def plot_field(self, field): """ Map the given field. Parameters: ----------- field : 1D array TOCHECK Field to plot. """ if self.mask is not None: field = np.ma.masked_where(field <= self.mask, field) # Update array values if the plot has already been initialised if self.tripcolor_plot: field = field[self.masked_tris].mean(axis=1) self.tripcolor_plot.set_array(field) return # Create tripcolor plot x, y = self.m(self.lon, self.lat) self.tri = Triangulation(x, y, self.triangles) self.masked_tris = self.tri.get_masked_triangles() field = field[self.masked_tris].mean(axis=1) self.tripcolor_plot = self.axes.tripcolor(self.tri, field, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, edgecolors=self.edgecolors, zorder=1, norm=self.norm) # Overlay the grid # self.axes.triplot(self.tri, zorder=2) # Overlay stations in the first instance if self.stations is not None: mx, my = self.m(self.stations[0, :], self.stations[1, :]) self.axes.scatter(mx, my, marker='*', c='k', s=self.s_stations, edgecolors='none', zorder=4) # Add colorbar scaled to axis width divider = make_axes_locatable(self.axes) cax = divider.append_axes("right", size="5%", pad=0.05) self.cbar = self.figure.colorbar(self.tripcolor_plot, cax=cax, extend=self.extend) self.cbar.ax.tick_params(labelsize=self.fs) if self.cb_label: self.cbar.set_label(self.cb_label) return
def _contour_args(self, args, kwargs): if self.filled: fn = 'contourf' else: fn = 'contour' tri, args, kwargs = Triangulation.get_from_args_and_kwargs( *args, **kwargs) z = np.asarray(args[0]) #identified potential area of code to fix add type check of nans and raise warning here maybe to fix if z.shape != tri.x.shape: raise ValueError('z array must have same length as triangulation x' ' and y arrays') #attempt solution 1 presented by ianthomas23 in issue if len(z[np.isnan(z[:, :])]) != 0: raise ValueError('z array must have contain no nan values') if len(z[np.isinf(z[:, :])]) != 0: raise ValueError('z array must have contain no inf values') self.zmax = z.max() self.zmin = z.min() if self.logscale and self.zmin <= 0: raise ValueError('Cannot %s log of negative values.' % fn) self._contour_level_args(z, args[1:]) return (tri, z)
def _contour_args(self, args, kwargs): if self.filled: fn = 'contourf' else: fn = 'contour' tri, args, kwargs = Triangulation.get_from_args_and_kwargs( *args, **kwargs) z = np.ma.asarray(args[0]) if z.shape != tri.x.shape: raise ValueError('z array must have same length as triangulation x' ' and y arrays') # z values must be finite, only need to check points that are included # in the triangulation. z_check = z[np.unique(tri.get_masked_triangles())] if np.ma.is_masked(z_check): raise ValueError('z must not contain masked points within the ' 'triangulation') if not np.isfinite(z_check).all(): raise ValueError('z array must not contain non-finite values ' 'within the triangulation') z = np.ma.masked_invalid(z, copy=False) self.zmax = float(z_check.max()) self.zmin = float(z_check.min()) if self.logscale and self.zmin <= 0: raise ValueError('Cannot %s log of negative values.' % fn) self._contour_level_args(z, args[1:]) return (tri, z)
def plot_trisurf(self, *args, **kwargs): ''' plot_trisurf(x, y, z, **wrargs) plot_trisurf(x, y, z, triangles = triangle,,,) plot_trisurf(tri, z, **kwargs, cz = cz, cdata = cdata) ''' from art3d_gl import poly_collection_3d_to_gl from matplotlib.tri.triangulation import Triangulation cz = kwargs.pop('cz', False) cdata = kwargs.pop('cdata', None) expanddata = kwargs.pop('expanddata', False) tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) if 'Z' in kwargs: z = np.asarray(kwargs.pop('Z')) else: z = np.asarray(args[0]) # We do this so Z doesn't get passed as an arg to PolyCollection args = args[1:] triangles = tri.get_masked_triangles() X3D = tri.x Y3D = tri.y Z3D = z idxset = tri.get_masked_triangles() if expanddata: verts = np.dstack((X3D[idxset], Y3D[idxset], Z3D[idxset])) if cz: if cdata is not None: cdata = cdata[idxset] else: cdata = Z3D[idxset] shade = kwargs.pop('shade', 'linear') if shade != 'linear': cdata = np.mean(cdata, -1) kwargs['facecolordata'] = np.real(cdata) kwargs.pop('facecolor', None) # get rid of this keyword kwargs['cz'] = cz o = self.plot_solid(verts, **kwargs) o._idxset = (None, None, idxset) # this is used for phasor else: verts = np.vstack((X3D, Y3D, Z3D)).transpose() if cz: if cdata is not None: cdata = cdata else: cdata = Z3D kwargs['facecolordata'] = np.real(cdata) kwargs.pop('facecolor', None) # get rid of this keyword kwargs['cz'] = cz o = self.plot_solid(verts, idxset, **kwargs) o._idxset = (None, None, None) # this is used for phasor return o
def plot_trisurf(self, *args, **kwargs): ''' plot_trisurf(x, y, z, **wrargs) plot_trisurf(x, y, z, triangles = triangle,,,) plot_trisurf(tri, z, **kwargs, cz = cz, cdata = cdata) ''' from art3d_gl import poly_collection_3d_to_gl from matplotlib.tri.triangulation import Triangulation cz = kwargs.pop('cz', False) cdata = kwargs.pop('cdata', None) expanddata = kwargs.pop('expanddata', False) tri, args, kwargs = Triangulation.get_from_args_and_kwargs( *args, **kwargs) if 'Z' in kwargs: z = np.asarray(kwargs.pop('Z')) else: z = np.asarray(args[0]) # We do this so Z doesn't get passed as an arg to PolyCollection args = args[1:] triangles = tri.get_masked_triangles() X3D = tri.x Y3D = tri.y Z3D = z idxset = tri.get_masked_triangles() if expanddata: verts = np.dstack((X3D[idxset], Y3D[idxset], Z3D[idxset])) if cz: if cdata is not None: cdata = cdata[idxset] else: cdata = Z3D[idxset] shade = kwargs.pop('shade', 'linear') if shade != 'linear': cdata = np.mean(cdata, -1) kwargs['facecolordata'] = np.real(cdata) kwargs.pop('facecolor', None) # get rid of this keyword kwargs['cz'] = cz o = self.plot_solid(verts, **kwargs) o._idxset = (None, None, idxset) # this is used for phasor else: verts = np.vstack((X3D, Y3D, Z3D)).transpose() if cz: if cdata is not None: cdata = cdata else: cdata = Z3D kwargs['facecolordata'] = np.real(cdata) kwargs.pop('facecolor', None) # get rid of this keyword kwargs['cz'] = cz o = self.plot_solid(verts, idxset, **kwargs) o._idxset = (None, None, None) # this is used for phasor return o
def generate_mesh(nodes): from matplotlib.tri.triangulation import Triangulation from numpy import array x = []; y = [] for nid in sorted(nodes.keys()): x_, y_ = nodes[nid] x.append(x_) y.append(y_) t = Triangulation(x, y) return array(x), array(y), t.triangles
def meshDelaunay(settings, heights): ''' Convert coordinates to mesh using Delaunay triangulation. Also returns colormap for writing the mesh in IDTF format, surface triangles from triangulation (as opposed to tetrahedra), and the top surface area of the mesh. ''' # Get coordinates of all height points (omitting zeros) coordinates = np.where(heights != 0) x_3D = coordinates[0] y_3D = coordinates[1] # Generate 3D mesh from heights using meshgrid and griddata dx = (max(x_3D) - min(x_3D)) / settings['grid_size'] dy = (max(y_3D) - min(y_3D)) / settings['grid_size'] x_grid = np.linspace(min(x_3D), max(x_3D), max(dx, dy)) y_grid = np.linspace(min(y_3D), max(y_3D), max(dx, dy)) X, Y = np.meshgrid(x_grid, y_grid) z = np.array( [heights[x_3D[i], y_3D[i]] for i in range(len(coordinates[0]))]) Z = griddata((x_3D, y_3D), z, (X, Y)) # Convert NaNs to zeros and find non-zero coordinates Z[np.isnan(Z)] = 0 nonZero = np.where(Z > 0) # Indices of non-zero points # Subset X,Y, and Z to contain only non-zero points Z_nz = Z[nonZero[0], nonZero[1]] X_nz = np.array([X[0][xi] for xi in nonZero[0]]) Y_nz = np.array([Y[:, 0][yi] for yi in nonZero[1]]) xyz_points = np.column_stack((X_nz, Y_nz, Z_nz)) triangulation = Delaunay(xyz_points) # Get surface triangles triang, args, kwargs = Triangulation.get_from_args_and_kwargs( X_nz, Y_nz, Z_nz, triangles=triangulation.simplices) triangles = triang.get_masked_triangles( ) # From matplotlib.tri.triangulation # Get color values for mesh triangle faces fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.plot_trisurf(X_nz, Y_nz, Z_nz, triangles=triangles, cmap=plt.cm.viridis) m = plt.cm.ScalarMappable(cmap=surf.cmap, norm=surf.norm) colors = m.to_rgba(Z_nz) return z, triangulation, triangles, colors
def _contour_args(self, args, kwargs): if self.filled: fn = 'contourf' else: fn = 'contour' tri, args, kwargs = \ Triangulation.get_from_args_and_kwargs(*args, **kwargs) z = np.asarray(args[0]) if z.shape != tri.x.shape: raise ValueError('z array must have same length as triangulation x' 'and y arrays') self.zmax = z.max() self.zmin = z.min() if self.logscale and self.zmin <= 0: raise ValueError('Cannot %s log of negative values.' % fn) self._contour_level_args(z, args[1:]) return (tri, z)
