コード例 #1
0
def stackedarea(series, **kwargs):
    fig = plt.figure()
    axe = fig.add_subplot(111)
    fnx = lambda s: np.array(list(v[1] for v in s), dtype="f8")
    yax = np.row_stack(fnx(s) for s in series)
    xax = np.arange(1917, 2008)
    polys = axe.stackplot(xax, yax)  #创建子图对象后,调用对象的stackplot绘制箱线图
    axe.margins(0, 0)

    if 'ylabels' in kwargs:
        axe.set_ylabel(kwargs['ylabel'])

    if 'labels' in kwargs:
        legendProxies = []
        for poly in polys:
            legendProxies.append(plt.Rectangle(0, 0),
                                 1,
                                 1,
                                 fc=poly.get_factor()[0])

    axe.legend([legendProxies, kwargs.get('labels')])

    if 'title' in kwargs:
        plt.title(kwargs['title'])

    return fig
コード例 #2
0
ファイル: vis.py プロジェクト: UltimateJupiter/VRP_RL
def plot_bus(fig, ax, bus: Bus, bus_vec, C, scale, stack_count, bar=True):

    w = 160
    h = 40
    active = bus_vec[0].cpu().item()
    loc = int(bus_vec[2].cpu().item())

    crd = [bus.M.nodes[loc].crd[0], bus.M.nodes[loc].crd[1]]
    passengers = bus_vec[4:4 + bus.M.n_station].cpu().numpy()
    location_onehot = bus_vec[4 + bus.M.n_station:4 + bus.M.n_station * 2 +
                              1].cpu().numpy()
    route_onehot = bus_vec[4 + bus.M.n_station * 2 + 1:].cpu().numpy()
    capacity = bus.capacity
    ind = bus.ind

    # stack the buses if there are more than 1 at the same place
    crd[1] += h * stack_count

    rect_anchor = [crd[0] - w / 2, crd[1] - h / 2]
    scalex, scaley = scale
    font_size = scaley * 800

    if bar:
        crd_base_bar = rect_anchor
        bar_x, bar_y = ax.transAxes.inverted().transform(
            ax.transData.transform(crd_base_bar))

        crd_rect_vert = [crd_base_bar[0] + w, crd_base_bar[1] + h]
        bar_x_vert, bar_y_vert = ax.transAxes.inverted().transform(
            ax.transData.transform(crd_rect_vert))

        bar_scale_x = bar_x_vert - bar_x
        bar_scale_y = bar_y_vert - bar_y

        ax_bar = fig.add_axes([bar_x, bar_y, bar_scale_x, bar_scale_y])
        total_count = 0
        for i, count in enumerate(passengers):
            ax_bar.barh([0], count, left=total_count, color=C[i])
            total_count += count
        ax_bar.set_ylim(0, 0.1)
        ax_bar.set_xlim(0, capacity)
        ax_bar.axis('off')

    bus_color = 'k' if active else 'b'
    ax.add_patch(
        plt.Rectangle(rect_anchor, width=w, height=h, ec=bus_color, fc='w'))
    ax.text(crd[0] + w / 2 + 10,
            crd[1],
            "{}/{}".format(int(sum(passengers)), capacity),
            ha='left',
            va='center',
            fontsize=font_size,
            color=bus_color)
    ax.text(crd[0] - w / 2 - 10,
            crd[1],
            "#{}".format(ind),
            ha='right',
            va='center',
            fontsize=font_size,
            color=bus_color)
コード例 #3
0
def _vis_proposals(im, dets, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]
    if len(inds) == 0:
        return

    class_name = 'obj'
    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')
    for i in inds:
        bbox = dets[i, :4]
        score = dets[i, -1]

        ax.add_patch(
            plt.Rectangle((bbox[0], bbox[1]),
                          bbox[2] - bbox[0],
                          bbox[3] - bbox[1],
                          fill=False,
                          edgecolor='red',
                          linewidth=3.5))
        ax.text(bbox[0],
                bbox[1] - 2,
                '{:s} {:.3f}'.format(class_name, score),
                bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14,
                color='white')

    ax.set_title(('{} detections with '
                  'p({} | box) >= {:.1f}').format(class_name, class_name,
                                                  thresh),
                 fontsize=14)
    plt.axis('off')
    plt.tight_layout()
    plt.draw()
コード例 #4
0
ファイル: utils.py プロジェクト: xiaoyangyang2/PaddleHub
def draw_boxes_on_image(image_path: str,
                        boxes: np.ndarray,
                        scores: np.ndarray,
                        labels: np.ndarray,
                        label_names: List[str],
                        score_thresh: float = 0.5,
                        save_path: str = 'result'):
    """Draw boxes on images."""
    image = np.array(PIL.Image.open(image_path))
    plt.figure()
    _, ax = plt.subplots(1)
    ax.imshow(image)

    image_name = image_path.split('/')[-1]
    print("Image {} detect: ".format(image_name))
    colors = {}
    for box, score, label in zip(boxes, scores, labels):
        if score < score_thresh:
            continue
        if box[2] <= box[0] or box[3] <= box[1]:
            continue
        label = int(label)
        if label not in colors:
            colors[label] = plt.get_cmap('hsv')(label / len(label_names))
        x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
        rect = plt.Rectangle((x1, y1),
                             x2 - x1,
                             y2 - y1,
                             fill=False,
                             linewidth=2.0,
                             edgecolor=colors[label])
        ax.add_patch(rect)
        ax.text(x1,
                y1,
                '{} {:.4f}'.format(label_names[label], score),
                verticalalignment='bottom',
                horizontalalignment='left',
                bbox={
                    'facecolor': colors[label],
                    'alpha': 0.5,
                    'pad': 0
                },
                fontsize=8,
                color='white')
        print("\t {:15s} at {:25} score: {:.5f}".format(
            label_names[int(label)], str(list(map(int, list(box)))), score))
    image_name = image_name.replace('jpg', 'png')
    plt.axis('off')
    plt.gca().xaxis.set_major_locator(plt.NullLocator())
    plt.gca().yaxis.set_major_locator(plt.NullLocator())
    plt.savefig("{}/{}".format(save_path, image_name),
                bbox_inches='tight',
                pad_inches=0.0)
    plt.cla()
    plt.close('all')
コード例 #5
0
def sim_pi(total_sim):
    np.random.seed(
        0
    )  #creating a random seed to save the previous random numbers generated
    x_new = []  #creating an empty list for x values
    y_new = []  #creating an empty list for y values
    circle = [
    ]  #creating an empty list to save the values that fall inside the circle

    radius = 0.5
    cir_plot = plt.Circle((0.5, 0.5), 0.5, color='r',
                          fill=False)  #plotting a circle
    sq_plot = plt.Rectangle((0, 0), 1, 1, color='b',
                            fill=False)  #plotting a rectangle
    fig = plt.gcf()
    ax = fig.gca(adjustable='box')
    ax.set_aspect('equal')
    ax.add_artist(cir_plot)
    ax.add_artist(sq_plot)

    dots = 0

    for i in np.arange(total_sim):
        x = np.random.rand(1, 1)
        y = np.random.rand(1, 1)
        x_new = np.append(x_new, x)
        y_new = np.append(y_new, y)

        if (x - 0.5)**2 + (y - 0.5)**2 < radius**2:
            circle = np.append(circle, "red")
            dots += 1
        else:
            circle = np.append(circle, "blue")

    plot = plt.scatter(x_new, y_new, s=1.5, color=circle)

    pi_val = (dots / total_sim) * 4
    diff = round(abs(pi_val - 3.14159), 4)
    print("This simulation gives a pi value of",
          str(pi_val) + ". The difference between the known pi value of",
          str(3.14) + " and our simulated value is",
          str(diff) + ".")
コード例 #6
0
def graph_intervals(
    X_test,
    y,
    best_model,
    actual_label,
    lower_bound_label,
    upper_bound_label,
    interval_label,
    title,
    model_params,
    n=100,
    # x_axis_col="store_order_id",
):
    # Don't show plots.
    y_interval_predicted = best_model.predict(X_test)
    X = X_test.copy()
    pd.options.mode.chained_assignment = None
    X[lower_bound_label] = y_interval_predicted[0, :, 0]
    X[upper_bound_label] = y_interval_predicted[0, :, 1]
    # X[lower_bound_label] = best_model.forest.predict(X_test)
    # X[upper_bound_label] = best_model.forest.predict(X_test)
    X[actual_label] = y
    pd.options.mode.chained_assignment = "warn"
    plt.rcParams["figure.figsize"] = [9, 16]
    plt.rcParams["figure.dpi"] = 400
    fig = plt.figure()
    X_sample_w_index = X.sample(n=n).sort_values(by=[actual_label])
    X_sample = X_sample_w_index.reset_index()
    plt.plot(X_sample.index,
             X_sample[actual_label],
             "b.",
             markersize=10,
             label=u"Observations")
    plt.plot(X_sample.index, X_sample[lower_bound_label], "k-")
    plt.plot(X_sample.index, X_sample[upper_bound_label], "k-")
    plt.fill(
        np.concatenate([X_sample.index, X_sample.index[::-1]]),
        np.concatenate(
            [X_sample[upper_bound_label], X_sample[lower_bound_label][::-1]]),
        alpha=0.2,
        fc="b",
        ec="None",
        label=interval_label,
    )
    contains = (len(X[(X[lower_bound_label] <= X[actual_label])
                      & (X[actual_label] <= X[upper_bound_label])].index) /
                len(X.index))
    over_estimates = len(
        X[(X[lower_bound_label] > X[actual_label])].index) / len(X.index)
    under_estimates = len(
        X[(X[upper_bound_label] < X[actual_label])].index) / len(X.index)
    median_interval_width = (X[upper_bound_label] -
                             X[lower_bound_label]).median()
    score = interval_score(y, y_interval_predicted)
    scores = (r"contains={0:.0%}" + "\n" + r"underestimates={1:.0%}" + "\n" +
              r"overestimates={2:.0%}" + "\n" + r"med_interval_width={3:.2f}" +
              "\n" + r"score={4:.2f}").format(contains, over_estimates,
                                              under_estimates,
                                              median_interval_width, score)
    extra = plt.Rectangle((0, 0),
                          0,
                          0,
                          fc="w",
                          fill=False,
                          edgecolor="none",
                          linewidth=0)
    plt.legend([extra], [scores], loc="upper left")
    plt.title(title + ":" + model_params)
    plt_filename = title + ":" + model_params + ".png"
    plt.savefig(plt_filename, bbox_inches="tight")
    plt.close(fig)
    return plt_filename