pseudopy
 def plot(self, epsilons, **kwargs):
     epsilons = list(numpy.sort(epsilons))
     padepsilons = [epsilons[0]*0.9] + epsilons + [epsilons[-1]*1.1]
     X = []
     Y = []
     Z = []
     for epsilon in padepsilons:
         paths = self.contour_paths(epsilon)
         for path in paths:
             X += list(numpy.real(path.vertices[:-1]))
             Y += list(numpy.imag(path.vertices[:-1]))
             Z += [epsilon] * (len(path.vertices) - 1)
     contours = pyplot.tricontour(X, Y, Z, levels=epsilons,
                                  colors=pyplot.rcParams['axes.color_cycle']
                                  )
     plot_finish(contours, **kwargs)
     return contours
コード例 #44
0
  def contour(self, prop=None):
    if(prop=='Tdust'):
        data=self.T[0:len(self.x)]['1']
        label="Dust temperature [K]"
    elif(prop=='rho'):
        data=np.log(self.rho[0:len(self.x)]['1'])
        label="Log some density [?]"
    else:
        try:
            data=self.prop
            label='Unknown property'
        except:
            print "Please specify property to plot. Valid properties are [Tdust, rho]"
            return

    x_au = self.x/1.49e13
    y_au = self.y/1.49e13

    tri=Triangulation(x_au,y_au)

    plt.close('all')
    plt.figure()
    ax=plt.subplot(111)
    ax.set_xscale("log",nonposx='clip')
    ax.set_yscale("log",nonposy='clip')
    ax.set_xlim([0.1,200])
    ax.set_ylim([0.1,200])
    plt.xlabel('r [AU]')
    plt.ylabel('z [AU]')

    nmax=data.max()
    nmin=data.min()
    levels=np.arange(12) * (nmax-nmin)/12. + nmin
    plt.tricontourf(tri, data, levels)
    cbar=plt.colorbar()
    cbar.set_label(label)

    CS=plt.tricontour(tri, data, levels, colors='black', linewidths=1.5)
    plt.clabel(CS, fontsize=8, inline=1)
    cbar.add_lines(CS)

    plt.triplot(tri, color='black', alpha=0.2)
コード例 #45
0
ファイル: contour.py プロジェクト: apryet/QGIS-Contour-Plugin
 def computeContours(self):
     extend = str(self.uExtend.itemText(self.uExtend.currentIndex()))
     x, y, z = self._data
     levels = self.getLevels()
     if self._isMPLOk()==True: # If so, we can use the new tricontour fonction
         cs = plt.tricontour(x, y, z, levels, extend=extend)
     else:
         gx = x.reshape(self._nr,self._nc)
         gy = y.reshape(self._nr,self._nc)
         gz = z.reshape(self._nr,self._nc)
         cs = plt.contour(gx, gy, gz, levels, extend=extend)
     lines = list()
     levels = [float(l) for l in cs.levels]
     self.progressBar.setRange(0, len(cs.collections))
     for i, line in enumerate(cs.collections):
         linestrings = []
         for path in line.get_paths():
             if len(path.vertices) > 1:
                 linestrings.append(path.vertices)
         lines.append([ i, levels[i], linestrings])
         self.progressBar.setValue(i+1)
     self.progressBar.setValue(0)
     return lines
コード例 #46
0
    def lineContourFeatures(self):
        x,y,z=self.data()
        levels = self.levels()
        usegrid=self.isGridded() and self._useGrid
        try:
            if usegrid:
                gx,gy,gz=self.gridContourData()
                cs = contour(gx, gy, gz, levels )
            else:
                trig,z=self.trigContourData()
                cs = tricontour(trig, z, levels )
        except:
            raise ContourGenerationError.fromException(sys.exc_info())