def meshDelaunay(settings,heights): ''' Convert coordinates to mesh using Delaunay triangulation. Also returns colormap for writing the mesh in IDTF format, surface triangles from triangulation (as opposed to tetrahedra), and the top surface area of the mesh. ''' # Get coordinates of all height points (omitting zeros) coordinates = np.where(heights != 0) x_3D = coordinates[0] y_3D = coordinates[1] # Generate 3D mesh from heights using meshgrid and griddata dx = (max(x_3D) - min(x_3D)) / settings['grid_size'] dy = (max(y_3D) - min(y_3D)) / settings['grid_size'] x_grid = np.linspace(min(x_3D),max(x_3D),max(dx,dy)) y_grid = np.linspace(min(y_3D),max(y_3D),max(dx,dy)) X,Y = np.meshgrid(x_grid,y_grid) z = np.array([heights[x_3D[i],y_3D[i]] for i in range(len(coordinates[0]))]) Z = griddata((x_3D,y_3D),z,(X,Y)) # Convert NaNs to zeros and find non-zero coordinates Z[np.isnan(Z)] = 0 nonZero = np.where(Z > 0) # Indices of non-zero points # Subset X,Y, and Z to contain only non-zero points Z_nz = Z[nonZero[0],nonZero[1]] X_nz= np.array([X[0][xi] for xi in nonZero[0]]) Y_nz = np.array([Y[:,0][yi] for yi in nonZero[1]]) xyz_points = np.column_stack((X_nz,Y_nz,Z_nz)) triangulation = Delaunay(xyz_points) # Get surface triangles triang,args,kwargs = Triangulation.get_from_args_and_kwargs(X_nz,Y_nz,Z_nz,triangles=triangulation.simplices) triangles = triang.get_masked_triangles() # From matplotlib.tri.triangulation # Get color values for mesh triangle faces fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.plot_trisurf(X_nz,Y_nz,Z_nz,triangles=triangles,cmap=plt.cm.viridis) m = plt.cm.ScalarMappable(cmap=surf.cmap,norm=surf.norm) colors = m.to_rgba(Z_nz) return z,triangulation,triangles,colors
def triplot(ax, *args, **kwargs): """ Draw a unstructured triangular grid as lines and/or markers to the :class:`~matplotlib.axes.Axes`. The triangulation to plot can be specified in one of two ways; either:: triplot(triangulation, ...) where triangulation is a :class:`~matplotlib.tri.Triangulation` object, or :: triplot(x, y, ...) triplot(x, y, triangles, ...) triplot(x, y, triangles=triangles, ...) triplot(x, y, mask, ...) triplot(x, y, mask=mask, ...) triplot(x, y, triangles, mask, ...) triplot(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The remaining args and kwargs are the same as for :meth:`~matplotlib.axes.Axes.plot`. **Example:** .. plot:: mpl_examples/pylab_examples/triplot_demo.py """ tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x = tri.x y = tri.y edges = tri.edges marker = kwargs.pop('marker', None) kwargs['marker'] = '' ax.plot(x[edges].T, y[edges].T, *args, **kwargs) if marker is None: kwargs.pop('marker') else: kwargs['marker'] = marker kwargs['linestyle'] = '' ax.plot(x, y, *args, **kwargs)
def tripcolor(ax, *args, **kwargs): """ Create a pseudocolor plot of an unstructured triangular grid to the :class:`~matplotlib.axes.Axes`. The triangulation can be specified in one of two ways; either:: tripcolor(triangulation, ...) where triangulation is a :class:`~matplotlib.tri.Triangulation` object, or :: tripcolor(x, y, ...) tripcolor(x, y, triangles, ...) tripcolor(x, y, triangles=triangles, ...) tripcolor(x, y, mask, ...) tripcolor(x, y, mask=mask, ...) tripcolor(x, y, triangles, mask, ...) tripcolor(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The next argument must be *C*, the array of color values, one per point in the triangulation. The colors used for each triangle are from the mean C of the triangle's three points. The remaining kwargs are the same as for :meth:`~matplotlib.axes.Axes.pcolor`. **Example:** .. plot:: mpl_examples/pylab_examples/tripcolor_demo.py """ if not ax._hold: ax.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x = tri.x y = tri.y triangles = tri.get_masked_triangles() # Vertices of triangles. verts = np.concatenate( (x[triangles][..., np.newaxis], y[triangles][..., np.newaxis]), axis=2) C = np.asarray(args[0]) if C.shape != x.shape: raise ValueError('C array must have same length as triangulation x and' ' y arrays') # Color values, one per triangle, mean of the 3 vertex color values. C = C[triangles].mean(axis=1) if shading == 'faceted': edgecolors = (0, 0, 0, 1), linewidths = (0.25, ) else: edgecolors = 'face' linewidths = (1.0, ) kwargs.setdefault('edgecolors', edgecolors) kwargs.setdefault('antialiaseds', (0, )) kwargs.setdefault('linewidths', linewidths) collection = PolyCollection(verts, **kwargs) collection.set_alpha(alpha) collection.set_array(C) if norm is not None: assert (isinstance(norm, Normalize)) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() ax.grid(False) minx = tri.x.min() maxx = tri.x.max() miny = tri.y.min() maxy = tri.y.max() corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() ax.add_collection(collection) return collection
def triplot(ax, *args, **kwargs): """ Draw a unstructured triangular grid as lines and/or markers to the :class:`~matplotlib.axes.Axes`. The triangulation to plot can be specified in one of two ways; either:: triplot(triangulation, ...) where triangulation is a :class:`~matplotlib.tri.Triangulation` object, or :: triplot(x, y, ...) triplot(x, y, triangles, ...) triplot(x, y, triangles=triangles, ...) triplot(x, y, mask=mask, ...) triplot(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The remaining args and kwargs are the same as for :meth:`~matplotlib.axes.Axes.plot`. **Example:** .. plot:: mpl_examples/pylab_examples/triplot_demo.py """ import matplotlib.axes tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x = tri.x y = tri.y edges = tri.edges # If draw both lines and markers at the same time, e.g. # ax.plot(x[edges].T, y[edges].T, *args, **kwargs) # then the markers are drawn more than once which is incorrect if alpha<1. # Hence draw lines and markers separately. # Decode plot format string, e.g. 'ro-' fmt = '' if len(args) > 0: fmt = args[0] # _process_plot_format moves around so I made copy here. # not a best solution...;D # linestyle, marker, color = matplotlib.axes._process_plot_format(fmt) linestyle, marker, color = _process_plot_format(fmt) # Draw lines without markers, if lines are required. a = [] if linestyle is not None and linestyle is not 'None': kw = kwargs.copy() kw.pop('marker', None) # Ignore marker if set. kw['linestyle'] = ls_mapper[linestyle] kw['edgecolor'] = color kw['facecolor'] = None vertices = np.column_stack((x[edges].flatten(), y[edges].flatten())) codes = ([Path.MOVETO] + [Path.LINETO])*len(edges) path = Path(vertices, codes) pathpatch = PathPatch(path, **kw) ax.add_patch(pathpatch) a.append(pathpatch) # Draw markers without lines. # Should avoid drawing markers for points that are not in any triangle? kwargs['linestyle'] = '' # without hiding points explicitly, marker would expose hidden points. idx = np.unique(edges.flatten()) l = ax.plot(x[idx], y[idx], *args, **kwargs) a = l+a return a
def tripcolor_costum( ax, *args, alpha=1.0, override_cmap_alpha=True, norm=None, cmap=None, vmin=None, vmax=None, shading="flat", facecolors=None, **kwargs, ): """ Create a pseudocolor plot of an unstructured triangular grid. The triangulation can be specified in one of two ways; either:: tripcolor(triangulation, ...) where triangulation is a :class:`matplotlib.tri.Triangulation` object, or :: tripcolor(x, y, ...) tripcolor(x, y, triangles, ...) tripcolor(x, y, triangles=triangles, ...) tripcolor(x, y, mask=mask, ...) tripcolor(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The next argument must be *C*, the array of color values, either one per point in the triangulation if color values are defined at points, or one per triangle in the triangulation if color values are defined at triangles. If there are the same number of points and triangles in the triangulation it is assumed that color values are defined at points; to force the use of color values at triangles use the kwarg ``facecolors=C`` instead of just ``C``. *shading* may be 'flat' (the default) or 'gouraud'. If *shading* is 'flat' and C values are defined at points, the color values used for each triangle are from the mean C of the triangle's three points. If *shading* is 'gouraud' then color values must be defined at points. The remaining kwargs are the same as for :meth:`~matplotlib.axes.Axes.pcolor`. """ cbook._check_in_list(["flat", "gouraud"], shading=shading) tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) # C is the colors array defined at either points or faces (i.e. triangles). # If facecolors is None, C are defined at points. # If facecolors is not None, C are defined at faces. if facecolors is not None: C = facecolors else: C = np.asarray(args[0]) # If there are a different number of points and triangles in the # triangulation, can omit facecolors kwarg as it is obvious from # length of C whether it refers to points or faces. # Do not do this for gouraud shading. if (facecolors is None and len(C) == len(tri.triangles) and len(C) != len(tri.x) and shading != "gouraud"): facecolors = C # Check length of C is OK. if (facecolors is None and len(C) != len(tri.x)) or (facecolors is not None and len(C) != len(tri.triangles)): raise ValueError("Length of color values array must be the same " "as either the number of triangulation points " "or triangles") # Handling of linewidths, shading, edgecolors and antialiased as # in Axes.pcolor linewidths = (0.25, ) if "linewidth" in kwargs: kwargs["linewidths"] = kwargs.pop("linewidth") kwargs.setdefault("linewidths", linewidths) edgecolors = "none" if "edgecolor" in kwargs: kwargs["edgecolors"] = kwargs.pop("edgecolor") ec = kwargs.setdefault("edgecolors", edgecolors) if "antialiased" in kwargs: kwargs["antialiaseds"] = kwargs.pop("antialiased") if "antialiaseds" not in kwargs and ec.lower() == "none": kwargs["antialiaseds"] = False if shading == "gouraud": if facecolors is not None: raise ValueError("Gouraud shading does not support the use " "of facecolors kwarg") if len(C) != len(tri.x): raise ValueError("For gouraud shading, the length of color " "values array must be the same as the " "number of triangulation points") collection = CustomTriMesh(tri, **kwargs) else: # Vertices of triangles. maskedTris = tri.get_masked_triangles() verts = np.stack((tri.x[maskedTris], tri.y[maskedTris]), axis=-1) # Color values. if facecolors is None: # One color per triangle, the mean of the 3 vertex color values. C = C[maskedTris].mean(axis=1) elif tri.mask is not None: # Remove color values of masked triangles. C = C[~tri.mask] collection = CustomPolyCollection(verts, **kwargs) collection.set_alpha(alpha) collection.set_override_cmap_alpha(override_cmap_alpha) collection.set_array(C) if norm is not None and not isinstance(norm, Normalize): raise ValueError("'norm' must be an instance of 'Normalize'") collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() ax.grid(False) minx = tri.x.min() maxx = tri.x.max() miny = tri.y.min() maxy = tri.y.max() corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() ax.add_collection(collection) return ax, collection
# Read in the grid's dimensions n_nodes = mediator.get_dimension_variable('node') n_elems = mediator.get_dimension_variable('element') # Grid connectivity/adjacency nv = mediator.get_grid_variable('nv', (3, n_elems), int) # Cartesian coordinates x_nodes = mediator.get_grid_variable('x', (n_nodes), float) y_nodes = mediator.get_grid_variable('y', (n_nodes), float) x_centroids = mediator.get_grid_variable('xc', (n_elems), float) y_centroids = mediator.get_grid_variable('yc', (n_elems), float) triangles = nv.transpose() tri = Triangulation(x_nodes, y_nodes, triangles) # Plot fig = plt.figure() ax = fig.add_subplot(111) ax.triplot(tri) for idx, (xc, yc) in enumerate(zip(x_centroids, y_centroids)): ax.scatter(xc, yc) ax.annotate('xc_{}'.format(idx), xy=(xc, yc), xytext=(xc, yc)) # Plot for idx, (x, y) in enumerate(zip(x_nodes, y_nodes)): ax.scatter(x, y) ax.annotate('xn_{}'.format(idx), xy=(x, y), xytext=(x, y))
def show_img(self, start_frame, period=None, output=None, cell_rep=1, vmax=None, scalebar=False, boundary=None, offset=5, boundary_offset=5, img_offset=10, cmap="gray", mode='tri', bin_step=1, r=5, bin_rep=7, tri_method='linear', roll_correction=True): if start_frame < 0: start_frame = len(self.Z_history) - 1 if period is None: period = 100000000 for num in range(start_frame, len(self.Z_history), period): img_name = "rip.{}.png".format(str(int(num / period)).zfill(5)) print("DISPL NUM::{}".format(num)) X_, Y_, Z_ = self.leveled_xyz(self.Z_history[num], cell_rep, correction=roll_correction) flat = [None, None, None] flat[0] = X_.flatten() flat[1] = Y_.flatten() flat[2] = Z_.flatten() flat = np.asarray(flat) if boundary is None: boundary = self.get_img_boundary(X_, Y_, Z_) boundary[0][0] += offset boundary[1][0] += offset boundary[0][1] -= offset boundary[1][1] -= offset print(boundary) if mode == 'scatter3d' or mode == 'scatter': #x_flag = np.logical_and(flat_[0] > boundary[0][0], flat_[0] < boundary[0][1]) #y_flag = np.logical_and(flat_[1] > boundary[1][0], flat_[1] < boundary[1][1]) #flat = np.array(flat_) #flat = flat[:, np.logical_and(x_flag, y_flag)] if mode == 'scatter3d': fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(flat[0], flat[1], flat[2]) ax.set_xlabel("X axis") ax.set_ylabel("Y axis") plt.show() else: plt.scatter(flat[0], flat[1]) plt.show() elif mode == 'surf': r2 = np.power(r, 2) bin_centers = [ np.arange(boundary[0, 0], boundary[0, 1] + 0.001, bin_step), np.arange(boundary[1, 0], boundary[1, 1] + 0.001, bin_step) ] bin_edges = np.array([ bin_centers[0][:-1] + 0.5 * bin_step, bin_centers[1][:-1] + 0.5 * bin_step ]) indexes = [None, None] indexes[0] = np.digitize(flat_[0], bin_edges[0]) # x bins indexes[1] = np.digitize(flat_[1], bin_edges[1]) # y bins safe_offset = -1000000 Z_holder = np.ones( (bin_centers[1].shape[0], bin_centers[0].shape[0], 3, 3), dtype=float) * safe_offset for i in range(len(flat_[0])): ix = indexes[0][i] iy = indexes[1][i] cr_z = flat_[2][i] if (Z_holder[iy, ix, 0, 2] < cr_z): Z_holder[iy, ix, 2] = Z_holder[iy, ix, 1] Z_holder[iy, ix, 1] = Z_holder[iy, ix, 0] Z_holder[iy, ix, 0] = [flat_[0][i], flat_[1][i], cr_z] elif (Z_holder[iy, ix, 1, 2] < cr_z): Z_holder[iy, ix, 2] = Z_holder[iy, ix, 1] Z_holder[iy, ix, 1] = [flat_[0][i], flat_[1][i], cr_z] elif (Z_holder[iy, ix, 2, 2] < cr_z): Z_holder[iy, ix, 2] = [flat_[0][i], flat_[1][i], cr_z] # discard edges Z_holder = Z_holder[1:-1, 1:-1, :, :] probe_bins = (bin_rep * 2 + 1) * (bin_rep * 2 + 1) probe_bins_total = probe_bins * 3 Z_full_holder = np.empty((Z_holder.shape[0], Z_holder.shape[1], probe_bins_total, 3)) bin_rep_arr = list(range(-bin_rep, bin_rep + 1)) for n_, roll_ in zip( range(probe_bins), itertools.product(bin_rep_arr, bin_rep_arr)): #print(roll_, n_*3, (n_+1)*3) Z_full_holder[:, :, n_ * 3:(n_ + 1) * 3] = np.roll( Z_holder, (roll_[0], roll_[1]), axis=(0, 1)) Z_full_holder = Z_full_holder[1:-1, 1:-1, :, :] bin_centers[0] = bin_centers[0][2:-2] bin_centers[1] = bin_centers[1][2:-2] probe = np.stack(np.meshgrid(bin_centers[0], bin_centers[1]), -1) probe = np.append(probe, np.zeros( (probe.shape[0], probe.shape[1], 1)), axis=2) probe = np.tile(probe, probe_bins_total).reshape( probe.shape[0], probe.shape[1], probe_bins_total, 3) probe_diff = Z_full_holder - probe probe_height = np.sqrt(r2 - (np.power(probe_diff[:, :, :, 0], 2) + np.power(probe_diff[:, :, :, 1], 2))) probe_z = Z_full_holder[:, :, :, 2] + probe_height probe_z[np.isnan(probe_z)] = safe_offset probe_z = np.amax(probe_z, -1) probe_z[probe_z <= safe_offset + 1] = 0.0 probe_z -= np.min(probe_z) print("Probe {}".format(np.max(probe_z))) if vmax is None: vmax = np.max(probe_z) if vmax == "get": return np.max(probe_z) # normalize probe_z = probe_z / vmax probe_z = (0.5 - np.mean(probe_z)) + probe_z if output: plt.imsave("{}/{}".format(output, img_name), probe_z, cmap=cmap) else: plt.imshow(probe_z, cmap=cmap, vmin=0.0, vmax=1.0) plt.show() elif mode == 'tri' or mode == 'tri_scatter': tri = Triangulation(flat[0], flat[1]) if tri_method == 'cube': interpol = CubicTriInterpolator(tri, flat[2]) else: interpol = LinearTriInterpolator(tri, flat[2]) x_new = np.arange(boundary[0][0], boundary[0][1], self.img_dx) y_new = np.arange(boundary[1][0], boundary[1][1], self.img_dx) X_new, Y_new = np.meshgrid(x_new, y_new) Z_new = interpol(X_new, Y_new) print("Orginal range: {} {}".format(np.min(Z_new), np.max(Z_new))) Z_new = Z_new - np.min(Z_new) if vmax == "get": return np.max(Z_new) if vmax is None: vmax = np.max(Z_new) Z_new = Z_new / vmax Z_new += (1 - np.max(Z_new)) * 0.5 if scalebar: plt.gca().add_artist(ScaleBar(1.0 / self.img_dx, 'nm')) if output: if mode == 'tri': plt.imsave("{}/{}".format(output, img_name), Z_new, vmin=0, vmax=1, cmap=cmap) else: inside_box = np.logical_and( np.logical_and(flat[0] > boundary[0][0], flat[0] < boundary[0][1]), np.logical_and(flat[1] > boundary[1][0], flat[1] < boundary[1][1])) scatter_x = flat[0, inside_box] scatter_y = flat[1, inside_box] plt.imshow(Z_new, vmin=0, vmax=1, cmap=cmap) plt.scatter(scatter_x - boundary[0][0], scatter_y - boundary[1][0], marker=',', s=1, lw=0, color='red') plt.savefig("{}/{}".format(output, img_name)) plt.cla() else: plt.imshow(Z_new, vmin=0, vmax=1, cmap=cmap) if mode == 'tri_scatter': inside_box = np.logical_and( np.logical_and(flat[0] > boundary[0][0], flat[0] < boundary[0][1]), np.logical_and(flat[1] > boundary[1][0], flat[1] < boundary[1][1])) scatter_x = flat[0, inside_box] scatter_y = flat[1, inside_box] plt.scatter(scatter_x - boundary[0][0], scatter_y - boundary[1][0], marker=',', s=1, lw=0, color='red') plt.show()
class Plotter(): """ Create plot objects based on output from the FVCOM. Class to assist in the creation of plots and animations based on output from the FVCOM. Provides -------- plot_field plot_quiver plot_lines plot_scatter remove_line_plots (N.B., this is mostly specific to PyLag-tools) Author(s) --------- James Clark (Plymouth Marine Laboratory) Pierre Cazenave (Plymouth Marine Laboratory) """ def __init__(self, dataset, figure=None, axes=None, stations=None, extents=None, vmin=None, vmax=None, mask=None, res='c', fs=10, title=None, cmap='viridis', figsize=(10., 10.), axis_position=None, edgecolors='none', s_stations=20, s_particles=20, linewidth=1.0, tick_inc=None, cb_label=None, extend='neither', norm=None, m=None): """ Parameters: ----------- dataset : Dataset, PyFVCOM.read.FileReader netCDF4 Dataset or PyFVCOM.read.FileReader object. stations : 2D array, optional List of station coordinates to be plotted ([[lons], [lats]]) extents : 1D array, optional Four element numpy array giving lon/lat limits (e.g. [-4.56, -3.76, 49.96, 50.44]) vmin : float, optional Lower bound to be used on colour bar (plot_field only). vmax : float, optional Upper bound to be used colour bar (plot_field only). mask : float, optional Mask out values < mask (plot_field only). res : string, optional Resolution to use when drawing Basemap object fs : int, optional Font size to use when rendering plot text title : str, optional Title to use when creating the plot cmap : string, optional Colormap to use when shading field data (plot_field only). figure : Figure, optional Matplotlib figure object. A figure object is created if not provided. figsize : tuple(float), optional Figure size in cm. This is only used if a new Figure object is created. axes : Axes, optional Matplotlib Axes object. An Axes object is created if not provided. axis_position : 1D array, optional Array giving axis dimensions s_stations : int, optional Symbol size used when producing scatter plot of station locations s_particles : int, optional Symbol size used when producing scatter plot of particle locations linewidth : float, optional Linewidth to be used when generating line plots tick_inc : list, optional Add coordinate axes (i.e. lat/long) at the intervals specified in the list ([lon_spacing, lat_spacing]). cb_label : str, optional Set the colour bar label. extend : str, optional Set the colour bar extension ('neither', 'both', 'min', 'max'). Defaults to 'neither'). norm : matplotlib.colors.Normalize, optional Normalise the luminance to 0,1. For example, use from matplotlib.colors.LogNorm to do log plots of fields. m : mpl_toolkits.basemap.Basemap, optional Pass a Basemap object rather than creating one on each invocation. Author(s): ------- James Clark (PML) Pierre Cazenave (PML) """ self.ds = dataset self.figure = figure self.axes = axes self.stations = stations self.extents = extents self.vmin = vmin self.vmax = vmax self.mask = mask self.res = res self.fs = fs self.title = title self.cmap = cmap self.figsize = figsize self.axis_position = axis_position self.edgecolors = edgecolors self.s_stations = s_stations self.s_particles = s_particles self.linewidth = linewidth self.tick_inc = tick_inc self.cb_label = cb_label self.extend = extend self.norm = norm self.m = m # Plot instances (initialise to None for truthiness test later) self.quiver_plot = None self.scat_plot = None self.tripcolor_plot = None self.tri = None self.masked_tris = None self.cbar = None self.line_plot = None # Are we working with a FileReader object or a bog-standard netCDF4 Dataset? self._FileReader = False if isinstance(dataset, FileReader): self._FileReader = True # Initialise the figure self._init_figure() def _init_figure(self): # Read in required grid variables if self._FileReader: self.n_nodes = getattr(self.ds.dims, 'node') self.n_elems = getattr(self.ds.dims, 'nele') self.lon = self.ds.grid.lon self.lat = self.ds.grid.lat self.lonc = self.ds.grid.lonc self.latc = self.ds.grid.latc self.nv = self.ds.grid.nv else: self.n_nodes = len(self.ds.dimensions['node']) self.n_elems = len(self.ds.dimensions['nele']) self.lon = self.ds.variables['lon'][:] self.lat = self.ds.variables['lat'][:] self.lonc = self.ds.variables['lonc'][:] self.latc = self.ds.variables['latc'][:] self.nv = self.ds.variables['nv'][:] if self.nv.min() != 1: self.nv -= self.nv.min() # Triangles self.triangles = self.nv.transpose() - 1 # Initialise the figure if self.figure is None: figsize = (cm2inch(self.figsize[0]), cm2inch(self.figsize[1])) self.figure = plt.figure(figsize=figsize) self.figure.set_facecolor('white') # Create plot axes if not self.axes: self.axes = self.figure.add_subplot(1, 1, 1) if self.axis_position: self.axes.set_position(self.axis_position) # If plot extents were not given, use min/max lat/lon values if self.extents is None: self.extents = np.array([ self.lon.min(), self.lon.max(), self.lat.min(), self.lat.max() ]) # Create basemap object if not self.m: if have_basemap: self.m = Basemap(llcrnrlon=self.extents[:2].min(), llcrnrlat=self.extents[-2:].min(), urcrnrlon=self.extents[:2].max(), urcrnrlat=self.extents[-2:].max(), rsphere=(6378137.00, 6356752.3142), resolution=self.res, projection='merc', area_thresh=0.1, lat_0=self.extents[-2:].mean(), lon_0=self.extents[:2].mean(), lat_ts=self.extents[-2:].mean(), ax=self.axes) else: raise RuntimeError( 'mpl_toolkits is not available in this Python.') self.m.drawmapboundary() self.m.drawcoastlines(zorder=2) self.m.fillcontinents(color='0.6', zorder=2) if self.title: self.axes.set_title(self.title) # Add coordinate labels to the x and y axes. if self.tick_inc: meridians = np.arange(np.floor(np.min(self.extents[:2])), np.ceil(np.max(self.extents[:2])), self.tick_inc[0]) parallels = np.arange(np.floor(np.min(self.extents[2:])), np.ceil(np.max(self.extents[2:])), self.tick_inc[1]) self.m.drawparallels(parallels, labels=[1, 0, 0, 0], fontsize=self.fs, linewidth=0, ax=self.axes) self.m.drawmeridians(meridians, labels=[0, 0, 0, 1], fontsize=self.fs, linewidth=0, ax=self.axes) def replot(self): self.axes.cla() self._init_figure() def plot_field(self, field): """ Map the given field. Parameters: ----------- field : 1D array TOCHECK Field to plot. """ if self.mask is not None: field = np.ma.masked_where(field <= self.mask, field) # Update array values if the plot has already been initialised if self.tripcolor_plot: field = field[self.masked_tris].mean(axis=1) self.tripcolor_plot.set_array(field) return # Create tripcolor plot x, y = self.m(self.lon, self.lat) self.tri = Triangulation(x, y, self.triangles) self.masked_tris = self.tri.get_masked_triangles() field = field[self.masked_tris].mean(axis=1) self.tripcolor_plot = self.axes.tripcolor(self.tri, field, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, edgecolors=self.edgecolors, zorder=1, norm=self.norm) # Overlay the grid # self.axes.triplot(self.tri, zorder=2) # Overlay stations in the first instance if self.stations is not None: mx, my = self.m(self.stations[0, :], self.stations[1, :]) self.axes.scatter(mx, my, marker='*', c='k', s=self.s_stations, edgecolors='none', zorder=4) # Add colorbar scaled to axis width divider = make_axes_locatable(self.axes) cax = divider.append_axes("right", size="5%", pad=0.05) self.cbar = self.figure.colorbar(self.tripcolor_plot, cax=cax, extend=self.extend) self.cbar.ax.tick_params(labelsize=self.fs) if self.cb_label: self.cbar.set_label(self.cb_label) return def plot_quiver(self, u, v, field=False, add_key=True, scale=1.0, label=None): """ Produce quiver plot using u and v velocity components. Parameters: ----------- u : 1D or 2D array u-component of the velocity field. v : 1D or 2D array v-component of the velocity field field : 1D or 2D array velocity magnitude field. Used to colour the vectors. Also adds a colour bar which uses the cb_label and cmap, if provided. add_key : bool, optional Add key for the quiver plot. Defaults to True. scale : float, optional Scaling to be provided to arrows with scale_units of inches. Defaults to 1.0. label : str, optional Give label to use for the quiver key (defaults to "`scale' ms^{-1}"). """ if self.quiver_plot: if np.any(field): self.quiver_plot.set_UVC(u, v, field) else: self.quiver_plot.set_UVC(u, v) return if not label: label = '{} '.format(scale) + r'$\mathrm{ms^{-1}}$' x, y = self.m(self.lonc, self.latc) if np.any(field): self.quiver_plot = self.axes.quiver(x, y, u, v, field, cmap=self.cmap, units='inches', scale_units='inches', scale=scale) divider = make_axes_locatable(self.axes) cax = divider.append_axes("right", size="5%", pad=0.05) self.cbar = self.figure.colorbar(self.quiver_plot, cax=cax) self.cbar.ax.tick_params(labelsize=self.fs) if self.cb_label: self.cbar.set_label(self.cb_label) else: self.quiver_plot = self.axes.quiver(x, y, u, v, units='inches', scale_units='inches', scale=scale) if add_key: self.quiver_key = plt.quiverkey(self.quiver_plot, 0.9, 0.9, scale, label, coordinates='axes') return def plot_lines(self, x, y, group_name='Default', colour='r', zone_number='30N'): """ Plot path lines. Parameters: ----------- x : 1D array TOCHECK Array of x coordinates to plot. y : 1D array TOCHECK Array of y coordinates to plot. group_name : str, optional Group name for this set of particles - a separate plot object is created for each group name passed in. Default `None' color : string, optional Colour to use when making the plot. Default `r' zone_number : string, optional See PyFVCOM documentation for a full list of supported codes. """ if not self.line_plot: self.line_plot = dict() # Remove current line plots for this group, if they exist if group_name in self.line_plot: if self.line_plot[group_name]: self.remove_line_plots(group_name) lon, lat = lonlat_from_utm(x, y, zone_number) mx, my = self.m(lon, lat) self.line_plot[group_name] = self.axes.plot(mx, my, color=colour, linewidth=self.linewidth, alpha=0.25, zorder=2) def remove_line_plots(self, group_name): """ Remove line plots for group `group_name' Parameters: ----------- group_name : str Name of the group for which line plots should be deleted. """ if self.line_plot: while self.line_plot[group_name]: self.line_plot[group_name].pop(0).remove() def plot_scatter(self, x, y, group_name='Default', colour='r', zone_number='30N'): """ Plot scatter. Parameters: ----------- x : 1D array TOCHECK Array of x coordinates to plot. y : 1D array TOCHECK Array of y coordinates to plot. group_name : str, optional Group name for this set of particles - a separate plot object is created for each group name passed in. Default `None' color : string, optional Colour to use when making the plot. Default `r' zone_number : string, optional See PyFVCOM documentation for a full list of supported codes. Default `30N' """ if not self.scat_plot: self.scat_plot = dict() lon, lat = lonlat_from_utm(x, y, zone_number) mx, my = self.m(lon, lat) try: data = np.array([mx, my]) self.scat_plot[group_name].set_offsets(data.transpose()) except KeyError: self.scat_plot[group_name] = self.axes.scatter(mx, my, s=self.s_particles, color=colour, edgecolors='none', zorder=3) def set_title(self, title): """ Set the title for the current axis. """ self.axes.set_title(title, fontsize=self.fs) def close(self): """ Close the current figure. """ plt.close(self.figure)
def tripcolor(ax, *args, **kwargs): """ Create a pseudocolor plot of an unstructured triangular grid to the :class:`~matplotlib.axes.Axes`. The triangulation can be specified in one of two ways; either:: tripcolor(triangulation, ...) where triangulation is a :class:`~matplotlib.tri.Triangulation` object, or :: tripcolor(x, y, ...) tripcolor(x, y, triangles, ...) tripcolor(x, y, triangles=triangles, ...) tripcolor(x, y, mask=mask, ...) tripcolor(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The next argument must be *C*, the array of color values, one per point in the triangulation. *shading* may be 'flat', 'faceted' or 'gouraud'. If *shading* is 'flat' or 'faceted', the colors used for each triangle are from the mean C of the triangle's three points. The remaining kwargs are the same as for :meth:`~matplotlib.axes.Axes.pcolor`. **Example:** .. plot:: mpl_examples/pylab_examples/tripcolor_demo.py """ if not ax._hold: ax.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x = tri.x y = tri.y triangles = tri.get_masked_triangles() C = np.asarray(args[0]) if C.shape != x.shape: raise ValueError('C array must have same length as triangulation x and' ' y arrays') if shading == 'gouraud': collection = TriMesh(tri, **kwargs) else: if shading == 'faceted': edgecolors = (0,0,0,1), linewidths = (0.25,) else: edgecolors = 'face' linewidths = (1.0,) kwargs.setdefault('edgecolors', edgecolors) kwargs.setdefault('antialiaseds', (0,)) kwargs.setdefault('linewidths', linewidths) # Vertices of triangles. verts = np.concatenate((x[triangles][...,np.newaxis], y[triangles][...,np.newaxis]), axis=2) # Color values, one per triangle, mean of the 3 vertex color values. C = C[triangles].mean(axis=1) collection = PolyCollection(verts, **kwargs) collection.set_alpha(alpha) collection.set_array(C) if norm is not None: assert(isinstance(norm, Normalize)) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() ax.grid(False) minx = tri.x.min() maxx = tri.x.max() miny = tri.y.min() maxy = tri.y.max() corners = (minx, miny), (maxx, maxy) ax.update_datalim( corners) ax.autoscale_view() ax.add_collection(collection) return collection
def tripcolor(ax, *args, **kwargs): """ Create a pseudocolor plot of an unstructured triangular grid. The triangulation can be specified in one of two ways; either:: tripcolor(triangulation, ...) where triangulation is a :class:`matplotlib.tri.Triangulation` object, or :: tripcolor(x, y, ...) tripcolor(x, y, triangles, ...) tripcolor(x, y, triangles=triangles, ...) tripcolor(x, y, mask=mask, ...) tripcolor(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The next argument must be *C*, the array of color values, either one per point in the triangulation if color values are defined at points, or one per triangle in the triangulation if color values are defined at triangles. If there are the same number of points and triangles in the triangulation it is assumed that color values are defined at points; to force the use of color values at triangles use the kwarg *facecolors*=C instead of just *C*. *shading* may be 'flat' (the default) or 'gouraud'. If *shading* is 'flat' and C values are defined at points, the color values used for each triangle are from the mean C of the triangle's three points. If *shading* is 'gouraud' then color values must be defined at points. The remaining kwargs are the same as for :meth:`~matplotlib.axes.Axes.pcolor`. **Example:** .. plot:: mpl_examples/pylab_examples/tripcolor_demo.py """ if not ax._hold: ax.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') facecolors = kwargs.pop('facecolors', None) if shading not in ['flat', 'gouraud']: raise ValueError("shading must be one of ['flat', 'gouraud'] " "not {0}".format(shading)) tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) # C is the colors array defined at either points or faces (i.e. triangles). # If facecolors is None, C are defined at points. # If facecolors is not None, C are defined at faces. if facecolors is not None: C = facecolors else: C = np.asarray(args[0]) # If there are a different number of points and triangles in the # triangulation, can omit facecolors kwarg as it is obvious from # length of C whether it refers to points or faces. # Do not do this for gouraud shading. if (facecolors is None and len(C) == len(tri.triangles) and len(C) != len(tri.x) and shading != 'gouraud'): facecolors = C # Check length of C is OK. if ((facecolors is None and len(C) != len(tri.x)) or (facecolors is not None and len(C) != len(tri.triangles))): raise ValueError('Length of color values array must be the same ' 'as either the number of triangulation points ' 'or triangles') # Handling of linewidths, shading, edgecolors and antialiased as # in Axes.pcolor linewidths = (0.25,) if 'linewidth' in kwargs: kwargs['linewidths'] = kwargs.pop('linewidth') kwargs.setdefault('linewidths', linewidths) edgecolors = 'none' if 'edgecolor' in kwargs: kwargs['edgecolors'] = kwargs.pop('edgecolor') ec = kwargs.setdefault('edgecolors', edgecolors) if 'antialiased' in kwargs: kwargs['antialiaseds'] = kwargs.pop('antialiased') if 'antialiaseds' not in kwargs and ec.lower() == "none": kwargs['antialiaseds'] = False if shading == 'gouraud': if facecolors is not None: raise ValueError('Gouraud shading does not support the use ' 'of facecolors kwarg') if len(C) != len(tri.x): raise ValueError('For gouraud shading, the length of color ' 'values array must be the same as the ' 'number of triangulation points') collection = TriMesh(tri, **kwargs) else: # Vertices of triangles. maskedTris = tri.get_masked_triangles() verts = np.concatenate((tri.x[maskedTris][..., np.newaxis], tri.y[maskedTris][..., np.newaxis]), axis=2) # Color values. if facecolors is None: # One color per triangle, the mean of the 3 vertex color values. C = C[maskedTris].mean(axis=1) elif tri.mask is not None: # Remove color values of masked triangles. C = C.compress(1-tri.mask) collection = PolyCollection(verts, **kwargs) collection.set_alpha(alpha) collection.set_array(C) if norm is not None: if not isinstance(norm, Normalize): msg = "'norm' must be an instance of 'Normalize'" raise ValueError(msg) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() ax.grid(False) minx = tri.x.min() maxx = tri.x.max() miny = tri.y.min() maxy = tri.y.max() corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() ax.add_collection(collection) return collection
def triplot(ax, *args, **kwargs): """ Draw a unstructured triangular grid as lines and/or markers. The triangulation to plot can be specified in one of two ways; either:: triplot(triangulation, ...) where triangulation is a :class:`~matplotlib.tri.Triangulation` object, or :: triplot(x, y, ...) triplot(x, y, triangles, ...) triplot(x, y, triangles=triangles, ...) triplot(x, y, mask=mask, ...) triplot(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The remaining args and kwargs are the same as for :meth:`~matplotlib.axes.Axes.plot`. **Example:** .. plot:: mpl_examples/pylab_examples/triplot_demo.py """ import matplotlib.axes tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x = tri.x y = tri.y edges = tri.edges # If draw both lines and markers at the same time, e.g. # ax.plot(x[edges].T, y[edges].T, *args, **kwargs) # then the markers are drawn more than once which is incorrect if alpha<1. # Hence draw lines and markers separately. # Decode plot format string, e.g. 'ro-' fmt = '' if len(args) > 0: fmt = args[0] linestyle, marker, color = matplotlib.axes._process_plot_format(fmt) # Draw lines without markers, if lines are required. if linestyle is not None and linestyle is not 'None': kw = kwargs.copy() kw.pop('marker', None) # Ignore marker if set. kw['linestyle'] = ls_mapper[linestyle] kw['edgecolor'] = color kw['facecolor'] = None vertices = np.column_stack((x[edges].flatten(), y[edges].flatten())) codes = ([Path.MOVETO] + [Path.LINETO]) * len(edges) path = Path(vertices, codes) pathpatch = PathPatch(path, **kw) ax.add_patch(pathpatch) # Draw markers without lines. # Should avoid drawing markers for points that are not in any triangle? kwargs['linestyle'] = '' ax.plot(x, y, *args, **kwargs)
def triplot(ax, *args, **kwargs): """ Draw a unstructured triangular grid as lines and/or markers. The triangulation to plot can be specified in one of two ways; either:: triplot(triangulation, ...) where triangulation is a :class:`matplotlib.tri.Triangulation` object, or :: triplot(x, y, ...) triplot(x, y, triangles, ...) triplot(x, y, triangles=triangles, ...) triplot(x, y, mask=mask, ...) triplot(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The remaining args and kwargs are the same as for :meth:`~matplotlib.axes.Axes.plot`. Return a list of 2 :class:`~matplotlib.lines.Line2D` containing respectively: - the lines plotted for triangles edges - the markers plotted for triangles nodes """ import matplotlib.axes tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x, y, edges = (tri.x, tri.y, tri.edges) # Decode plot format string, e.g., 'ro-' fmt = "" if len(args) > 0: fmt = args[0] linestyle, marker, color = matplotlib.axes._base._process_plot_format(fmt) # Insert plot format string into a copy of kwargs (kwargs values prevail). kw = kwargs.copy() for key, val in zip(('linestyle', 'marker', 'color'), (linestyle, marker, color)): if val is not None: kw[key] = kwargs.get(key, val) # Draw lines without markers. # Note 1: If we drew markers here, most markers would be drawn more than # once as they belong to several edges. # Note 2: We insert nan values in the flattened edges arrays rather than # plotting directly (triang.x[edges].T, triang.y[edges].T) # as it considerably speeds-up code execution. linestyle = kw['linestyle'] kw_lines = kw.copy() kw_lines['marker'] = 'None' # No marker to draw. kw_lines['zorder'] = kw.get('zorder', 1) # Path default zorder is used. if (linestyle is not None) and (linestyle not in ['None', '', ' ']): tri_lines_x = np.insert(x[edges], 2, np.nan, axis=1) tri_lines_y = np.insert(y[edges], 2, np.nan, axis=1) tri_lines = ax.plot(tri_lines_x.ravel(), tri_lines_y.ravel(), **kw_lines) else: tri_lines = ax.plot([], [], **kw_lines) # Draw markers separately. marker = kw['marker'] kw_markers = kw.copy() kw_markers['linestyle'] = 'None' # No line to draw. if (marker is not None) and (marker not in ['None', '', ' ']): tri_markers = ax.plot(x, y, **kw_markers) else: tri_markers = ax.plot([], [], **kw_markers) return tri_lines + tri_markers
def _get_interp_tri(x_in, y_in, gr_x, gr_y, method=None): """ For each value (x_in, y_in) returns _indexes of the closets 3 values (Delaunay) in the (gr_x, gr_y) table, and the corresponding coefficients. @method: tri_surf', 'plan_interp' """ methods = ['tri_surf', 'plan_interp'] calling = 'interp_3D' pc.log_.message('Entering interp 3D', calling=calling) if not pc.config.INSTALLED['Triangulation']: pc.log_.error('Triangulation package not available from matplotlib.', calling=calling) return None if method is None: method = methods[0] if method not in methods: pc.log_.error('{0} is not a valid method'.format(method), calling=calling) return None n_points = np.size(x_in) indexes = np.zeros((n_points, 3), dtype=int) - 1 coeffs = np.zeros((n_points, 3)) if method == 'tri_surf': def get_coeff(x, y, P1, P2, P3): v1x = P1[0] - x v1y = P1[1] - y v2x = P2[0] - x v2y = P2[1] - y v3x = P3[0] - x v3y = P3[1] - y d1 = abs(v2x * v3y - v2y * v3x) d2 = abs(v1x * v3y - v1y * v3x) d3 = abs(v1x * v2y - v1y * v2x) dsum = d1 + d2 + d3 return np.squeeze(np.transpose([d1 / dsum, d2 / dsum, d3 / dsum])) elif method == 'plan_interp': def get_coeff(x, y, P1, P2, P3): XY = np.asarray((x, y)) d1 = misc.dist_point_line(XY, P2, P3) / dpl1 d2 = misc.dist_point_line(XY, P1, P3) / dpl2 d3 = misc.dist_point_line(XY, P1, P2) / dpl3 dsum = d1 + d2 + d3 return np.squeeze(np.transpose([d1 / dsum, d2 / dsum, d3 / dsum])) tri = Triangulation(gr_x, gr_y) pc.log_.message('Triangulation done', calling=calling) n_triangles = tri.triangle_nodes.shape[0] for i, triangle in enumerate(tri.triangle_nodes): T1 = np.asarray((gr_x[triangle[0]], gr_y[triangle[0]])) T2 = np.asarray((gr_x[triangle[1]], gr_y[triangle[1]])) T3 = np.asarray((gr_x[triangle[2]], gr_y[triangle[2]])) points_inside = misc.points_inside_triangle(x_in, y_in, T1, T2, T3) pc.log_.message('{0} points inside triangle {1} over {2}'.format( points_inside.sum(), i, n_triangles), calling=calling) if method == 'plan_interp': dpl1 = misc.dist_point_line(T1, T2, T3) dpl2 = misc.dist_point_line(T2, T3, T1) dpl3 = misc.dist_point_line(T3, T1, T2) if points_inside.sum() != 0: indexes[points_inside] = triangle coeffs[points_inside] = get_coeff(x_in[points_inside], y_in[points_inside], T1, T2, T3) return indexes, coeffs
def triplot(ax, *args, **kwargs): """ Draw a unstructured triangular grid as lines and/or markers. The triangulation to plot can be specified in one of two ways; either:: triplot(triangulation, ...) where triangulation is a `.Triangulation` object, or :: triplot(x, y, ...) triplot(x, y, triangles, ...) triplot(x, y, triangles=triangles, ...) triplot(x, y, mask=mask, ...) triplot(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See `.Triangulation` for a explanation of these possibilities. The remaining args and kwargs are the same as for `~.Axes.plot`. Returns ------- lines : `~matplotlib.lines.Line2D` The drawn triangles edges. markers : `~matplotlib.lines.Line2D` The drawn marker nodes. """ import matplotlib.axes tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x, y, edges = (tri.x, tri.y, tri.edges) # Decode plot format string, e.g., 'ro-' fmt = args[0] if args else "" linestyle, marker, color = matplotlib.axes._base._process_plot_format(fmt) # Insert plot format string into a copy of kwargs (kwargs values prevail). kw = cbook.normalize_kwargs(kwargs, mlines.Line2D) for key, val in zip(('linestyle', 'marker', 'color'), (linestyle, marker, color)): if val is not None: kw.setdefault(key, val) # Draw lines without markers. # Note 1: If we drew markers here, most markers would be drawn more than # once as they belong to several edges. # Note 2: We insert nan values in the flattened edges arrays rather than # plotting directly (triang.x[edges].T, triang.y[edges].T) # as it considerably speeds-up code execution. linestyle = kw['linestyle'] kw_lines = { **kw, 'marker': 'None', # No marker to draw. 'zorder': kw.get('zorder', 1), # Path default zorder is used. } if linestyle not in [None, 'None', '', ' ']: tri_lines_x = np.insert(x[edges], 2, np.nan, axis=1) tri_lines_y = np.insert(y[edges], 2, np.nan, axis=1) tri_lines = ax.plot(tri_lines_x.ravel(), tri_lines_y.ravel(), **kw_lines) else: tri_lines = ax.plot([], [], **kw_lines) # Draw markers separately. marker = kw['marker'] kw_markers = { **kw, 'linestyle': 'None', # No line to draw. } if marker not in [None, 'None', '', ' ']: tri_markers = ax.plot(x, y, **kw_markers) else: tri_markers = ax.plot([], [], **kw_markers) return tri_lines + tri_markers
def _refine_triangulation_once(triangulation, ancestors=None): """ This function refines a matplotlib.tri *triangulation* by splitting each triangle into 4 child-masked_triangles built on the edges midside nodes. The masked triangles, if present, are also splitted but their children returned masked. If *ancestors* is not provided, returns only a new triangulation: child_triangulation. If the array-like key table *ancestor* is given, it shall be of shape (ntri,) where ntri is the number of *triangulation* masked_triangles. In this case, the function returns (child_triangulation, child_ancestors) child_ancestors is defined so that the 4 child masked_triangles share the same index as their father: child_ancestors.shape = (4 * ntri,). """ x = triangulation.x y = triangulation.y # According to tri.triangulation doc: # neighbors[i,j] is the triangle that is the neighbor # to the edge from point index masked_triangles[i,j] to point # index masked_triangles[i,(j+1)%3]. neighbors = triangulation.neighbors triangles = triangulation.triangles npts = np.shape(x)[0] ntri = np.shape(triangles)[0] if ancestors is not None: ancestors = np.asarray(ancestors) if np.shape(ancestors) != (ntri,): raise ValueError( "Incompatible shapes provide for triangulation" ".masked_triangles and ancestors: {0} and {1}".format( np.shape(triangles), np.shape(ancestors))) # Initiating tables refi_x and refi_y of the refined triangulation # points # hint: each apex is shared by 2 masked_triangles except the borders. borders = np.sum(neighbors == -1) added_pts = (3*ntri + borders) / 2 refi_npts = npts + added_pts refi_x = np.zeros(refi_npts) refi_y = np.zeros(refi_npts) # First part of refi_x, refi_y is just the initial points refi_x[:npts] = x refi_y[:npts] = y # Second part contains the edge midside nodes. # Each edge belongs to 1 triangle (if border edge) or is shared by 2 # masked_triangles (interior edge). # We first build 2 * ntri arrays of edge starting nodes (edge_elems, # edge_apexes) ; we then extract only the masters to avoid overlaps. # The so-called 'master' is the triangle with biggest index # The 'slave' is the triangle with lower index # (can be -1 if border edge) # For slave and master we will identify the apex pointing to the edge # start edge_elems = np.ravel(np.vstack([np.arange(ntri, dtype=np.int32), np.arange(ntri, dtype=np.int32), np.arange(ntri, dtype=np.int32)])) edge_apexes = np.ravel(np.vstack([np.zeros(ntri, dtype=np.int32), np.ones(ntri, dtype=np.int32), np.ones(ntri, dtype=np.int32)*2])) edge_neighbors = neighbors[edge_elems, edge_apexes] mask_masters = (edge_elems > edge_neighbors) # Identifying the "masters" and adding to refi_x, refi_y vec masters = edge_elems[mask_masters] apex_masters = edge_apexes[mask_masters] x_add = (x[triangles[masters, apex_masters]] + x[triangles[masters, (apex_masters+1) % 3]]) * 0.5 y_add = (y[triangles[masters, apex_masters]] + y[triangles[masters, (apex_masters+1) % 3]]) * 0.5 refi_x[npts:] = x_add refi_y[npts:] = y_add # Building the new masked_triangles ; each old masked_triangles hosts # 4 new masked_triangles # there are 6 pts to identify per 'old' triangle, 3 new_pt_corner and # 3 new_pt_midside new_pt_corner = triangles # What is the index in refi_x, refi_y of point at middle of apex iapex # of elem ielem ? # If ielem is the apex master: simple count, given the way refi_x was # built. # If ielem is the apex slave: yet we do not know ; but we will soon # using the neighbors table. new_pt_midside = np.empty([ntri, 3], dtype=np.int32) cum_sum = npts for imid in range(3): mask_st_loc = (imid == apex_masters) n_masters_loc = np.sum(mask_st_loc) elem_masters_loc = masters[mask_st_loc] new_pt_midside[:, imid][elem_masters_loc] = np.arange( n_masters_loc, dtype=np.int32) + cum_sum cum_sum += n_masters_loc # Now dealing with slave elems. # for each slave element we identify the master and then the inode # onces slave_masters is indentified, slave_masters_apex is such that: # neighbors[slaves_masters, slave_masters_apex] == slaves mask_slaves = np.logical_not(mask_masters) slaves = edge_elems[mask_slaves] slaves_masters = edge_neighbors[mask_slaves] diff_table = np.abs(neighbors[slaves_masters, :] - np.outer(slaves, np.ones(3, dtype=np.int32))) slave_masters_apex = np.argmin(diff_table, axis=1) slaves_apex = edge_apexes[mask_slaves] new_pt_midside[slaves, slaves_apex] = new_pt_midside[ slaves_masters, slave_masters_apex] # Builds the 4 child masked_triangles child_triangles = np.empty([ntri*4, 3], dtype=np.int32) child_triangles[0::4, :] = np.vstack([ new_pt_corner[:, 0], new_pt_midside[:, 0], new_pt_midside[:, 2]]).T child_triangles[1::4, :] = np.vstack([ new_pt_corner[:, 1], new_pt_midside[:, 1], new_pt_midside[:, 0]]).T child_triangles[2::4, :] = np.vstack([ new_pt_corner[:, 2], new_pt_midside[:, 2], new_pt_midside[:, 1]]).T child_triangles[3::4, :] = np.vstack([ new_pt_midside[:, 0], new_pt_midside[:, 1], new_pt_midside[:, 2]]).T child_triangulation = Triangulation(refi_x, refi_y, child_triangles) # Builds the child mask if triangulation.mask is not None: child_triangulation.set_mask(np.repeat(triangulation.mask, 4)) if ancestors is None: return child_triangulation else: return child_triangulation, np.repeat(ancestors, 4)
def tripcolor(ax, *args, alpha=1.0, norm=None, cmap=None, vmin=None, vmax=None, shading='flat', facecolors=None, **kwargs): """ Create a pseudocolor plot of an unstructured triangular grid. Call signatures:: tripcolor(triangulation, C, *, ...) tripcolor(x, y, C, *, [triangles=triangles], [mask=mask], ...) The triangular grid can be specified either by passing a `.Triangulation` object as the first parameter, or by passing the points *x*, *y* and optionally the *triangles* and a *mask*. See `.Triangulation` for an explanation of these parameters. If neither of *triangulation* or *triangles* are given, the triangulation is calculated on the fly. In this case, it does not make sense to provide colors at the triangle faces via *C* or *facecolors* because there are multiple possible triangulations for a group of points and you don't know which triangles will be constructed. Parameters ---------- triangulation : `.Triangulation` An already created triangular grid. x, y, triangles, mask Parameters defining the triangular grid. See `.Triangulation`. This is mutually exclusive with specifying *triangulation*. C : array-like The color values, either for the points or for the triangles. Which one is automatically inferred from the length of *C*, i.e. does it match the number of points or the number of triangles. If there are the same number of points and triangles in the triangulation it is assumed that color values are defined at points; to force the use of color values at triangles use the keyword argument ``facecolors=C`` instead of just ``C``. This parameter is position-only. facecolors : array-like, optional Can be used alternatively to *C* to specify colors at the triangle faces. This parameter takes precedence over *C*. shading : {'flat', 'gouraud'}, default: 'flat' If 'flat' and the color values *C* are defined at points, the color values used for each triangle are from the mean C of the triangle's three points. If *shading* is 'gouraud' then color values must be defined at points. other_parameters All other parameters are the same as for `~.Axes.pcolor`. Notes ----- It is possible to pass the triangles positionally, i.e. ``tripcolor(x, y, triangles, C, ...)``. However, this is discouraged. For more clarity, pass *triangles* via keyword argument. """ _api.check_in_list(['flat', 'gouraud'], shading=shading) tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) # Parse the color to be in one of (the other variable will be None): # - facecolors: if specified at the triangle faces # - point_colors: if specified at the points if facecolors is not None: if args: _api.warn_external( "Positional parameter C has no effect when the keyword " "facecolors is given") point_colors = None if len(facecolors) != len(tri.triangles): raise ValueError("The length of facecolors must match the number " "of triangles") else: # Color from positional parameter C if not args: raise ValueError( "Missing color parameter. Please pass C positionally or " "facecolors via keyword") elif len(args) > 1: _api.warn_external( "Additional positional parameters {args[1:]!r} are ignored") C = np.asarray(args[0]) if len(C) == len(tri.x): # having this before the len(tri.triangles) comparison gives # precedence to nodes if there are as many nodes as triangles point_colors = C facecolors = None elif len(C) == len(tri.triangles): point_colors = None facecolors = C else: raise ValueError('The length of C must match either the number ' 'of points or the number of triangles') # Handling of linewidths, shading, edgecolors and antialiased as # in Axes.pcolor linewidths = (0.25, ) if 'linewidth' in kwargs: kwargs['linewidths'] = kwargs.pop('linewidth') kwargs.setdefault('linewidths', linewidths) edgecolors = 'none' if 'edgecolor' in kwargs: kwargs['edgecolors'] = kwargs.pop('edgecolor') ec = kwargs.setdefault('edgecolors', edgecolors) if 'antialiased' in kwargs: kwargs['antialiaseds'] = kwargs.pop('antialiased') if 'antialiaseds' not in kwargs and ec.lower() == "none": kwargs['antialiaseds'] = False _api.check_isinstance((Normalize, None), norm=norm) if shading == 'gouraud': if facecolors is not None: raise ValueError( "shading='gouraud' can only be used when the colors " "are specified at the points, not at the faces.") collection = TriMesh(tri, alpha=alpha, array=point_colors, cmap=cmap, norm=norm, **kwargs) else: # Vertices of triangles. maskedTris = tri.get_masked_triangles() verts = np.stack((tri.x[maskedTris], tri.y[maskedTris]), axis=-1) # Color values. if facecolors is None: # One color per triangle, the mean of the 3 vertex color values. colors = point_colors[maskedTris].mean(axis=1) elif tri.mask is not None: # Remove color values of masked triangles. colors = facecolors[~tri.mask] else: colors = facecolors collection = PolyCollection(verts, alpha=alpha, array=colors, cmap=cmap, norm=norm, **kwargs) collection._scale_norm(norm, vmin, vmax) ax.grid(False) minx = tri.x.min() maxx = tri.x.max() miny = tri.y.min() maxy = tri.y.max() corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() ax.add_collection(collection) return collection
def show_scalar_in_matplotlib_3d(self, field, **kwargs): import matplotlib.pyplot as plt # This import also registers the 3D projection. import mpl_toolkits.mplot3d.art3d as art3d do_show = kwargs.pop("do_show", True) vmin = kwargs.pop("vmin", None) vmax = kwargs.pop("vmax", None) norm = kwargs.pop("norm", None) nodes = self._vis_nodes_numpy() field = resample_to_numpy(self.connection, field) assert nodes.shape[0] == self.vis_discr.ambient_dim vis_connectivity, = self._vtk_connectivity.groups fig = plt.gcf() ax = fig.gca(projection="3d") had_data = ax.has_data() if self.vis_discr.dim == 2: nodes = list(nodes) # pad to 3D with zeros while len(nodes) < 3: nodes.append(0*nodes[0]) from matplotlib.tri.triangulation import Triangulation tri, _, kwargs = \ Triangulation.get_from_args_and_kwargs( *nodes, triangles=vis_connectivity.vis_connectivity.reshape(-1, 3)) triangles = tri.get_masked_triangles() xt = nodes[0][triangles] yt = nodes[1][triangles] zt = nodes[2][triangles] verts = np.stack((xt, yt, zt), axis=-1) fieldt = field[triangles] polyc = art3d.Poly3DCollection(verts, **kwargs) # average over the three points of each triangle avg_field = fieldt.mean(axis=1) polyc.set_array(avg_field) if vmin is not None or vmax is not None: polyc.set_clim(vmin, vmax) if norm is not None: polyc.set_norm(norm) ax.add_collection(polyc) ax.auto_scale_xyz(xt, yt, zt, had_data) else: raise RuntimeError("meshes of bulk dimension %d are currently " "unsupported" % self.vis_discr.dim) if do_show: plt.show()
def triplot(ax, *args, **kwargs): """ Draw a unstructured triangular grid as lines and/or markers. The triangulation to plot can be specified in one of two ways; either:: triplot(triangulation, ...) where triangulation is a :class:`matplotlib.tri.Triangulation` object, or :: triplot(x, y, ...) triplot(x, y, triangles, ...) triplot(x, y, triangles=triangles, ...) triplot(x, y, mask=mask, ...) triplot(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The remaining args and kwargs are the same as for :meth:`~matplotlib.axes.Axes.plot`. Return a list of 2 :class:`~matplotlib.lines.Line2D` containing respectively: - the lines plotted for triangles edges - the markers plotted for triangles nodes **Example:** .. plot:: mpl_examples/pylab_examples/triplot_demo.py """ import matplotlib.axes tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x, y, edges = (tri.x, tri.y, tri.edges) # Decode plot format string, e.g., 'ro-' fmt = "" if len(args) > 0: fmt = args[0] linestyle, marker, color = matplotlib.axes._base._process_plot_format(fmt) # Insert plot format string into a copy of kwargs (kwargs values prevail). kw = kwargs.copy() for key, val in zip(('linestyle', 'marker', 'color'), (linestyle, marker, color)): if val is not None: kw[key] = kwargs.get(key, val) # Draw lines without markers. # Note 1: If we drew markers here, most markers would be drawn more than # once as they belong to several edges. # Note 2: We insert nan values in the flattened edges arrays rather than # plotting directly (triang.x[edges].T, triang.y[edges].T) # as it considerably speeds-up code execution. linestyle = kw['linestyle'] kw_lines = kw.copy() kw_lines['marker'] = 'None' # No marker to draw. kw_lines['zorder'] = kw.get('zorder', 1) # Path default zorder is used. if (linestyle is not None) and (linestyle not in ['None', '', ' ']): tri_lines_x = np.insert(x[edges], 2, np.nan, axis=1) tri_lines_y = np.insert(y[edges], 2, np.nan, axis=1) tri_lines = ax.plot(tri_lines_x.ravel(), tri_lines_y.ravel(), **kw_lines) else: tri_lines = ax.plot([], [], **kw_lines) # Draw markers separately. marker = kw['marker'] kw_markers = kw.copy() kw_markers['linestyle'] = 'None' # No line to draw. if (marker is not None) and (marker not in ['None', '', ' ']): tri_markers = ax.plot(x, y, **kw_markers) else: tri_markers = ax.plot([], [], **kw_markers) return tri_lines + tri_markers
def triplot(ax, *args, **kwargs): """ Draw a unstructured triangular grid as lines and/or markers. The triangulation to plot can be specified in one of two ways; either:: triplot(triangulation, ...) where triangulation is a :class:`matplotlib.tri.Triangulation` object, or :: triplot(x, y, ...) triplot(x, y, triangles, ...) triplot(x, y, triangles=triangles, ...) triplot(x, y, mask=mask, ...) triplot(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The remaining args and kwargs are the same as for :meth:`~matplotlib.axes.Axes.plot`. **Example:** .. plot:: mpl_examples/pylab_examples/triplot_demo.py """ import matplotlib.axes tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x = tri.x y = tri.y edges = tri.edges # If draw both lines and markers at the same time, e.g. # ax.plot(x[edges].T, y[edges].T, *args, **kwargs) # then the markers are drawn more than once which is incorrect if alpha<1. # Hence draw lines and markers separately. # Decode plot format string, e.g., 'ro-' fmt = "" if len(args) > 0: fmt = args[0] linestyle, marker, color = matplotlib.axes._process_plot_format(fmt) # Draw lines without markers, if lines are required. if linestyle is not None and linestyle is not "None": kw = kwargs.copy() kw.pop("marker", None) # Ignore marker if set. kw["linestyle"] = ls_mapper[linestyle] kw["edgecolor"] = color kw["facecolor"] = None vertices = np.column_stack((x[edges].flatten(), y[edges].flatten())) codes = ([Path.MOVETO] + [Path.LINETO]) * len(edges) path = Path(vertices, codes) pathpatch = PathPatch(path, **kw) ax.add_patch(pathpatch) # Draw markers without lines. # Should avoid drawing markers for points that are not in any triangle? kwargs["linestyle"] = "" ax.plot(x, y, *args, **kwargs)
def tripcolor(ax, *args, alpha=1.0, norm=None, cmap=None, vmin=None, vmax=None, shading='flat', facecolors=None, **kwargs): """ Create a pseudocolor plot of an unstructured triangular grid. The triangulation can be specified in one of two ways; either:: tripcolor(triangulation, ...) where triangulation is a `.Triangulation` object, or :: tripcolor(x, y, ...) tripcolor(x, y, triangles, ...) tripcolor(x, y, triangles=triangles, ...) tripcolor(x, y, mask=mask, ...) tripcolor(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See `.Triangulation` for a explanation of these possibilities. The next argument must be *C*, the array of color values, either one per point in the triangulation if color values are defined at points, or one per triangle in the triangulation if color values are defined at triangles. If there are the same number of points and triangles in the triangulation it is assumed that color values are defined at points; to force the use of color values at triangles use the kwarg ``facecolors=C`` instead of just ``C``. *shading* may be 'flat' (the default) or 'gouraud'. If *shading* is 'flat' and C values are defined at points, the color values used for each triangle are from the mean C of the triangle's three points. If *shading* is 'gouraud' then color values must be defined at points. The remaining kwargs are the same as for `~.Axes.pcolor`. """ _api.check_in_list(['flat', 'gouraud'], shading=shading) tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) # C is the colors array defined at either points or faces (i.e. triangles). # If facecolors is None, C are defined at points. # If facecolors is not None, C are defined at faces. if facecolors is not None: C = facecolors else: C = np.asarray(args[0]) # If there are a different number of points and triangles in the # triangulation, can omit facecolors kwarg as it is obvious from # length of C whether it refers to points or faces. # Do not do this for gouraud shading. if (facecolors is None and len(C) == len(tri.triangles) and len(C) != len(tri.x) and shading != 'gouraud'): facecolors = C # Check length of C is OK. if ((facecolors is None and len(C) != len(tri.x)) or (facecolors is not None and len(C) != len(tri.triangles))): raise ValueError('Length of color values array must be the same ' 'as either the number of triangulation points ' 'or triangles') # Handling of linewidths, shading, edgecolors and antialiased as # in Axes.pcolor linewidths = (0.25, ) if 'linewidth' in kwargs: kwargs['linewidths'] = kwargs.pop('linewidth') kwargs.setdefault('linewidths', linewidths) edgecolors = 'none' if 'edgecolor' in kwargs: kwargs['edgecolors'] = kwargs.pop('edgecolor') ec = kwargs.setdefault('edgecolors', edgecolors) if 'antialiased' in kwargs: kwargs['antialiaseds'] = kwargs.pop('antialiased') if 'antialiaseds' not in kwargs and ec.lower() == "none": kwargs['antialiaseds'] = False if shading == 'gouraud': if facecolors is not None: raise ValueError('Gouraud shading does not support the use ' 'of facecolors kwarg') if len(C) != len(tri.x): raise ValueError('For gouraud shading, the length of color ' 'values array must be the same as the ' 'number of triangulation points') collection = TriMesh(tri, **kwargs) else: # Vertices of triangles. maskedTris = tri.get_masked_triangles() verts = np.stack((tri.x[maskedTris], tri.y[maskedTris]), axis=-1) # Color values. if facecolors is None: # One color per triangle, the mean of the 3 vertex color values. C = C[maskedTris].mean(axis=1) elif tri.mask is not None: # Remove color values of masked triangles. C = C[~tri.mask] collection = PolyCollection(verts, **kwargs) collection.set_alpha(alpha) collection.set_array(C) _api.check_isinstance((Normalize, None), norm=norm) collection.set_cmap(cmap) collection.set_norm(norm) collection._scale_norm(norm, vmin, vmax) ax.grid(False) minx = tri.x.min() maxx = tri.x.max() miny = tri.y.min() maxy = tri.y.max() corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() ax.add_collection(collection) return collection
def triplot(ax, *args, **kwargs): """ Draw an unstructured triangular grid as lines and/or markers. Call signatures:: triplot(triangulation, ...) triplot(x, y, [triangles], *, [mask=mask], ...) The triangular grid can be specified either by passing a `.Triangulation` object as the first parameter, or by passing the points *x*, *y* and optionally the *triangles* and a *mask*. If neither of *triangulation* or *triangles* are given, the triangulation is calculated on the fly. Parameters ---------- triangulation : `.Triangulation` An already created triangular grid. x, y, triangles, mask Parameters defining the triangular grid. See `.Triangulation`. This is mutually exclusive with specifying *triangulation*. other_parameters All other args and kwargs are forwarded to `~.Axes.plot`. Returns ------- lines : `~matplotlib.lines.Line2D` The drawn triangles edges. markers : `~matplotlib.lines.Line2D` The drawn marker nodes. """ import matplotlib.axes tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x, y, edges = (tri.x, tri.y, tri.edges) # Decode plot format string, e.g., 'ro-' fmt = args[0] if args else "" linestyle, marker, color = matplotlib.axes._base._process_plot_format(fmt) # Insert plot format string into a copy of kwargs (kwargs values prevail). kw = cbook.normalize_kwargs(kwargs, mlines.Line2D) for key, val in zip(('linestyle', 'marker', 'color'), (linestyle, marker, color)): if val is not None: kw.setdefault(key, val) # Draw lines without markers. # Note 1: If we drew markers here, most markers would be drawn more than # once as they belong to several edges. # Note 2: We insert nan values in the flattened edges arrays rather than # plotting directly (triang.x[edges].T, triang.y[edges].T) # as it considerably speeds-up code execution. linestyle = kw['linestyle'] kw_lines = { **kw, 'marker': 'None', # No marker to draw. 'zorder': kw.get('zorder', 1), # Path default zorder is used. } if linestyle not in [None, 'None', '', ' ']: tri_lines_x = np.insert(x[edges], 2, np.nan, axis=1) tri_lines_y = np.insert(y[edges], 2, np.nan, axis=1) tri_lines = ax.plot(tri_lines_x.ravel(), tri_lines_y.ravel(), **kw_lines) else: tri_lines = ax.plot([], [], **kw_lines) # Draw markers separately. marker = kw['marker'] kw_markers = { **kw, 'linestyle': 'None', # No line to draw. } if marker not in [None, 'None', '', ' ']: tri_markers = ax.plot(x, y, **kw_markers) else: tri_markers = ax.plot([], [], **kw_markers) return tri_lines + tri_markers