コード例 #1
0
ファイル: structure.py プロジェクト: rwydaeghe/smartwindows
 def update_E_PM(self,particles,just_return_dont_update=False):
     global counter
     try:
         counter==None
     except:
         counter=0
     counter+=1
     self.V_point_sources=0
     for particle in particles:
         i = int(round(particle.pos[0]*10**6))
         j = int(round(particle.pos[1]*10**6))
         """to do: still a bug with particles being outside the period...
         if not self.contains([particle]):
             print(self.particles_left.nnz,
                   self.particles_right.nnz,
                   self.particles_top.nnz,
                   self.particles_bottom.nnz)"""
         """the dielectric constant and minus sign are already done in Fenics"""
         self.V_point_sources += particle.charge*e*self.point_sources[i,j]
     tci = LinearTriInterpolator(self.triang_V,self.V_point_sources) # faster interpolator, but not as accurate
     (Ex, Ey) = tci.gradient(self.triang_V.x,self.triang_V.y)
     #V = tci(self.triang_V.x,self.triang_V.y)
     if just_return_dont_update:
         return -np.array([Ex,Ey])#*3e5
         #return np.array([V,V*0]) #for debugging
     else:
         self.E_point_sources = -np.array([Ex,Ey])#*3e5
コード例 #2
0
    def plot_solution(self, phi, ax=None, **kwargs):
        """Given the solution vector phi of values at the vertices, plot the solution"""
        intp = LinearTriInterpolator(self.triang, phi)
        x, y = self.tri['vertices'].T
        u, v = intp.gradient(x, y)

        ax = ax or plt.gca()
        ax.tripcolor(self.triang, phi)
        ax.quiver(x, y, u, v, **kwargs)
コード例 #3
0
def spatial_autocorr(tri, U, V, N, alpha):
    """
    Function to estimate autocorrelation in cartesian components of wind
    velocity, U and V. The 2D spatial autocorrelation is calculated in a 
    squared and structured grid, and represent the correlation of points
    displaced a distance tau and eta in x and y, respectively.

    Input:
    -----
        tri      - Delaunay triangulation object of unstructured grid.
        
        U,V      - Arrays with cartesian components of wind speed.
        
        N        - Number of points in the autocorrelation's squared grid.
        
        alpha    - Fraction of the spatial domain that will act as the limit 
                   for tau and eta increments. 
        
    Output:
    ------
        r_u,r_v  - 2D arrays with autocorrelation function rho(tau,eta) 
                   for U and V, respectively.  
                   
    """

    # Squared grid of spatial increments
    tau = np.linspace(-alpha * (np.max(tri.x) - np.min(tri.x)),
                      alpha * (np.max(tri.x) - np.min(tri.x)), N)
    eta = np.linspace(-alpha * (np.max(tri.y) - np.min(tri.y)),
                      alpha * (np.max(tri.y) - np.min(tri.y)), N)
    tau, eta = np.meshgrid(tau, eta)
    # De-meaning of U and V. The mean U and V in the whole scan is used
    U = U - np.nanmean(U)
    V = V - np.nanmean(V)
    # Interpolator object to estimate U and V fields when translated by
    # (tau,eta)
    U_int = LinearTriInterpolator(tri, U)
    V_int = LinearTriInterpolator(tri, V)
    # Autocorrelation is calculated just for non-empty scans
    if len(U[~np.isnan(U)]) > 0:
        # autocorr() function over the grid tau and eta.
        r_u = [
            autocorr(tri, U, U_int, t, e)
            for t, e in zip(tau.flatten(), eta.flatten())
        ]
        r_v = [
            autocorr(tri, V, V_int, t, e)
            for t, e in zip(tau.flatten(), eta.flatten())
        ]
    else:
        r_u = np.empty(len(tau.flatten()))
        r_u[:] = np.nan
        r_v = np.empty(len(tau.flatten()))
        r_v[:] = np.nan

    return (r_u, r_v)
コード例 #4
0
ファイル: banana.py プロジェクト: giannisker/XGC
def triang_and_interp(star_node, W_star):
    '''Does a triangulation on the psi-theta space, performs an interpolation there and then outputs the plot.'''
    from scipy.ndimage import gaussian_filter
    psi_star_p, psi_star_m = psi_star_nodes(star_node, W_star)
    Pi = np.linspace(min(psi), max(psi), 400)
    Ti = np.linspace(min(thetas), max(thetas), 400)
    (PI, TI) = np.meshgrid(Pi, Ti)
    triangObject = Triangulation(psi, thetas)
    tcp = LinearTriInterpolator(triangObject, psi_star_p)
    tcm = LinearTriInterpolator(triangObject, psi_star_m)
    tcp_int = tcp(PI, TI)
    tcm_int = tcm(PI, TI)
    p_filt = gaussian_filter(tcp_int, 1.5)
    m_filt = gaussian_filter(tcm_int, 1.5)
    psi_theta_plot(PI, TI, p_filt, m_filt, W_star)
コード例 #5
0
def write_to_geotiff(val, tri, nx, ny, bbox, fout):

    # Generate raster points to interpolate from mesh
    xinterp = np.linspace(bbox[0], bbox[1], nx)
    yinterp = np.linspace(bbox[2], bbox[3], ny)
    Xinterp, Yinterp = np.meshgrid(xinterp, yinterp)

    # Calculate transformation factors
    originX = xinterp[0]
    originY = yinterp[-1]
    xres = (xinterp[-1] - xinterp[0]) / float(nx)
    yres = (yinterp[-1] - yinterp[0]) / float(ny)

    # Intrepolate solution onto raster points
    interp = LinearTriInterpolator(tri, val)
    interp_vals = interp(Xinterp.ravel(), Yinterp.ravel()).data
    raster = np.reshape(interp_vals, Xinterp.shape)
    raster = raster[::-1]

    # Create and write geotiff
    driver = gdal.GetDriverByName('GTiff')
    outRaster = driver.Create(fout, nx, ny, 1, gdal.GDT_Float32)
    outRaster.SetGeoTransform((originX, xres, 0, originY, 0, -yres))
    outband = outRaster.GetRasterBand(1)
    outband.WriteArray(raster)
    outRasterSRS = osr.SpatialReference()
    outRasterSRS.ImportFromEPSG(4326)
    outRaster.SetProjection(outRasterSRS.ExportToWkt())
    outband.FlushCache()
コード例 #6
0
ファイル: visualization.py プロジェクト: TheBB/aroma
def _streamplot(ax, tri, vvals, spacing=1.0, density=None, **kwargs):
    xmin, xmax = min(tri.x), max(tri.x)
    ymin, ymax = min(tri.y), max(tri.y)

    nx = int((xmax - xmin) / spacing)
    ny = int((ymax - ymin) / spacing)
    x = np.linspace(xmin, xmax, nx + 2)[1:-1]
    y = np.linspace(ymin, ymax, ny + 2)[1:-1]

    xgrid, ygrid = np.meshgrid(x, y)
    u = LinearTriInterpolator(tri, vvals[:, 0])(xgrid, ygrid)
    v = LinearTriInterpolator(tri, vvals[:, 1])(xgrid, ygrid)

    if density is None:
        density = 1 / spacing
    ax.streamplot(x, y, u, v, density=density, color='black')
コード例 #7
0
def plot_dp(storm, datafile1, datafile2=None):