        fields = self.fields()
        zfield=self.zFieldName()
        dx,dy=self._origin
        for i, line in enumerate(cs.collections):
            level=float(cs.levels[i])
            glines = []
            try:
                for path in line.get_paths():
                    if len(path.vertices) > 1:
                        points=[QgsPointXY(x,y) for x,y in path.vertices]
                        glines.append(points)
                geom=QgsGeometry.fromMultiPolylineXY(glines)
                geom.translate(dx,dy)
                feat = QgsFeature(fields)
                feat.setGeometry(geom)
                feat['index']=i
                feat[zfield]=level
                feat['label']=self._levelLabel(level)
                yield feat
            except:
                message=sys.exc_info()[1]
                self._feedback.reportError(message)
コード例 #47
0
ファイル: plot_field.py プロジェクト: olegrog/latex
Xmax, Ymax = X[area_max].flat[amax], Y[area_max].flat[amax]
lsteps_ = int(max(refi_magU[area_max])/lmax*lsteps)
lx = Xmin + np.sign(Xmax-Xmin)*np.linspace(0, abs(Xmax-Xmin)**(1./args.lpow), 1 + lsteps_)**args.lpow
ly = Ymin + np.sign(Ymax-Ymin)*np.linspace(0, abs(Ymax-Ymin)**(1./args.lpow), 1 + lsteps_)**args.lpow
#plt.plot(lx, ly, '*')
lx, ly = (lx[1:] + lx[:-1])/2, (ly[1:] + ly[:-1])/2
#plt.plot(lx, ly, 'D')
labelpos = tuple(map(tuple, np.vstack((lx,ly)).T))
linewidth, fontsize = .5, 6

### Plot detailed contours
refi_magU = np.maximum(refi_magU, lmin)
dl, ds = ((lmax-lmin)/lsteps/2,1) if np.max(magU) > lmax else (0,0)
levels = np.linspace(lmin, lmax + dl, 1 + 2*lsteps + ds)
if grayscale:
    plt.tricontour(refi_triang, refi_magU, levels=levels, colors='lightgray', linewidths=0.05)
else:
    cmap = cm.get_cmap('coolwarm')
    plt.tricontourf(refi_triang, refi_magU, cmap=cmap, levels=levels)

### Plot black contours with labels
levels = np.linspace(lmin, lmax, 1 + lsteps)
CS = plt.tricontour(refi_triang, refi_magU, levels=levels, colors='k', linewidths=.3)
clabels = plt.clabel(CS, levels,
    inline=True,
    use_clabeltext=True,
    fmt='%g',
    manual=labelpos,
    fontsize=6)
[ txt.set_backgroundcolor('white') for txt in clabels ]
[ txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0.5)) for txt in clabels ]
コード例 #48
0
# Mask off unwanted triangles.
xmid = x[triang.triangles].mean(axis=1)
ymid = y[triang.triangles].mean(axis=1)
mask = np.where(xmid * xmid + ymid * ymid < min_radius * min_radius, 1, 0)
triang.set_mask(mask)

#-----------------------------------------------------------------------------
# Refine data
#-----------------------------------------------------------------------------
refiner = tri.UniformTriRefiner(triang)
tri_refi, z_test_refi = refiner.refine_field(z, subdiv=3)

#-----------------------------------------------------------------------------
# Plot the triangulation and the high-res iso-contours
#-----------------------------------------------------------------------------
plt.figure()
plt.gca().set_aspect('equal')
plt.triplot(triang, lw=0.5, color='white')

levels = np.arange(0., 1., 0.025)
cmap = cm.get_cmap(name='terrain', lut=None)
plt.tricontourf(tri_refi, z_test_refi, levels=levels, cmap=cmap)
plt.tricontour(tri_refi, z_test_refi, levels=levels,
               colors=['0.25', '0.5', '0.5', '0.5', '0.5'],
               linewidths=[1.0, 0.5, 0.5, 0.5, 0.5])

plt.title("High-resolution tricontouring")

plt.show()
コード例 #49
0
start = time.clock()
plt.subplot(211)
xi = np.linspace(-2.1,2.1,ngridx)
yi = np.linspace(-2.1,2.1,ngridy)
zi = griddata(x,y,z,xi,yi,interp='linear')
plt.contour(xi,yi,zi,15,linewidths=0.5,colors='k')
plt.contourf(xi,yi,zi,15,cmap=plt.cm.rainbow,
             norm=plt.normalize(vmax=abs(zi).max(), vmin=-abs(zi).max()))
plt.colorbar() # draw colorbar
plt.plot(x, y, 'ko', ms=3)
plt.xlim(-2,2)
plt.ylim(-2,2)
plt.title('griddata and contour (%d points, %d grid points)' % (npts, ngridx*ngridy))
print ('griddata and contour seconds: %f' % (time.clock() - start))

# tricontour.
start = time.clock()
plt.subplot(212)
triang = tri.Triangulation(x, y)
plt.tricontour(x, y, z, 15, linewidths=0.5, colors='k')
plt.tricontourf(x, y, z, 15, cmap=plt.cm.rainbow,
                norm=plt.normalize(vmax=abs(zi).max(), vmin=-abs(zi).max()))
plt.colorbar()
plt.plot(x, y, 'ko', ms=3)
plt.xlim(-2,2)
plt.ylim(-2,2)
plt.title('tricontour (%d points)' % npts)
print ('tricontour seconds: %f' % (time.clock() - start))

plt.show()
コード例 #50
0
plot_masked_tri = True   # plot of the excessively flat excluded triangles
plot_refi_tri = False    # plot of the refined triangulation
plot_expected = False    # plot of the analytical function values for comparison


# Graphical options for tricontouring
levels = np.arange(0., 1., 0.025)
cmap = cm.get_cmap(name='Blues', lut=None)

plt.figure()
plt.gca().set_aspect('equal')
plt.title("Filtering a Delaunay mesh\n" +
          "(application to high-resolution tricontouring)")

# 1) plot of the refined (computed) data countours:
plt.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap,
               linewidths=[2.0, 0.5, 1.0, 0.5])
# 2) plot of the expected (analytical) data countours (dashed):
if plot_expected:
    plt.tricontour(tri_refi, z_expected, levels=levels, cmap=cmap,
                   linestyles='--')
# 3) plot of the fine mesh on which interpolation was done:
if plot_refi_tri:
    plt.triplot(tri_refi, color='0.97')
# 4) plot of the initial 'coarse' mesh:
if plot_tri:
    plt.triplot(tri, color='0.7')
# 4) plot of the unvalidated triangles from naive Delaunay Triangulation:
if plot_masked_tri:
    plt.triplot(flat_tri, color='red')

plt.show()
コード例 #51
0
ファイル: read_g2x.py プロジェクト: adakite/G2X
print min(u), max(u),numpy.mean(u)
if plotvec:
    vecx=ux ##/u;
    vecy=uy ##/u;
    plt.quiver(triang.x, triang.y, vecx, vecy,color='cyan',zorder=100)


    #           scale=100,headlength=30,headwidth=30)
           #units='xy', scale=1000, zorder=1, color='blue',
           #width=1, headwidth=0.1, headlength=0.1)


if plotcont:
    plt.tricontour(triang, z, levels=[0.25],
            #colors=['0.25', '0.5', '0.5', '0.5', '0.5'],
            cmap=cmap,
            linewidths=[1.0],zorder=50)


if plottri:
    aa=1.0
    im=plt.tricontourf(triang,z, levels=levels, cmap=cmap,alpha=aa)
    divider = make_axes_locatable(ax)

    cax = divider.append_axes("right", size="5%", pad=0.15)
    plt.colorbar(im, cax=cax)
    plt.title(label)


fig.savefig(pngfile)
fig.savefig(pdffile)
コード例 #52
0
# Create the Triangulation; no triangles so Delaunay triangulation created.
triang = tri.Triangulation(x, y)

# Mask off unwanted triangles.
xmid = x[triang.triangles].mean(axis=1)
ymid = y[triang.triangles].mean(axis=1)
mask = np.where(xmid*xmid + ymid*ymid < min_radius*min_radius, 1, 0)
triang.set_mask(mask)

# pcolor plot.
plt.figure()
plt.gca().set_aspect('equal')
plt.tricontourf(triang, z)
plt.colorbar()
plt.tricontour(triang, z, colors='k')
plt.title('Contour plot of Delaunay triangulation')

# You can specify your own triangulation rather than perform a Delaunay
# triangulation of the points, where each triangle is given by the indices of
# the three points that make up the triangle, ordered in either a clockwise or
# anticlockwise manner.

xy = np.asarray([
    [-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
    [-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
    [-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
    [-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
    [-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
    [-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
    [-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
コード例 #53
0
ファイル: pyugrid_test.py プロジェクト: ivn888/notebook
print 'number of time steps:',len(time_var)
itime = netCDF4.date2index(start,time_var,select='nearest')
start_time = netCDF4.num2date(time_var[0],time_var.units)
stop_time = netCDF4.num2date(time_var[-1],time_var.units)
print 'start time:',start_time.strftime('%Y-%b-%d %H:%M')
print 'stop time:',stop_time.strftime('%Y-%b-%d %H:%M')
dtime = netCDF4.num2date(time_var[itime],time_var.units)
daystr = dtime.strftime('%Y-%b-%d %H:%M')
print 'time selected:', daystr

# <codecell>

z = ncv[zvar][itime,:]

# <codecell>

fig = plt.figure(figsize=(12,12))
levs = np.arange(-1,5,.2)
plt.gca().set_aspect(1./np.cos(lat.mean()*np.pi/180))
plt.tricontourf(triang, z,levels=levs)
plt.colorbar()
plt.tricontour(triang, z, colors='k',levels=levs)
plt.title('%s: Elevation (m): %s' % (nc.title,daystr));

# <codecell>


# <codecell>


コード例 #54
0
ファイル: plot.py プロジェクト: gomes310/scisola
def contour(time_list, depth_list, dc_list, corr_list, beachball_list,
            plot_file):
    """
    Plotting contour
    """

    # sets figure's dimensions
    _fig_x = 60
    _fig_y = 40

    # creates figure
    fig, ax = plt.subplots(figsize=(_fig_x,_fig_y))

    # creates a grid on the (main) plot
    ax.grid()

    # sets labels
    plt.xlabel('Time (sec)')
    plt.ylabel('Centroid Depth (km)')

    # sets font size
    plt.rcParams.update({'font.size': 28})

    # sets margins on the plot
    plt.margins(0.05)

    tri.Triangulation(time_list, depth_list)
    levels=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
    cont = plt.tricontour(time_list, depth_list, corr_list,
                          len(levels), levels=levels, linewidths=0.5,
                          colors='k')

    plt.tricontourf(time_list, depth_list, corr_list, len(levels),
                    levels=levels, cmap=plt.cm.cool)

    plt.clabel(cont)

    cm=plt.cm.copper_r #gia dc

    # plotting beachballs on specific x-axis and y-axis
    # with a color based on the data_dc values (normalized to 0-1)
    _max_corr = max(corr_list)
    _index = corr_list.index(_max_corr)

    for i in xrange(len(beachball_list)):
        if i == _index:
            # sets best beachball's color value to red
            _color = 'red'
            _width = 45 # bigger beachball for best match
        else:
            # sets beachball's color value
            _color = cm(dc_list[i]/100.0)
            _width = 35

	   # draws beachball
        b = beach.beach([beachball_list[i][0], beachball_list[i][1],
                       beachball_list[i][2]], xy=(time_list[i],depth_list[i]),
                       width=_width, linewidth=1, facecolor=_color)

        # holds the aspect but fixes positioning:
        b.set_transform(transforms.IdentityTransform())

        # brings the all patches to the origin (0, 0).
        for p in b._paths:
            p.vertices -= [time_list[i], depth_list[i]]

        # uses the offset property of the collection to position the patches
        b.set_offsets((time_list[i], depth_list[i]))
        b._transOffset = ax.transData

	   # adds beachball to plot
        ax.add_collection(b)

    # creates a colorbar at the right of main plot
    divider = make_axes_locatable(ax)
    # makes room for colorbar
    cax = divider.append_axes("right", size="1%", pad=0.5)
    # set values to colorbar
    norm = colors.Normalize(vmin=0.0, vmax=1.0)
    # creates colorbar on specific axes, norm, canvas color and orientation
    colorbar.ColorbarBase(cax, cmap=plt.cm.cool, norm=norm,
                                orientation='vertical', label='Correlation')

    cax = divider.append_axes("right", size="1%", pad=1.5)
    # set values to colorbar
    norm = colors.Normalize(vmin=0, vmax=100)
    # creates colorbar on specific axes, norm, canvas color and orientation
    colorbar.ColorbarBase(cax, cmap=plt.cm.copper_r , norm=norm,
                                orientation='vertical', label='DC%')

    # save plot to file
    plt.savefig(plot_file, dpi=fig.dpi)
コード例 #55
0
ファイル: metis.py プロジェクト: hpc12/lec13-demo
import matplotlib.pyplot as pt

from mesh import make_mesh
mesh = make_mesh()

# {{{ find connectivity

adjacency = {}
for a, b, c in mesh.elements:
    for v1, v2 in [(a,b), (b,c), (c,a)]:
        for x, y in [(v1, v2), (v2, v1)]:
            adjacency.setdefault(v1, set()).add(v2)

# }}}

from pymetis import part_graph

points = np.array(mesh.points)
elements = np.array(mesh.elements)

vweights = points[:,0]**2

cuts, part_vert = part_graph(2, adjacency,
        #vweights=[int(20*x) for x in vweights]
        )

pt.triplot(points[:, 0], points[:, 1], elements, color="black", lw=0.1)
pt.tripcolor(points[:, 0], points[:, 1], elements, part_vert)
pt.tricontour(points[:, 0], points[:, 1], elements, part_vert, colors="black", levels=[0])
pt.show()
コード例 #56
0
import numpy as np
import math

# First create the x and y coordinates of the points.
n_angles = 48
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)

angles = np.linspace(0, 2*math.pi, n_angles, endpoint=False)
angles = np.repeat(angles[...,np.newaxis], n_radii, axis=1)
angles[:,1::2] += math.pi/n_angles

x = (radii*np.cos(angles)).flatten()
y = (radii*np.sin(angles)).flatten()
z = (np.cos(radii)*np.cos(angles*3.0)).flatten()

# Create a custom triangulation
triang = tri.Triangulation(x, y)

# Mask off unwanted triangles.
xmid = x[triang.triangles].mean(axis=1)
ymid = y[triang.triangles].mean(axis=1)
mask = np.where(xmid*xmid + ymid*ymid < min_radius*min_radius, 1, 0)
triang.set_mask(mask)

plt.figure()
plt.gca(projection='3d')
plt.tricontour(triang, z)
plt.show()
コード例 #57
0
    def writeContour(self):
        key = "CLsexp"
        if self.gridConfig.useDiscovery:
            key = "p0exp"

        self.writePreHook()

        x = np.array([p[self.gridConfig.x] for p in self.contourData.combinedData.values() if p[self.contourData.combineOn] is not None])
        y = np.array([p[self.gridConfig.y] for p in self.contourData.combinedData.values() if p[self.contourData.combineOn] is not None])
        z = np.array([p[self.contourData.combineOn] for p in self.contourData.combinedData.values() if p[self.contourData.combineOn] is not None])

        if x.size == 0 or y.size == 0 or z.size == 0:
            print("No data points for for contour")
            return

        # Set up a regular grid of interpolation points
        xMin = 0
        yMin = 0
        xMax = x.max()
        yMax = y.max()

        # vertical levels array for the plot
        v = np.linspace(0, 1.0, 21, endpoint=True)
        plt.ioff()
        fig = plt.figure(figsize=(20,6))
        ax = plt.subplot(111)

        triang = matplotlib.tri.Triangulation(x, y)
        CS = plt.tricontour(triang, z, v, linewidths=3.5, colors=('blue'), levels=[0.05])
        plt.tricontourf(triang, z, v, cmap=plt.cm.jet_r)
        CB = plt.colorbar(ticks=v)

        lines = [CS.collections[0]]
        labels = ["Combined"]

        cmap = get_cmap(len(self.contourData.contributingRegions))
        i=0
        for f in self.contourData.contributingRegions:
            i+=1
            rX = np.array([p[self.gridConfig.x] for p in self.contourData.data[f].values() if p[self.contourData.combineOn] is not None])
            rY = np.array([p[self.gridConfig.y] for p in self.contourData.data[f].values() if p[self.contourData.combineOn] is not None])
            rZ = np.array([p[self.contourData.combineOn] for p in self.contourData.data[f].values() if p[self.contourData.combineOn] is not None])

            triang = matplotlib.tri.Triangulation(rX, rY)
            # we have exactly 1 contour, so set our tuple to that
            rCS = plt.tricontour(triang, rZ, v, linewidths=1.5, colors=(cmap(i),), linestyle='--', levels=[0.05])

            label = filterLabel(f, self.gridConfig)
            labels.append(label)
            lines.append(rCS.collections[0])

        plt.title('Optimisation result', weight='bold')
        plt.xlabel('%s [GeV]' % (self.gridConfig.x), position=(1,0), horizontalalignment='right', weight='bold')
        plt.ylabel('%s [GeV]' % (self.gridConfig.y), position=(0,1), horizontalalignment='right', weight='bold')

        (outputFilename, ext) = os.path.splitext(self.outputFilename)
        outputFilename = "%s.contour%s" % (outputFilename, ext)

        # Shrink current axis by 50%
        box = ax.get_position()
        ax.set_position([box.x0, box.y0, box.width * 0.5, box.height])

        # Put a legend to the right of the current axis
        ax.legend(lines, labels, loc='center left', bbox_to_anchor=(1, 0.5), shadow=False, fontsize='x-small')

        #legend = plt.legend(lines, labels, loc='upper right', shadow=False, fontsize='x-small')

        if not os.path.exists(os.path.dirname(outputFilename)):
            print("Creating output dir {0}".format(os.path.dirname(outputFilename)))
            os.makedirs(os.path.dirname(outputFilename))

        plt.savefig(outputFilename, close=False, verbose=True, bbox_inches='tight')
        print("\n=> Wrote contour to {0}".format(outputFilename))
コード例 #58
0
        sys.exit()
else:
    print 'no valid .soln file'
    sys.exit()

x = xy[:, 0]
y = xy[:, 1]

print 'solution has minimum %.6e, maximum %.6e' % (u.min(),u.max())

if (args.contours == np.nan):
    NC = 10
    print 'plotting with %d automatic contours ...' % NC
    du = u.max() - u.min()
    C = np.linspace(u.min()+du/(2*NC),u.max()-du/(2*NC),NC)
else:
    C = np.array(args.contours)

plt.figure()
plt.gca().set_aspect('equal')
plt.tricontour(x, y, ele, u, C, colors='k', extend='neither', linewidths=0.5, linestyles='solid')
plt.axis('off')

if len(args.o) > 0:
    print 'saving contour map in %s ...' % args.o
    plt.savefig(args.o,bbox_inches='tight')
else:
    print 'plotting to screen (-o not given) ...'
    plt.show()

コード例 #59
0
ファイル: fvcom_test.py プロジェクト: rsignell-usgs/mwra-wq

# In[11]:

zcube = cube[itime,klev]


# In[12]:

plt.figure(figsize=(16,6))
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent(bbox)
ax.coastlines(resolution='10m')
plt.tricontourf(triang, zcube.data, levels=levs)
plt.colorbar(fraction=0.046, pad=0.04)
plt.tricontour(triang, zcube.data, colors='k',levels=levs)
tstr = tvar.units.num2date(tvar.points[itime])
gl = ax.gridlines(draw_labels=True)
gl.xlabels_top = False
gl.ylabels_right = False
plt.title('%s: %s: %s' % (var,tstr,zcube.attributes['title']));


# In[13]:

ucube = iris.load_raw(url,'eastward_sea_water_velocity')[0]
vcube = iris.load_raw(url,'northward_sea_water_velocity')[0]


# In[14]: