def show_signature(img_path, fignum=1): print('Showing signature: ' + img_path) img = plt.imread(join(imgdir, img_path)) sig_img = sliding_window_signature(img) fig = plt.figure(fignum) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) ax1.imshow(img) ax2.imshow(sig_img) fig.show() fig.canvas.draw()
def show_signature(img_path, fignum=1): print('Showing signature: '+img_path) img = plt.imread(join(imgdir, img_path)) sig_img = sliding_window_signature(img) fig = plt.figure(fignum) ax1 = fig.add_subplot(1,2,1) ax2 = fig.add_subplot(1,2,2) ax1.imshow(img) ax2.imshow(sig_img) fig.show() fig.canvas.draw()
def prepare_ShanghaiTech_dataset(root, part, dm_generator, resetFlag=False): root = os.path.join(root, "ShanghaiTech") paths_dict = dict() print('\t #Preparing Dataset : ShanghaiTech part ', part, ' :') # generate the ShanghaiA's ground truth if not part == "A" and not part == "B": raise Exception("Invalide parts passed for shanghai ") train_path = os.path.join(root, 'part_' + part, 'train_data') test_path = os.path.join(root, 'part_' + part, 'test_data') # save both train and test paths paths_dict["images"] = os.path.join(train_path, 'images') paths_dict["ground-truth"] = os.path.join(train_path, 'ground-truth') path_sets = [paths_dict["images"], paths_dict["ground-truth"]] img_paths = [] # Grab all .jpg images paths for path in path_sets: for img_path in glob.glob(os.path.join(path, '*.jpg')): img_paths.append(img_path) # Generate density map for each image for img_path in img_paths: if os.path.exists( img_path.replace('.jpg', '.npy').replace( 'images', 'ground-truth')) and not resetFlag: #print("\t Already exists.") continue print('\t\t Generating Density map for : ', os.path.basename(img_path), " :", end=' ') # load matrix containing ground truth infos mat = io.loadmat( img_path.replace('.jpg', '.mat').replace('images', 'ground-truth').replace( 'IMG_', 'GT_IMG_')) img = plt.imread(img_path) #768行*1024列 density_map = np.zeros((img.shape[0], img.shape[1])) points = mat["image_info"][0, 0][0, 0][0] #1546person*2(col,row) # Generate the density map density_map = dm_generator.generate_densitymap(img, points) # save density_map on disk np.save( img_path.replace('.jpg', '.npy').replace('images', 'ground-truth'), density_map) print('\t Done.') return paths_dict
def crop_images(input_folder, crop_percentage): im_files = glob.glob(os.path.join(input_folder, '*.png')) print(im_files) for imf in im_files: im = plt.imread(imf) orig_shape = np.array(im.shape[0:2]) new_shape = np.round(orig_shape * crop_percentage).astype( 'int') #crop to 60% of the image size offset = np.round(0.5 * (orig_shape - new_shape)).astype('int') im_out = im[offset[0]:offset[0] + new_shape[0], offset[1]:offset[1] + new_shape[1]] plt.imsave(imf, im_out)
def readTrafficSigns(rootpath, data): '''Reads traffic sign data for German Traffic Sign Recognition Benchmark. Arguments: path to the traffic sign data, for example './GTSRB/Training' Returns: list of images, list of corresponding labels''' images = [] # images labels = [] # corresponding labels # loop over all 43 classes if data == 'Train': for c in range(0, 43): prefix = rootpath + '/' + format( c, '05d') + '/' # subdirectory for class gtFile = open(prefix + 'GT-' + format(c, '05d') + '.csv') # annotations file gtReader = csv.reader( gtFile, delimiter=';') # csv parser for annotations file next(gtReader) # skip header # loop over all images in current annotations file for row in gtReader: images.append( plt.imread(prefix + row[0])) # the 1th column is the filename labels.append(row[7]) # the 8th column is the label gtFile.close() elif data == 'Test': prefix = rootpath + '/' # subdirectory for class gtFile = open(prefix + 'GT-final_test' + '.csv') # annotations file gtReader = csv.reader(gtFile, delimiter=';') # csv parser for annotations file next(gtReader) # skip header # loop over all images in current annotations file for row in gtReader: images.append(plt.imread(prefix + row[0])) # the 1th column is the filename labels.append(row[7]) # the 8th column is the label gtFile.close() return images, labels
def prepare_dataset(root, dirname, dm_generator, resetFlag=False): root = os.path.join(root, dirname) paths_dict = dict() print('\t #Preparing Dataset : ', dirname) # save both train and test paths paths_dict["images"] = os.path.join(root, 'images') paths_dict["ground-truth"] = os.path.join(root, 'ground-truth') path_sets = [paths_dict["images"], paths_dict["ground-truth"]] img_paths = [] # Grab all .jpg images paths for img_path in glob.glob(os.path.join(paths_dict["images"], '*.jpg')): img_paths.append(img_path) # Generate density map for each image for img_path in img_paths: if os.path.exists( img_path.replace('.jpg', '.npy').replace( 'images', 'ground-truth')) and not resetFlag: #print("\t Already exists.") continue print('\t\t Generating Density map for : ', os.path.basename(img_path), " :") # load matrix containing ground truth infos mat = io.loadmat( img_path.replace('.jpg', '.mat').replace('images', 'ground-truth')) img = plt.imread(img_path) #768行*1024列 density_map = np.zeros((img.shape[0], img.shape[1])) # points = mat["image_info"][0,0][0,0][0] #1546person*2(col,row) key = [el for el in list(mat) if el.lower().endswith('points')][0] points = [tuple(el) for el in mat[key]] #1546person*2(col,row) # Generate the density map density_map = dm_generator.generate_densitymap(img, points) # save density_map on disk np.save( img_path.replace('.jpg', '.npy').replace('images', 'ground-truth'), density_map) print('\t Done.') return paths_dict
elif m == '06': return int(d)+14 elif m == '07': return int(d)+34 df["date"] = [t[0:4] + t[5:7] + t[8:10] for t in df["lastupdated"]] df["time"] = [t[11:13] + t[14:16] for t in df["lastupdated"]] df["day"] = [date2int(t) for t in df["lastupdated"]] # day 0 is May 17, 2014 df["dayofwk"] = [(t+6)%7 for t in df["day"]] # 0 indexed Sunday df.head() # <codecell> plt.figure(figsize=(10,15)) im = plt.imread('chicago.png') implot = plt.imshow(im) x = (df['west'] - df['west'].min())*477/(df['east'].max() - df['west'].min()) y = 798-(df['north'] - df['south'].min())*798/(df['north'].max() - df['south'].min()) s = df['currentspeed'] / df['currentspeed'].max() plt.scatter(x,y,c=s,linewidth=0,s=1000,alpha=0.1) #x0 = (df.ix[0]['west'] - df['west'].min())*477/(df['east'].max() - df['west'].min()) #y0 = 798-(df.ix[0]['north'] - df['south'].min())*798/(df['north'].max() - df['south'].min()) #plt.scatter(x0,y0,c='r',s=2000) #x0 = (df.ix[0]['east'] - df['west'].min())*477/(df['east'].max() - df['west'].min()) #y0 = 798-(df.ix[0]['south'] - df['south'].min())*798/(df['north'].max() - df['south'].min()) #plt.scatter(x0,y0,c='r',s=2000) plt.xlim(0,477) plt.ylim(798,0)
''' import numpy as np import matplotlib as plt from submission import * from helper import * data = np.load('../data/some_corresp.npz') intrinsics = np.load('../data/intrinsics.npz') pts1 = data['pts1'] pts2 = data['pts2'] K1 = intrinsics['K1'] K2 = intrinsics['K2'] im1 = plt.imread('../data/im1.png') im2 = plt.imread('../data/im2.png') M = max(im1.shape[0], im1.shape[1]) F = eightpoint(pts1, pts2, M) E = essentialMatrix(F, K1, K2) print('F: ') for rows in F: print(rows) print('E: ') for rows in E: print(rows)
.format(epoch+1, num_epochs, loss/n_batches)) losses.append(loss/n_batches) #if epoch == 1: pic_org = to_img(img.cpu().data) pic_cropped = to_img_cropped(cropped_img.cpu().data) #pic_noised = to_img(noised_img.cpu().data) pic_pred = to_img(output.cpu().data) res = torch.cat((pic_org,pic_cropped, pic_pred), dim=3) save_image(res[:8], f'{output_dir}/res_{epoch}.png') # save 8 images # save the model torch.save(net.state_dict(), f'{output_dir}/conv_autoencoder_4.pth') # show performance of autoencoder after some epochs imgs = [plt.imread(f'{output_dir}/res_4_{i}.png') for i in range(3)] NUM_ROWS = 1 IMGS_IN_ROW = 1 f, ax = plt.subplots(NUM_ROWS, IMGS_IN_ROW, figsize=(5,10)) for i in range(1): ax[i].imshow(imgs[i]) ax[i].set_title(f'Results after {i} epoch') #Change if changed to epoch or mod epoch plt.tight_layout() plt.show() #Change for the 3rd version!!
from os import listdir import matplotlib as plt for file in listdir("C:\\Users\\bdgecyt\\Desktop\\dataset\\Household Shelter"): # print(files) if file.endswith(".jpg"): print(file) # str.endswith(suffix) im = Image.open( "C:\\Users\\bdgecyt\\Desktop\\dataset\\Household Shelter\\" + file) print(file[:-3] + "png") im.save("C:\\Users\\bdgecyt\\Desktop\\dataset\\Household Shelter\\" + file[:-3] + "png") im = Image.open( "C:\\Users\\bdgecyt\\Desktop\\dataset\\Household Shelter\\test2_84.png") im.size img = plt.pyplot.imread( "C:\\Users\\bdgecyt\\Desktop\\dataset\\Household Shelter\\test2_84.png") img = plt.pyplot.imread( "C:\\Users\\bdgecyt\\Desktop\\dataset\\Household Shelter\\271_25-1_00_23_41_0_2.png" ) plt.pyplot.imread('Household Shelter/271_25-1_00_23_41_0_2.png') image = plt.imread('Household Shelter/271_25-1_00_23_41_0_2.png') matplotlib.pyplot.imread
''' if cv2.waitKey()&0xff==ord('q') #这里与oxff运算是为了提取ASCII码,因为不同系统可能不一样 #ord('q')返回113 break #若按下的键的ASCII与q的ASCII码相等,就执行break语句 '''ord()函数是以单个字符为参数,返回其对应的ASCII码;与ord()对应的chr()和unichr()[它与chr()不同 的是返回unicode字符]以0到255整数做参数,返回对应字符。如chr(113)返回'q'。''' &是按位与运算,and是逻辑运算 cv2.waitKey(5)表示等待5 毫秒,但是只要按了键,就不必等待5毫秒。要和time.sleep(5)分清楚 ============================================================================================== 21.对matplotlib、pylab、imread、cv2之间的关系与区别 如果不使用opencv中的cv2模块来读取显示图片时,应该这么做: import matplotlib as plt import pylab img=plt.imread('a.jpg') plt.imshow(img) #----只这一句话并不会显示图像窗口 pylab.show() #----加上这句话才会显示图像窗口 ------------------------------------------------------- 对比一下使用cv2模块: import cv2 img=cv2.imread('a.jpg') cv2.imshow('my_window',img) cv2.waitKey() cv2.destroyAllWindow() ================================================================================================ 22.python中数组的各种属性的用法: a=np.random.random(4) type(a) #---输出 <class 'numpy.ndarray'>