   #Single file netCDF reading
   ncf=datafile1
   nco=netCDF4.Dataset(ncf)

   #Get fields to plot
   lon=nco.variables['longitude'][:]
   lat=nco.variables['latitude'][:]
   timeindays=nco.variables['time'][:]
   dp=nco.variables['dp'][:]
   triangles=nco.variables['tri'][:,:]

   reflon=np.linspace(lon.min(),lon.max(),1000)
   reflat=np.linspace(lat.min(),lat.max(),1000)
   #reflon=np.linspace(-80.40, -74.75, 1000)
   #reflat=np.linspace(32.50, 36.60, 1000)
   #reflon=np.linspace(-75.70, -71.05, 1000)
   #reflat=np.linspace(38.50, 41.40, 1000)
   reflon,reflat=np.meshgrid(reflon,reflat)

   plt.figure(figsize = [6.4, 3.8])

   flatness=0.10  # flatness is from 0-.5 .5 is equilateral triangle
   triangles=triangles-1  # Correct indices for Python's zero-base
   tri=Triangulation(lon,lat,triangles=triangles)
   mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
   tri.set_mask(mask)

   # Loop through each time step and plot results
   for ind in range(0, len(timeindays)): 
      plt.clf()
      ax = plt.axes(projection=ccrs.Mercator())

      dt = datetime.datetime.combine(datetime.date(1990, 1, 1), datetime.time(0, 0)) + datetime.timedelta(days=timeindays[ind])
      dstr = datetime.date.strftime(dt,'%Y%m%d%H:%M:%S')
      dstr = dstr[0:8]+' '+dstr[8:17]
      print('Plotting '+dstr)

      par=np.double(dp[ind,:])
      tli=LinearTriInterpolator(tri,par)
      par_interp=tli(reflon,reflat)

      plt.pcolormesh(reflon,reflat,par_interp,vmin=0.0,vmax=360.0,shading='flat',cmap=plt.cm.jet, transform=ccrs.PlateCarree())
      cb = plt.colorbar()
      cb.ax.tick_params(labelsize=8)
      coast = cfeature.GSHHSFeature(scale='high',edgecolor='black',facecolor='none',linewidth=0.25)	
      ax.add_feature(coast)
      plt.xticks(fontsize=9)
      plt.yticks(fontsize=9)
      figtitle = storm.capitalize()+': Peak Dir (deg): '+dstr
      plt.title(figtitle)

      dtlabel = datetime.date.strftime(dt,'%Y%m%d%H%M%S')
      dtlabel = dtlabel[0:8]+'_'+dtlabel[8:14]
      filenm = 'nsem_'+storm+'_dp_'+dtlabel+'.png'
      plt.savefig(filenm,dpi=150,bbox_inches='tight',pad_inches=0.1)

      del(par)
      del(par_interp)
コード例 #8
0
ファイル: plotting.py プロジェクト: C6xf/fish2eod
def gradient(
    solution,
    variable,
    *,
    gradient_norm=True,
    plot=True,
    color_style: COLOR_STYLE_TYPE = "equal",
    mask=None,
    **kwargs
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]:
    """Compute and plot the gradient of a scalar field.

    :param solution: The solution structure
    :param variable: Name of the variable
    :param gradient_norm: Should the norm be computed
    :param plot: Should the data be plotted
    :param color_style: How to symmetrize the colormap (False/None, 'full', 'equal')
    :param mask: Valid matplotlib mask see generate_mask
    :param kwargs:
    :return: Computed field as a scalar or vector field
    """
    mpl_kwargs, fish2fem_kwargs = split_mpl_kwargs(kwargs)
    triangles, data = generate_triangles_for_2d(
        solution, variable, mask=mask, **fish2fem_kwargs
    )
    topology = triangles.triangles
    geometry = list(zip(triangles.x, triangles.y))
    interpolator = LinearTriInterpolator(triangles, -data)
    (e_x, e_y) = interpolator.gradient(triangles.x, triangles.y)
    if gradient_norm:
        norm = field_norm(e_x, e_y)
        if plot:
            mesh_plot_2d(
                None,
                None,
                color_style=color_style,
                mask=mask,
                topology=topology,
                geometry=geometry,
                data=data,
                **kwargs
            )
        return norm
    else:
        plt.quiver(triangles.x, triangles.y, e_x, e_y, **mpl_kwargs)
        return e_x, e_y
コード例 #9
0
ファイル: channel_map.py プロジェクト: miketrumpis/ecogdata
 def f(x, interp_mode):
     xgr = xg.ravel()
     ygr = yg.ravel()
     if interp_mode == 'linear':
         interp = LinearTriInterpolator(triang, x)
     else:
         interp = CubicTriInterpolator(triang, x)
     return interp(xgr, ygr).reshape(grid_pts)
def spectra_fft(tri, grid, U, V):
    """
    Function to estimate autocorrelation from a single increment in cartesian
    coordinates(tau, eta)
    Input:
    -----
        tri      - Delaunay triangulation object of unstructured grid.
                   
        grid     - Squared, structured grid to apply FFT.
        
        U, V     - Arrays with cartesian components of wind speed.
        
    Output:
    ------
        r_u,r_v  - 2D arrays with autocorrelation function rho(tau,eta) 
                   for U and V, respectively.               
    """
    U = U - np.nanmean(U)
    V = V - np.nanmean(V)

    dx = np.max(np.diff(grid[0].flatten()))
    dy = np.max(np.diff(grid[1].flatten()))

    n = grid[0].shape[0]
    m = grid[1].shape[0]

    U_int = np.reshape(
        LinearTriInterpolator(tri, U)(grid[0].flatten(),
                                      grid[1].flatten()).data, grid[0].shape)
    V_int = np.reshape(
        LinearTriInterpolator(tri, V)(grid[0].flatten(),
                                      grid[1].flatten()).data, grid[1].shape)
    #zero padding
    U_int[np.isnan(U_int)] = 0.0
    V_int[np.isnan(V_int)] = 0.0
    fftU = np.fft.fftshift(np.fft.fft2(U_int))
    fftV = np.fft.fftshift(np.fft.fft2(V_int))
    fftUV = fftU * np.conj(fftV)
    Suu = 2 * (np.abs(fftU)**2) / (n * m * dx * dy)
    Svv = 2 * (np.abs(fftV)**2) / (n * m * dx * dy)
    Suv = 2 * np.real(fftUV) / (n * m * dx * dy)
    kx = 1 / (2 * dx)
    ky = 1 / (2 * dy)
    k1 = kx * np.linspace(-1, 1, len(Suu))
    k2 = ky * np.linspace(-1, 1, len(Suu))
    return (Suu, Svv, Suv, k1, k2)
コード例 #11
0
def get_n60_n2000_interpolator():
    """Get interpolator for N60 to N2000 height system change, data from MML."""
    df_points = get_n60_n2000_points()
    df_tri = get_n60_n2000_triangulation()
    triangles = df_tri.replace(df_points.index.values,
                               np.arange(df_points.shape[0], dtype=int)).values
    interpolator_ = Triangulation(df_points["X"], df_points["Y"], triangles)
    interpolator = LinearTriInterpolator(interpolator_, df_points["diff"])
    return interpolator
コード例 #12
0
    def velocity_from_phi(self, phi, x=None, y=None):
        """Interpolate velocity solution in vertex positions

        Velocity solution is: u = \grad(\phi) + \Gamma u_pf
        where \phi is the solution of phi at the vertices, and u_pf
        the standard point vortex, with magnitude Gamma stored in the
        (N+1)-th entry of the  solution vector."""
        assert (x is None) == (
            y is None), "Provide either both or neither x and y arguments"
        if x is None:
            x, y = self.tri['vertices'].T

        N = len(phi) - 1
        # first normal interpolation phi gradient
        intp = LinearTriInterpolator(self.triang, phi[:N])
        u, v = intp.gradient(x, y)

        # then add point vortex solution
        Gamma = phi[-1]
        r2 = (x - self.x_c)**2 + y**2
        u += -y / r2 * Gamma / 2 / np.pi
        v += (x - self.x_c) / r2 * Gamma / 2 / np.pi
        return u, v
コード例 #13
0
def calc_l2_error_simplex_based(mesh, u_tilde_function, u):
    """
    Calculates the L2 error of the solution by adding it up over the individual simplices
    :param mesh: The mesh to compute on
    :param u_tilde_function: The analytical solution
    :param u: The solution array
    :return: The L2 error
    """
    def error_integrant_reference(y, x, p1_ref, u_function, j, v0_coord, det,
                                  fz):
        co = (x, y)
        xc = np.array([[x], [y]])
        x0 = np.array([[v0_coord[0]], [v0_coord[1]]])
        x_new = j.dot(xc) + x0
        trival = fz(x_new[0], x_new[1])
        return np.asscalar(trival - u_function.value((x_new[0], x_new[1])))**2

    atraf = AffineTransformation()
    p1_ref = P1ReferenceElement()
    error = 0

    m_ref = Mesh(88, 88)
    triangles = m_ref.triangles
    trianglesarr = np.zeros((len(mesh.triangles), 3))

    i = 0
    for triangle in mesh.triangles:
        trianglesarr[i, :] = triangle.v
        i += 1

    triObj = Triangulation(mesh.vertices[0, :], mesh.vertices[1, :],
                           trianglesarr)
    fz = LinearTriInterpolator(triObj, u[:, 0])
    vertices = m_ref.vertices
    for n in range(len(m_ref.triangles)):
        v0_coord = (vertices[0, triangles[n].v0], vertices[1, triangles[n].v0])
        v1_coord = (vertices[0, triangles[n].v1], vertices[1, triangles[n].v1])
        v2_coord = (vertices[0, triangles[n].v2], vertices[1, triangles[n].v2])
        atraf.set_target_cell(v0_coord, v1_coord, v2_coord)

        j = atraf.get_jacobian()
        det = atraf.get_determinant()
        ans, err = gauss_legendre_reference(error_integrant_reference,
                                            args=(p1_ref, u_tilde_function, j,
                                                  v0_coord, det, fz))
        error += ans * np.abs(det)
    return np.sqrt(error)
コード例 #14
0
 def __init__(self, RZ, psin, tri, Bgrid, sml_nphi):
     self.RZ = RZ
     self.R0, self.Z0 = RZ[0, :]
     self.psin = psin
     self.tri = tri
     self.triObj = Triangulation(RZ[:, 0], RZ[:, 1], tri)
     self.theta = self.calc_theta(RZ[:, 0], RZ[:, 1])
     ##find x-point, to exclude from interpolator
     #Bpol = np.sqrt(np.sum(Bgrid[:,0:2]**2.,axis=1))
     #ind = np.argmin(Bpol[10:])+10
     #eq_x_r,eq_x_z = RZ[ind,:]
     #goodinds = ~((psin>=1) | ((psin<=1) & (RZ[:,1]>eq_x_z)))
     #mask = np.all(goodinds[tri],axis=1)
     #self.triObj_psintheta = Triangulation(self.psin,self.theta,self.tri,mask=mask)
     #self.fRZ2psin = LinearTriInterpolator(self.triObj_psintheta,self.RZ[:,0])
     #self.fpsintheta2Z = LinearTriInterpolator(self.triObj_psintheta,self.RZ[:,1])
     self.fRZ2psin = LinearTriInterpolator(self.triObj, self.psin)
     self.Binterp = LinearNDInterpolator(RZ, Bgrid, fill_value=np.inf)
     self.sml_nphi = sml_nphi
コード例 #15
0
    def open(self, filename, name):
        super(Flood, self).open(filename, name)

        self.lon = [
            self.data.shape(i).points[0][0]
            for i in xrange(self.data.numRecords)
        ]
        self.lat = [
            self.data.shape(i).points[0][1]
            for i in xrange(self.data.numRecords)
        ]
        self.val = [
            self.data.record(i)[1] for i in xrange(self.data.numRecords)
        ]

        t = Triangulation(self.lon, self.lat)
        self.interpolator = LinearTriInterpolator(t, self.val)

        self.unit = 'probability'
コード例 #16
0
    def _setup_Te_interpolator(self, kind='linear'):
        """setup interpolator for measured Te

        :param string kind: default is 'linear', can be 'cubic' or 'linear'
        """
        self._Delaunay = Delaunay(self._points)
        self._triangulation = triangulation.Triangulation(
            self._Y, self._X, triangles=self._Delaunay.simplices)
        self._trifinder = DelaunayTriFinder(self._Delaunay,
                                            self._triangulation)
        if kind == 'linear':
            self._kind = kind
            self._Te_interpolator = LinearTriInterpolator(
                self._triangulation, self._Te, trifinder=self._trifinder)
        elif kind == 'cubic':
            self._kind = kind
            self._Te_interpolator = CubicTriInterpolator(
                self._triangulation, self._Te, trifinder=self._trifinder)
        else:
            raise ValueError('Wrong kind of interpolation: {0}. Available \
options are "linear" and "cubic".'.format(kind))
コード例 #17
0
ファイル: Figures.py プロジェクト: rwydaeghe/smartwindows
with open('smartwindows/Variables/point_sources_with_glass.pkl', 'rb') as f:
    point_sources = pickle.load(f)

with open('smartwindows/Variables/voltages_with_glass.pkl', 'rb') as f:
    V1, V2, V3, V4 = pickle.load(f)

trifinder = triang.get_trifinder()

y_b = 0.0e-5
y_t = 5.0e-5
t = 1.5e-5
x_1 = 0.0
x_2 = 20e-5
b = 5e-5

tci = LinearTriInterpolator(triang, V1)
(Ex, Ey) = tci.gradient(triang.x, triang.y)
E = -np.array([Ex, Ey])

x = np.linspace(0, 20e-5, 200 / 4)
y = np.linspace(0 - 1.5e-5, 5e-5 + 1.5e-5, (50 + 2 * 15) / 4)
X, Y = np.meshgrid(x, y)


def get_field_here(field, pos: np.ndarray) -> np.ndarray:
    tr = trifinder(*pos)
    i = triang.triangles[tr]
    v0 = np.array([triang.x[i[0]], triang.y[i[0]]])
    v1 = np.array([triang.x[i[1]], triang.y[i[1]]])
    v2 = np.array([triang.x[i[2]], triang.y[i[2]]])
    norm = np.array([
コード例 #18
0
tri.set_mask(mask)
#####################
nitr = 5

for itr in range(nitr):
    nfname = 'dep_smooth_itr_' + str(100 + itr) + '.nc'
    os.system('cp -f ' + fname + '  ' + nfname)

os.system('echo  Log smoothing &> log.txt  ')

for itr in range(nitr):
    print '   > Calculate gradient ..', itr, nitr
    os.system('echo  ' + str(itr) + ' from ' + str(nitr) + ' >> log.txt  ')
    os.system('echo  "************************************" >> log.txt  ')

    tci = LinearTriInterpolator(tri, dep)
    (ddep_dx, ddep_dy) = tci.gradient(UTMx, UTMy)
    grad_dep = np.sqrt(ddep_dx**2 + ddep_dy**2)

    grad_lim = 0.35
    [ind] = np.where(grad_dep > grad_dep.max() * grad_lim)

    #######
    if vv:
        fig, ax = adcp.make_map(res='m')
        vmin = 0
        vmax = 0.5
        dv = (vmax - vmin) / 50.0
        levels = np.arange(vmin, vmax + dv, dv)
        cf1 = ax.tricontourf(
            trip, grad_dep, levels=levels, cmap=cmaps.jetMinWi,
コード例 #19
0
def extract_wnd(storm,
                datafile1,
                stations,
                df,
                lonmin=None,
                lonmax=None,
                latmin=None,
                latmax=None):

    #Single file netCDF reading
    #ncf='ww3.field.2018_wnd.nc'
    ncf = datafile1
    nco = netCDF4.Dataset(ncf)
    #ncf2='ww3.field.2018_dp.nc'
    #ncf2=datafile2
    #nco2=netCDF4.Dataset(ncf2)

    #Get fields to plot
    lon = nco.variables['longitude'][:]
    lat = nco.variables['latitude'][:]
    pnt_lon = stations.iloc[0, :].values
    pnt_lat = stations.iloc[1, :].values
    timeindays = nco.variables['time'][:]
    uwnd = nco.variables['uwnd'][:]
    vwnd = nco.variables['vwnd'][:]

    #timeindays2=nco2.variables['time'][:]
    #dir=nco2.variables['dp'][:]

    if lonmin != None:
        reflon = np.linspace(lonmin, lonmax, 1000)
        reflat = np.linspace(latmin, latmax, 1000)
    else:
        reflon = np.linspace(lon.min(), lon.max(), 1000)
        reflat = np.linspace(lat.min(), lat.max(), 1000)
    reflon, reflat = np.meshgrid(reflon, reflat)

    flatness = 0.10  # flatness is from 0-.5 .5 is equilateral triangle
    tri = Triangulation(lon, lat)
    mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
    tri.set_mask(mask)

    #Read obs point locations
    #data=np.loadtxt('erie_ndbc.loc', comments = '$')
    #buoylon=data[:,0]
    #buoylat=data[:,1]

    plt.figure(figsize=[6.4, 3.8])

    df_dates = pd.DataFrame(columns=['Date'])

    # Loop through each time step and plot results
    for ind in range(0, len(timeindays)):
        plt.clf()
        ax = plt.axes(projection=ccrs.Mercator())

        dt = datetime.datetime.combine(datetime.date(
            1990, 1, 1), datetime.time(
                0, 0)) + datetime.timedelta(days=timeindays[ind])
        dstr = datetime.date.strftime(dt, '%Y%m%d%H:%M:%S')
        dstr = dstr[0:8] + ' ' + dstr[8:17]
        print('Extracting ' + dstr)

        par = np.sqrt(
            np.square(np.double(uwnd[ind, :])) +
            np.square(np.double(vwnd[ind, :])))
        #par2=np.double(dir[ind,:])

        tli = LinearTriInterpolator(tri, par)
        par_interp = tli(pnt_lon, pnt_lat)

        #print(par_interp)
        df.loc[len(df)] = par_interp
        df_dates.loc[len(df_dates)] = pd.to_datetime(
            dt, format="%Y-%m-%d %H:%M:%S")
        #line = pd.to_datetime(dt, format="%Y-%m-%d %H:%M:%S")
        #new_row = pd.DataFrame(par_interp, columns=stations.columns, index=line)
        #df = pd.concat([df, pd.DataFrame(new_row)], ignore_index=False)

        del (par)
        del (par_interp)

    df['Date'] = df_dates
    df.set_index('Date', inplace=True)
    return df
コード例 #20
0
ファイル: test_214.py プロジェクト: zzyatlantise/fenics-qa
 def __init__(self, triang, ux, uy, **kwargs):
     self.Ix = LinearTriInterpolator(triang, ux)
     self.Iy = LinearTriInterpolator(triang, uy)
コード例 #21
0
p_in_data /= np.max(p_in_data)
spd_data /= np.max(spd_data)
eff_data /= np.max(eff_data)

x = np.concatenate(
    (np.transpose(p_in_data[0:-1][None]), np.transpose(spd_data[0:-1][None])),
    1)
y = np.concatenate(
    (np.transpose(spd_data[1:][None]), np.transpose(eff_data[1:][None])), 1)
# fig = plt.figure()
# plt.plot(x[:,0], x[:,1],'r.')
# plt.show()
# exit()

triObj = Triangulation(x[:, 0], x[:, 1])
pre_plant_s = LinearTriInterpolator(triObj, y[:, 0])
pre_plant_p = LinearTriInterpolator(triObj, y[:, 1])


def plant_s(p_in, spd):
    out = pre_plant_s(p_in, spd)
    # if np.isnan(out):
    # 	breakpoint()
    # 	out = 1
    return out


def plant_p(p_in, spd):
    out = pre_plant_p(p_in, spd)
    # if np.isnan(out):
    # 	out = 1
コード例 #22
0
ファイル: structure.py プロジェクト: rwydaeghe/smartwindows
 def update_E_electrodes(self, x=[0,0,0,0]):
     self.V_electrodes = x[0]*self.V1 + x[1]*self.V2 + x[2]*self.V3 + x[3]*self.V4
     tci = LinearTriInterpolator(self.triang_V,self.V_electrodes) # faster interpolator, but not as accurate                             
     (Ex, Ey) = tci.gradient(self.triang_V.x,self.triang_V.y)
     self.E_electrodes = -np.array([Ex,Ey])
コード例 #23
0
def plot_wlv(storm, datafile1, datafile2=None, lonmin=None, lonmax=None, latmin=None, latmax=None, domain=None):

   #Single file netCDF reading
   ncf=datafile1
   nco=netCDF4.Dataset(ncf)
   ncf2=datafile2
   nco2=netCDF4.Dataset(ncf2)

   #Get fields to plot
   lon=nco.variables['longitude'][:]
   lat=nco.variables['latitude'][:]
   timeindays=nco.variables['time'][:]
   wlv=nco.variables['wlv'][:]
   triangles=nco.variables['tri'][:,:]

   dpt=nco2.variables['dpt'][:]

   if lonmin != None:
      reflon=np.linspace(lonmin, lonmax, 1000)
      reflat=np.linspace(latmin, latmax, 1000)
   else:
      reflon=np.linspace(lon.min(),lon.max(),1000)
      reflat=np.linspace(lat.min(),lat.max(),1000)
   reflon,reflat=np.meshgrid(reflon,reflat)

   plt.figure(figsize = [6.4, 3.8])

   flatness=0.10  # flatness is from 0-.5 .5 is equilateral triangle
   triangles=triangles-1  # Correct indices for Python's zero-base
   tri=Triangulation(lon,lat,triangles=triangles)
   mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
   tri.set_mask(mask)

   # Loop through each time step and plot results
   for ind in range(0, len(timeindays)):
      besttrack = pd.read_csv(PARMnsem+'/storms/'+STORM+'/best_track.txt', header=None, skiprows=4, delim_whitespace=True) 
      plt.clf()
      ax = plt.axes(projection=ccrs.Mercator())
      if lonmin != None:
         ax.set_extent([lonmin, lonmax, latmin, latmax], crs=ccrs.PlateCarree())
 
      dt = datetime.datetime.combine(datetime.date(1990, 1, 1), datetime.time(0, 0)) + datetime.timedelta(days=timeindays[ind])
      dstr = datetime.date.strftime(dt,'%Y%m%d%H:%M:%S')
      dstr = dstr[0:8]+' '+dstr[8:17]
      print('Plotting '+dstr)

      par=np.double(wlv[ind,:])
      tli=LinearTriInterpolator(tri,par)
      par_interp=tli(reflon,reflat)

      plt.pcolormesh(reflon,reflat,par_interp,vmin=-2.0,vmax=2.0, shading='flat',cmap=plt.cm.bwr, transform=ccrs.PlateCarree())
      cb = plt.colorbar()
      cb.ax.tick_params(labelsize=8)
      coast = cfeature.GSHHSFeature(scale='high',edgecolor='black',facecolor='none',linewidth=0.25)	
      ax.add_feature(coast)
      plt.plot(besttrack.iloc[:,3].values, besttrack.iloc[:,2].values, 'k--', linewidth=1.0, transform=ccrs.PlateCarree())

      gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
                  linewidth=2, color='gray', alpha=0.5, linestyle='--')
      gl.xlabels_top = False
      gl.ylabels_right = False
      gl.xlines = False
      gl.ylines = False
      gl.xformatter = LONGITUDE_FORMATTER
      gl.yformatter = LATITUDE_FORMATTER
      gl.xlabel_style = {'size': 6, 'color': 'black'}
      gl.ylabel_style = {'size': 6, 'color': 'black'}
      figtitle = storm.capitalize()+': WL (m MSL): '+dstr
      plt.title(figtitle)

      dtlabel = datetime.date.strftime(dt,'%Y%m%d%H%M%S')
      dtlabel = dtlabel[0:8]+'_'+dtlabel[8:14]
      filenm = 'nsem_'+storm+'_wlv_'+dtlabel+'_'+domain+'.png'
      plt.savefig(filenm,dpi=150,bbox_inches='tight',pad_inches=0.1)

      del(par)
      del(par_interp)
コード例 #24
0
    def __call__(self, plot):
        # These need to be in code_length
        x0, x1 = (v.in_units("code_length") for v in plot.xlim)
        y0, y1 = (v.in_units("code_length") for v in plot.ylim)

        # These are in plot coordinates, which may not be code coordinates.
        xx0, xx1 = plot._axes.get_xlim()
        yy0, yy1 = plot._axes.get_ylim()

        plot._axes.hold(True)

        numPoints_x = plot.image._A.shape[0]
        numPoints_y = plot.image._A.shape[1]

        # Multiply by dx and dy to go from data->plot
        dx = (xx1 - xx0) / (x1 - x0)
        dy = (yy1 - yy0) / (y1 - y0)

        # We want xi, yi in plot coordinates
        xi, yi = np.mgrid[xx0:xx1:numPoints_x / (self.factor * 1j),
                          yy0:yy1:numPoints_y / (self.factor * 1j)]
        data = self.data_source or plot.data

        if plot._type_name in ['CuttingPlane', 'Projection', 'Slice']:
            if plot._type_name == 'CuttingPlane':
                x = data["px"] * dx
                y = data["py"] * dy
                z = data[self.field]
            elif plot._type_name in ['Projection', 'Slice']:
                #Makes a copy of the position fields "px" and "py" and adds the
                #appropriate shift to the copied field.

                AllX = np.zeros(data["px"].size, dtype='bool')
                AllY = np.zeros(data["py"].size, dtype='bool')
                XShifted = data["px"].copy()
                YShifted = data["py"].copy()
                dom_x, dom_y = plot._period
                for shift in np.mgrid[-1:1:3j]:
                    xlim = ((data["px"] + shift * dom_x >= x0) &
                            (data["px"] + shift * dom_x <= x1))
                    ylim = ((data["py"] + shift * dom_y >= y0) &
                            (data["py"] + shift * dom_y <= y1))
                    XShifted[xlim] += shift * dom_x
                    YShifted[ylim] += shift * dom_y
                    AllX |= xlim
                    AllY |= ylim

                # At this point XShifted and YShifted are the shifted arrays of
                # position data in data coordinates
                wI = (AllX & AllY)

                # This converts XShifted and YShifted into plot coordinates
                x = ((XShifted[wI] - x0) * dx).ndarray_view() + xx0
                y = ((YShifted[wI] - y0) * dy).ndarray_view() + yy0
                z = data[self.field][wI]

            # Both the input and output from the triangulator are in plot
            # coordinates
            if LooseVersion(matplotlib.__version__) < LooseVersion("1.4.0"):
                from matplotlib.delaunay.triangulate import Triangulation as \
                    triang
                zi = triang(x, y).nn_interpolator(z)(xi, yi)
            else:
                from matplotlib.tri import Triangulation, LinearTriInterpolator
                triangulation = Triangulation(x, y)
                zi = LinearTriInterpolator(triangulation, z)(xi, yi)
        elif plot._type_name == 'OffAxisProjection':
            zi = plot.frb[self.field][::self.factor, ::self.factor].transpose()

        if self.take_log is None:
            field = data._determine_fields([self.field])[0]
            self.take_log = plot.ds._get_field_info(*field).take_log

        if self.take_log: zi = np.log10(zi)

        if self.take_log and self.clim is not None:
            self.clim = (np.log10(self.clim[0]), np.log10(self.clim[1]))

        if self.clim is not None:
            self.ncont = np.linspace(self.clim[0], self.clim[1], self.ncont)

        cset = plot._axes.contour(xi, yi, zi, self.ncont, **self.plot_args)
        plot._axes.set_xlim(xx0, xx1)
        plot._axes.set_ylim(yy0, yy1)
        plot._axes.hold(False)

        if self.label:
            plot._axes.clabel(cset, **self.label_args)
コード例 #25
0
def plot_cur(storm, datafile1, datafile2=None):

   #Single file netCDF reading
   ncf=datafile1
   nco=netCDF4.Dataset(ncf)
   #ncf2=datafile2
   #nco2=netCDF4.Dataset(ncf2)

   #Get fields to plot
   lon=nco.variables['longitude'][:]
   lat=nco.variables['latitude'][:]
   timeindays=nco.variables['time'][:]
   ucur=nco.variables['ucur'][:]
   vcur=nco.variables['vcur'][:]
   triangles=nco.variables['tri'][:,:]

   #timeindays2=nco2.variables['time'][:]
   #dir=nco2.variables['dp'][:]

   reflon=np.linspace(lon.min(),lon.max(),1000)
   reflat=np.linspace(lat.min(),lat.max(),1000)
   #reflon=np.linspace(-80.40, -74.75, 1000)
   #reflat=np.linspace(32.50, 36.60, 1000)
   #reflon=np.linspace(-75.70, -71.05, 1000)
   #reflat=np.linspace(38.50, 41.40, 1000)
   reflon,reflat=np.meshgrid(reflon,reflat)

   plt.figure(figsize = [6.4, 3.8])

   flatness=0.10  # flatness is from 0-.5 .5 is equilateral triangle
   triangles=triangles-1  # Correct indices for Python's zero-base
   tri=Triangulation(lon,lat,triangles=triangles)
   mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
   tri.set_mask(mask)

   # Loop through each time step and plot results
   for ind in range(0, len(timeindays)): 
      plt.clf()
      ax = plt.axes(projection=ccrs.Mercator())

      dt = datetime.datetime.combine(datetime.date(1990, 1, 1), datetime.time(0, 0)) + datetime.timedelta(days=timeindays[ind])
      dstr = datetime.date.strftime(dt,'%Y%m%d%H:%M:%S')
      dstr = dstr[0:8]+' '+dstr[8:17]
      print('Plotting '+dstr)

      par=np.sqrt( np.square(np.double(ucur[ind,:])) + np.square(np.double(vcur[ind,:])) )
      #par2=np.double(dir[ind,:])

      tli=LinearTriInterpolator(tri,par)
      par_interp=tli(reflon,reflat)

      #u=np.cos(np.pi/180*(270-par_interp))
      #v=np.sin(np.pi/180*(270-par_interp))

      plt.pcolormesh(reflon,reflat,par_interp,vmin=0.0,vmax=2.0,shading='flat',cmap=plt.cm.jet, transform=ccrs.PlateCarree())
      #plt.contourf(reflon, reflat, par_interp, vmax=60.0, cmap=plt.cm.jet, transform=ccrs.PlateCarree())
      cb = plt.colorbar()
      cb.ax.tick_params(labelsize=8)
      #rowskip=np.floor(par_interp.shape[0]/25)
      #colskip=np.floor(par_interp.shape[1]/25)
      rowskip = 50
      colskip = 50
      #plt.quiver(reflon[0::rowskip,0::colskip],reflat[0::rowskip,0::colskip],\
      #      u[0::rowskip,0::colskip],v[0::rowskip,0::colskip], \
      #      scale = 50, color='black',pivot='middle',units='xy',alpha=0.7)
      coast = cfeature.GSHHSFeature(scale='high',edgecolor='black',facecolor='none',linewidth=0.25)	
      ax.add_feature(coast)
      plt.xticks(fontsize=9)
      plt.yticks(fontsize=9)

      figtitle = storm.capitalize()+': Cur (m/s): '+dstr
      plt.title(figtitle)

      dtlabel = datetime.date.strftime(dt,'%Y%m%d%H%M%S')
      dtlabel = dtlabel[0:8]+'_'+dtlabel[8:14]
      filenm = 'nsem_'+storm+'_cur_'+dtlabel+'.png'
      plt.savefig(filenm,dpi=150,bbox_inches='tight',pad_inches=0.1)

      del(par)
      del(par_interp)
コード例 #26
0
def spatial_autocorr_fft(tri,
                         U,
                         V,
                         N_grid=512,
                         auto=False,
                         transform=False,
                         tree=None,
                         interp='Lanczos'):
    """
    Function to estimate autocorrelation from a single increment in cartesian
    coordinates(tau, eta)
    Input:
    -----
        tri      - Delaunay triangulation object of unstructured grid.
                   
        N_grid     - Squared, structured grid resolution to apply FFT.
        
        U, V     - Arrays with cartesian components of wind speed.
        
    Output:
    ------
        r_u,r_v  - 2D arrays with autocorrelation function rho(tau,eta) 
                   for U and V, respectively.               
    """
    if transform:
        U_mean = avetriangles(np.c_[tri.x, tri.y], U, tri)
        V_mean = avetriangles(np.c_[tri.x, tri.y], V, tri)
        # Wind direction
        gamma = np.arctan2(V_mean, U_mean)
        # Components in matrix of coefficients
        S11 = np.cos(gamma)
        S12 = np.sin(gamma)
        T = np.array([[S11, S12], [-S12, S11]])
        vel = np.array(np.c_[U, V]).T
        vel = np.dot(T, vel)
        X = np.array(np.c_[tri.x, tri.y]).T
        X = np.dot(T, X)
        U = vel[0, :]
        V = vel[1, :]
        tri = Triangulation(X[0, :], X[1, :])
        mask = TriAnalyzer(tri).get_flat_tri_mask(.05)
        tri = Triangulation(tri.x, tri.y, triangles=tri.triangles[~mask])
        U_mean = avetriangles(np.c_[tri.x, tri.y], U, tri)
        V_mean = avetriangles(np.c_[tri.x, tri.y], V, tri)
    else:
        # Demeaning
        U_mean = avetriangles(np.c_[tri.x, tri.y], U, tri)
        V_mean = avetriangles(np.c_[tri.x, tri.y], V, tri)

    grid = np.meshgrid(np.linspace(np.min(tri.x), np.max(tri.x), N_grid),
                       np.linspace(np.min(tri.y), np.max(tri.y), N_grid))

    U = U - U_mean
    V = V - V_mean

    # Interpolated values of wind field to a squared structured grid

    if interp == 'cubic':
        U_int = CubicTriInterpolator(tri, U)(grid[0].flatten(),
                                             grid[1].flatten()).data
        V_int = CubicTriInterpolator(tri, V)(grid[0].flatten(),
                                             grid[1].flatten()).data
        U_int = np.reshape(U_int, grid[0].shape)
        V_int = np.reshape(V_int, grid[0].shape)
    else:
        #        U_int= lanczos_int_sq(grid,tree,U)
        #        V_int= lanczos_int_sq(grid,tree,V)
        U_int = LinearTriInterpolator(tri, U)(grid[0].flatten(),
                                              grid[1].flatten()).data
        V_int = LinearTriInterpolator(tri, V)(grid[0].flatten(),
                                              grid[1].flatten()).data
        U_int = np.reshape(U_int, grid[0].shape)
        V_int = np.reshape(V_int, grid[0].shape)

    #zero padding
    U_int[np.isnan(U_int)] = 0.0
    V_int[np.isnan(V_int)] = 0.0
    fftU = np.fft.fft2(U_int)
    fftV = np.fft.fft2(V_int)
    if auto:

        # Autocorrelation
        r_u = np.real(np.fft.fftshift(np.fft.ifft2(np.absolute(fftU)**
                                                   2))) / len(U_int.flatten())
        r_v = np.real(np.fft.fftshift(np.fft.ifft2(np.absolute(fftV)**
                                                   2))) / len(U_int.flatten())
        r_uv = np.real(
            np.fft.fftshift(np.fft.ifft2(np.real(
                fftU * np.conj(fftV))))) / len(U_int.flatten())

    dx = np.max(np.diff(grid[0].flatten()))
    dy = np.max(np.diff(grid[1].flatten()))

    n = grid[0].shape[0]
    m = grid[1].shape[0]
    # Spectra
    fftU = np.fft.fftshift(fftU)
    fftV = np.fft.fftshift(fftV)
    fftUV = fftU * np.conj(fftV)
    Suu = 2 * (np.abs(fftU)**2) * (dx * dy) / (n * m)
    Svv = 2 * (np.abs(fftV)**2) * (dx * dy) / (n * m)
    Suv = 2 * np.real(fftUV) * (dx * dy) / (n * m)
    k1 = np.fft.fftshift((np.fft.fftfreq(n, d=dx)))
    k2 = np.fft.fftshift((np.fft.fftfreq(m, d=dy)))
    if auto:
        return (r_u, r_v, r_uv, Suu, Svv, Suv, k1, k2)
    else:
        return (Suu, Svv, Suv, k1, k2)
コード例 #27
0
ファイル: load_data.py プロジェクト: giannisker/XGC
def getMeshAndCuts(fileDir,
                   nRi=None,
                   nZi=None,
                   Rmin=Rmin,
                   Rmax=Rmax,
                   Zmin=Zmin,
                   Zmax=Zmax):

    global loader, ne, pot, psin, RZ, tri, time, psin1d, psin001d, Te1d, ne1d, pot001d, bfield, pot0, dpot, dpot, pot, Tigc1d, nigc1d, i_T_perp, i_E_para, e_T_perp, e_E_para
    global Nplanes, Ntimes, dt
    global Ri, Zi, RI, ZI, triObj
    global sepInds, psinvalues, jcut, Zcut  #,psii

    loader = xgc.load(fileDir,
                      Rmin=Rmin,
                      Rmax=Rmax,
                      Zmin=Zmin,
                      Zmax=Zmax,
                      phi_start=0,
                      phi_end=None)
    ne = loader.calcNeTotal()
    pot = loader.calcPotential()
    print('Rmin = ', loader.Rmin)
    print('Rmax = ', loader.Rmax)
    print('Zmin = ', loader.Zmin)
    print('Zmax = ', loader.Zmax)
    print('ne.shape = ', ne.shape)

    # (could have imported * from xgc but this way we see explicitly what we are getting)

    # arrays
    psin = loader.psin
    RZ = loader.RZ
    tri = loader.tri
    time = loader.time
    psin1d = loader.psin1d
    psin001d = loader.psin001d
    Te1d = loader.Te1d
    ne1d = loader.ne1d
    pot001d = loader.pot001d
    bfield = loader.bfield
    pot0 = loader.pot0
    dpot = loader.dpot
    pot = loader.pot
    #if hasattr(loader,'i_T_perp'):
    i_T_perp = loader.i_T_perp
    i_E_para = loader.i_E_para
    e_T_perp = loader.e_T_perp
    e_E_para = loader.e_E_para

    # scalars
    Zcut = None
    Nplanes = loader.Nplanes
    Ntimes = loader.Ntimes
    dt = loader.dt

    #setup mesh grid
    if nRi == None:
        nRi = 100
    if nZi == None:
        nZi = 100
    Ri = np.linspace(loader.Rmin, loader.Rmax, nRi)
    Zi = np.linspace(loader.Zmin, loader.Zmax, nZi)
    (RI, ZI) = np.meshgrid(Ri, Zi)
    # set up to interpolate using the TriInterpolator class. Should be what tricontourf() uses
    triObj = Triangulation(RZ[:, 0], RZ[:, 1], tri)

    # get indices of RZ vertices on the separatrix
    sepInds = np.where(np.abs(loader.psin - 1.0) < 1e-4)[0]

    # flux surface values on the triangular mesh
    psinvalues = np.sort(np.array(list(set(np.round(
        psin, 4)))))  # 4 round to 4 decimal places; adjust?

    # locate j value where Z = Zcut
    if Zcut == None:
        Zcut = Zi.mean()
    jcut = int(round(np.mean(np.where(np.abs(Zi - Zcut) < 1.e-1))))
    #print "Zi[0:5] = ",Zi[0:5]
    #print "Zi[-5:0] = ",Zi[-5:-1]
    #print "Zcut = ",Zcut
    print("jcut = ", jcut)

    # calculate psi(Ri) = psii at the cut
    tci = LinearTriInterpolator(triObj, psin)
    psiout = tci(RI, ZI)
    psii = psiout[
        jcut, :]  # a 1D array of psin values at each Ri along the cut
コード例 #28
0
for ind in range(0, len(timeindays)): 
   dt = datetime.datetime.combine(datetime.date(1990, 1, 1), datetime.time(0, 0)) + datetime.timedelta(days=timeindays[ind])
   dstr = datetime.date.strftime(dt,'%Y%m%d%H:%M:%S')
   dstr = dstr[0:8]+' '+dstr[8:17]
   print('Plotting '+dstr)

   par=np.double(wlv[ind,:])
   par2=np.double(ucur[ind,:])
   par3=np.double(vcur[ind,:])

   flatness=0.10  # flatness is from 0-.5 .5 is equilateral triangle
   tri=Triangulation(lon,lat)
   mask = TriAnalyzer(tri).get_flat_tri_mask(flatness)
   tri.set_mask(mask)

   tli=LinearTriInterpolator(tri,par)
   par_interp=tli(reflon,reflat)
   tli2=LinearTriInterpolator(tri,par2)
   par2_interp=tli2(reflon,reflat)
   tli3=LinearTriInterpolator(tri,par3)
   par3_interp=tli3(reflon,reflat)

   #Set up a Mercator projection basemap
   plt.clf()
   #m=Basemap(projection='merc',llcrnrlon=reflon.min(),urcrnrlon=reflon.max(),\
   #    llcrnrlat=reflat.min(),urcrnrlat=reflat.max(),resolution='h')
   #x,y=m(reflon,reflat)
   x = reflon
   y = reflat

   u=par2_interp
コード例 #29
0
    def slice_to_array(self, slc, offset: float = 0.0, name: str = "Y"):
        """Converts a PolyData slice to a 2D NumPy array.

        It is crucial to have the true normal and origin of
        the slicing plane

        Parameters
        ----------
        slc : PolyData
            Slice as slice through a mesh.

        """

        # Get slice
        if self.debug:
            print("   Getting Slice")
        slctemp = slc.copy(deep=True)
        slctemp.points = (self.rotmat.T @ slctemp.points.T).T

        # Interpolate slices
        if self.debug:
            print("   Creating polydata")

        # Depending on the slice, column 1 or 2 will contain the points
        if offset == 0.0:
            points = np.vstack((slctemp.points[:, 0], slctemp.points[:, 2],
                                np.zeros_like(slctemp.points[:, 2]))).T
        else:
            points = np.vstack((slctemp.points[:, 0], slctemp.points[:, 1],
                                np.zeros_like(slctemp.points[:, 1]))).T

        pc = pv.PolyData(points)

        if self.debug:
            print("   Triangulate")
        mesh = pc.delaunay_2d(alpha=0.5 * 1.5 * lpy.DEG2KM)
        mesh[self.meshname] = slctemp[self.meshname]

        # Get triangles from delauney triangulation to be
        # used for interpolation
        if self.debug:
            print("   Reshape Triangles")
        xy = np.array(mesh.points[:, 0:2])
        r, t = lpy.math.cart2pol(xy[:, 0], xy[:, 1])
        findlimt = t + 4 * np.pi
        mint = np.min(findlimt) - 4 * np.pi
        maxt = np.max(findlimt) - 4 * np.pi
        cells = mesh.faces.reshape(mesh.n_cells, 4)
        triangles = np.array(cells[:, 1:4])

        # Set maximum slice length (makes no sense otherwise)
        if mint < -11.25:
            mint = -11.25
        if maxt > 11.25:
            maxt = 11.25

        # Set up intterpolation values
        dmin = np.min(lpy.base.EARTH_RADIUS_KM - r)
        dmax = np.max(lpy.base.EARTH_RADIUS_KM - r)
        dsamp = np.linspace(dmin, dmax, 1000)
        tsamp = np.linspace(mint, maxt, 1000)
        tt, dd = np.meshgrid(tsamp, dsamp)

        # you can add keyword triangles here if you have the triangle array,
        # size [Ntri,3]
        if self.debug:
            print("   Triangulation 2")
        triObj = Triangulation(t, r, triangles=triangles)

        # linear interpolation
        fz = LinearTriInterpolator(triObj, mesh[self.meshname])
        Z = fz(tt, lpy.base.EARTH_RADIUS_KM - dd)

        # Get aspect of the figure
        aspect = ((maxt - mint) * 180 / np.pi * lpy.DEG2KM) / (dmax - dmin)
        height = 4.0
        width = height * aspect

        if self.debug:
            print("   Plotting")

        # Create figure
        plt.figure(figsize=(width, height))

        plt.imshow(Z,
                   extent=[
                       mint * 180 / np.pi * lpy.DEG2KM,
                       maxt * 180 / np.pi * lpy.DEG2KM, dmax, dmin
                   ],
                   cmap=self.cmapname,
                   vmin=self.clim[0],
                   vmax=self.clim[1],
                   rasterized=True)

        from_north = np.abs(self.rotangle * 180 / np.pi) + offset
        plt.title(rf"$N{from_north:6.2f}^\circ \rightarrow$")
        plt.xlabel('Offset [km]')
        plt.ylabel('Depth [km]')

        if not self.figures_only:
            plt.show(block=False)

        plt.savefig(
            os.path.join(
                self.outputdir, f"slice_{name}_"
                f"lat{int(self.latitude+90.0)}_"
                f"lon{int(self.longitude+180.0)}_"
                f"N{int(from_north)}_{self.meshname}.pdf"))
        """
コード例 #30
0
#bfield
fb = ad.file(fileDir + 'xgc.bfield.bp')
bfield = fb['/node_data[0]/values'][spaceinds, :]
fb.close()

#tindex
f1d = ad.file(fileDir + 'xgc.oneddiag.bp')
time = np.unique(f1d['time'][:])[50:]
tindex = np.unique(f1d['tindex'][:])[50:]  #remove first 50
f1d.close()
Ntimes = tindex.size
Nplanes = 32

triObj = Triangulation(Rgrid, Zgrid, triGrid)
fBR = LinearTriInterpolator(triObj, bfield[:, 0])
fBZ = LinearTriInterpolator(triObj, bfield[:, 1])

#put the required things into the parallel workers
#dview.push(dict(Rgrid=Rgrid,Zgrid=Zgrid,triGrid=triGrid))

## find blobs in each plane, time
#blobInds = np.empty((Nplanes,Ntimes),dtype=object)
#blobPaths = np.empty((Nplanes,Ntimes),dtype=object)
#blobParams = np.empty((Nplanes,Ntimes),dtype=object)
#holeInds = np.empty((Nplanes,Ntimes),dtype=object)
#holePaths = np.empty((Nplanes,Ntimes),dtype=object)
#holeParams = np.empty((Nplanes,Ntimes),dtype=object)
#for (it,t) in enumerate(tindex):
#    print 'Starting time ind '+str(t)
#    try: