コード例 #1
0
ファイル: test_matrix.py プロジェクト: robinrob/flask-hello
    def test_should_add_itself_to_other_10x10_matrix(self):
        matrix = Matrix(10, 10, 1)
        other_matrix = Matrix(10, 10, 1336)

        matrix.add(other_matrix)

        self.assertEquals(1337, matrix.get_item(9, 9))
コード例 #2
0
ファイル: layers.py プロジェクト: 220usamaahmed/toy-dnn
class OutputLayer(Layer):
    def __init__(self, size):
        Layer.__init__(self, size)

        self.previous_layer = None

        self.W = None
        self.B = None
        self.E = None

        self.activation_function = lambda x: 1 / (1 + math.exp(-x))

    def initialize(self, previous_layer):
        self.previous_layer = previous_layer
        self.W = Matrix(self.size, previous_layer.size).randomize(-1, 1)
        self.B = Matrix(self.size, 1).randomize(-1, 1)

    def feed_forward(self):
        self.values = ((self.W * self.previous_layer.values) +
                       self.B).map_function(self.activation_function)

    def calculate_errors(self, target_arr):
        if len(target_arr) == self.size:
            self.E = Matrix.from_list(target_arr, self.size, 1) - self.values
        else:
            raise ValueError("Incorrect target size.")

    def adjust_parameters(self, learning_rate):
        gradients = self.values.map_function(
            lambda x: x * (1 - x)).get_hadamard_product(
                self.E).get_scalar_multiple(learning_rate)
        self.W.add(gradients * self.previous_layer.values.get_transpose())
        self.B.add(gradients)
コード例 #3
0
ファイル: test_matrix.py プロジェクト: robinrob/flask-hello
    def test_should_add_itself_to_other_1x1_matrix(self):
        matrix = Matrix(1, 1, 1)
        other_matrix = Matrix(1, 1, 1336)

        matrix.add(other_matrix)

        self.assertEquals(1337, matrix.get_item(0, 0))
コード例 #4
0
 def test_add_scalar_to_matrix(self):
     m = Matrix(3, 3)
     m.data[0] = [1, 2, 3]
     m.data[1] = [4, 5, 6]
     m.data[2] = [7, 8, 9]
     m.add(1)
     self.assertEqual(m.rows, 3)
     self.assertEqual(m.cols, 3)
     self.assertEqual(m.data, [[2, 3, 4], [5, 6, 7], [8, 9, 10]])
コード例 #5
0
    def feed_forward(self, input_list):
        inputs = Matrix.fromList(input_list)
        print(inputs)
        hidden = Matrix.multiply(self.weights_ih, inputs)
        Matrix.add(hidden, self.bias_h)
        hidden.map_matrix(sigmoid)

        output = Matrix.multiply(self.weights_ho, hidden)
        Matrix.add(output, self.bias_o)
        output.map_matrix(sigmoid)

        return output
コード例 #6
0
def test_matrix_add():
    from matrix import Matrix
    m_1 = Matrix((4, 3))
    m_1[0][1] = 2
    m_2 = Matrix((2, 2), value=[[1, 2], [3, 4]])
    with pytest.raises(Exception) as _:
        _ = Matrix.add(m_1, m_2)
    m_3 = Matrix((4, 3), value=[[1, 2, 3], [0, 2, 1], [4, 5, -1], [1, 2, 0]])
    m_add = Matrix.add(m_1, m_3)
    assert m_add[0][0] == 1
    assert m_add[0][1] == 4
    assert m_add[0][2] == 3
コード例 #7
0
    def test_add_matrix_to_matrix(self):
        m = Matrix(2, 2)
        m.data[0] = [1, 2]
        m.data[1] = [3, 4]

        n = Matrix(2, 2)
        n.data[0] = [10, 11]
        n.data[1] = [12, 13]

        m.add(n)

        self.assertEqual(m.rows, 2)
        self.assertEqual(m.cols, 2)
        self.assertEqual(m.data, [[11, 13], [15, 17]])
コード例 #8
0
def parse(string):
    if string in name_space:
        value = name_space.get(string)
        print value
    else:
        mat = Matrix()
        l = string.replace(' ', '')
        if l.find('=') != -1:
            if l[2:] not in name_space and l.find('zeros') != -1:
                zer = mat.matrix_creation_using_zeros(l[2:])
                name_space[str(l[0])] = zer
            elif l[3] not in name_space:
                matr = mat.matrix_creation(l[2:])
                name_space[str(l[0])] = matr
            elif l[3] and l[5] in name_space:
                if (l.find(',') != -1) or (l.find(';') != -1):
                    conc = mat.concat(l[2:])
                    name_space[str(l[0])] = conc

        if l.find('+') != -1:
            add = mat.add(l)
            print add

        if l.find("\'") != -1:
            tr = mat.transposer(l)
            print tr

        if l.find('inv') != -1:
            inv = mat.inverser(l[-2])
            print inv
コード例 #9
0
ファイル: tests.py プロジェクト: smvbild/matrix_math
def test_add_matrix():
    passed = True
    failed_tests = []
    options = [[[1, 2, 3], [2, 3, 4], [3, 4, 5]],
               [[0, 0, 0], [0, 0, 0], [0, 0, 0]]]
    for o_index, option in enumerate(options):
        test_matrix_a = Matrix.build_from_rows([[1, 2, 3], [1, 2, 3],
                                                [1, 2, 3]])
        test_matrix_b = Matrix.build_from_rows(option)
        matrices_to_add = [test_matrix_a, test_matrix_b]
        correct_values = []
        for i in range(test_matrix_a.dimensions[0]):
            correct_values.append([])
            for j in range(test_matrix_a.dimensions[1]):
                correct_values[i].append(0)
                for k in range(len(matrices_to_add)):
                    correct_values[i][j] += matrices_to_add[k].values[i][j]

        result_matrix = Matrix.add(matrices_to_add)
        for i in range(result_matrix.dimensions[0]):
            for j in range(result_matrix.dimensions[1]):
                if result_matrix.values[i][j] != correct_values[i][j]:
                    passed = False
                    failed_tests.append(o_index)

    if not passed:
        print(
            'TEST FAILED: Add matrices failed tests: {}.'.format(failed_tests))
    else:
        print('TEST PASSED: Add matrices test passed.')
コード例 #10
0
ファイル: tests.py プロジェクト: smvbild/matrix_math
def test_add_matrix_initial():
    passed = True
    failed_tests = []
    options = [
        [[1, 2], [1, 2]],
        [[1, 2, 3], [1, 2, 3]],
    ]
    for o_index, option in enumerate(options):
        test_matrix_a = Matrix.build_from_rows([[1, 2, 3], [1, 2, 3]])
        test_matrix_b = Matrix.build_from_rows(option)
        result_matrix = Matrix.add(
            [test_matrix_a, test_matrix_a, test_matrix_a, test_matrix_b])
        if o_index != len(options) - 1:
            if result_matrix.valid:
                passed = False
                failed_tests.append(o_index)
        else:
            if not result_matrix.valid:
                passed = False
                failed_tests.append(o_index)

    if not passed:
        print('TEST FAILED: Add matrices initial failed tests: {}.'.format(
            failed_tests))
    else:
        print('TEST PASSED: Add matrices initial test passed.')
コード例 #11
0
 def test_add_None(self):
     mat_a = Matrix(2,2)
     mat_b = Matrix(3,2)
     mat_a.map(lambda x: x+1)
     mat_b.map(lambda x: x+2)
     mat_ret_none = mat_a.add(mat_b)
             
     self.assertNotIsInstance(type(mat_ret_none), Matrix)
コード例 #12
0
 def test_add(self):
     a = [[1,2,3],[3,5,6],[6,1,1]]
     b = [[4,2,5],[1,7,5],[3,9,2]]
     
     A = Matrix([3,3], elems = a)
     B = Matrix([3,3], elems = b)
     correct = np.add(a,b)
     self.assertEqual(A.add(B).elems[1][1] , correct[1][1])
コード例 #13
0
 def test_add_scalar(self):
     mat = Matrix(2,2)
     mat.map(lambda x: x+1)
     mat_ret = mat.add(2)
     
     self.assertEqual(mat_ret.rows, 2)
     self.assertEqual(mat_ret.cols, 2)
     self.assertEqual(mat_ret.data, [[3,3], [3,3]])
コード例 #14
0
def main():
    A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    # B = Matrix([1,2,3])
    # C = Matrix([1, [2, 3]])
    B = Matrix([[10, 2, 3], [4, 50, 6]])

    print(A)
    print(B)
    print(A.add(B))
コード例 #15
0
def test():
	matrix_1 = Matrix(4,5,6,7)
	matrix_2 = Matrix(2,2,2,1)

	matrix_3 = matrix_2.add(matrix_1)
	matrix_4 = matrix_3.prod(matrix_2)
	print(matrix_3)
	print(matrix_4)
	matrix_1[0][1] = 23
	print(matrix_1)
コード例 #16
0
 def test_add_elementwise(self):
     mat_a = Matrix(2,2)
     mat_b = Matrix(2,2)
     mat_a.map(lambda x: x+1)
     mat_b.map(lambda x: x+2)
     
     mat_ret = mat_a.add(mat_b)
     self.assertEqual(mat_ret.rows, 2)
     self.assertEqual(mat_ret.cols, 2)
     self.assertEqual(mat_ret.data, [[3,3], [3,3]])
コード例 #17
0
ファイル: layers.py プロジェクト: 220usamaahmed/toy-dnn
class HiddenLayer(Layer):
    def __init__(self, size):
        Layer.__init__(self, size)

        self.previous_layer = None
        self.next_layer = None

        self.W = None
        self.B = None
        self.E = None

        self.activation_function = lambda x: 1 / (1 + math.exp(-x))

    def initialize(self, previous_layer, next_layer):
        self.previous_layer = previous_layer
        self.next_layer = next_layer
        self.W = Matrix(self.size, previous_layer.size).randomize(-1, 1)
        self.B = Matrix(self.size, 1).randomize(-1, 1)

    def feed_forward(self):
        self.values = (self.W * self.previous_layer.values +
                       self.B).map_function(self.activation_function)

    def calculate_errors(self):
        self.E = self.next_layer.W.get_transpose() * self.next_layer.E

    def adjust_parameters(self, learning_rate):
        # print(self.values)
        # print(self.E)
        gradients = self.values.map_function(
            lambda x: x * (1 - x)).get_hadamard_product(
                self.E).get_scalar_multiple(learning_rate)
        # print(gradients)

        self.W.add(gradients * self.previous_layer.values.get_transpose())
        self.B.add(gradients)
コード例 #18
0
	def add(self, a, b):
		if isinstance(a, float):
			if isinstance(b, float):
				return a + b
			elif isinstance(b, Complex):
				return Complex.add(Complex(a), b)
			elif isinstance(b, Matrix):
				raise ComputorException('Illegal operation: Rational + Matrix')
		elif isinstance(a, Complex):
			if isinstance(b, float):
				return Complex.add(a, Complex(b))
			elif isinstance(b, Complex):
				return Complex.add(a, b)
			elif isinstance(b, Matrix):
				raise ComputorException('Illegal operation: Complex + Matrix')
		elif isinstance(a, Matrix):
			if isinstance(b, float):
				raise ComputorException('Illegal operation: Matrix + Rational')
			elif isinstance(b, Complex):
				raise ComputorException('Illegal operation: Matrix + Complex')
			elif isinstance(b, Matrix):
				return Matrix.add(a, b)
		raise ComputorException('Computor.add(): something bad happened 🤷')
コード例 #19
0
ファイル: nn.py プロジェクト: J-Kolhs/xor-nn
class NeuralNetwork:
    def __init__(self, inputs, hidden, output):
        self.num_inputs = inputs
        self.num_hidden = hidden
        self.num_output = output

        # Weights randomize
        self.weights_ih = Matrix(self.num_hidden, self.num_inputs)
        self.weights_ho = Matrix(self.num_output, self.num_hidden)
        self.weights_ih.randomize()
        self.weights_ho.randomize()

        # Bias randomize
        self.bias_h = Matrix(self.num_hidden, 1)
        self.bias_o = Matrix(self.num_output, 1)
        self.bias_h.randomize()
        self.bias_o.randomize()
        self.learning_rate = 0.1

    @staticmethod
    def sigmoid(x):
        return (1 / (1 + math.exp(-x)))

    @staticmethod
    def dsigmoid(y):
        return (y * (1 - y))

    def feedforward(self, input_array):

        # Transform input array into inputs matrix
        inputs = Matrix.static_fromArray(input_array)

        # Generating the hidden layer
        hidden = Matrix.static_multiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)
        hidden.map(self.sigmoid)

        # Generating the output layer
        output = Matrix.static_multiply(self.weights_ho, hidden)
        output.add(self.bias_o)
        output.map(self.sigmoid)

        # Return output array
        return Matrix.static_toArray(output)

    def train(self, input_array, target_array):

        # Transform input array into inputs matrix
        inputs = Matrix.static_fromArray(input_array)
        self.last_input = inputs

        # Generating the hidden layer
        hidden = Matrix.static_multiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)
        hidden.map(self.sigmoid)

        # Generating the output layer
        output = Matrix.static_multiply(self.weights_ho, hidden)
        output.add(self.bias_o)
        output.map(self.sigmoid)

        # Transform target array into target Matrix
        target = Matrix.static_fromArray(target_array)

        # 1. Calculate the errors
        ## a. Output errors
        output_errors = Matrix.static_substract(target, output)

        # 2. Calculate the gradient
        ## a. Output gradient (gradient of our output cost function)
        output_gradient = Matrix.static_map(output, self.dsigmoid)
        output_gradient.multiply(output_errors)

        # 3. Calculate the deltas adjustment
        ## a. Output deltas
        hidden_t = Matrix.static_transpose(hidden)
        weights_ho_delta = Matrix.static_multiply(output_gradient, hidden_t)
        weights_ho_delta.multiply(self.learning_rate)

        # 4. Adjust the original weights
        ## a. Output weights & output bias
        weights_ho = self.weights_ho
        self.weights_ho.add(weights_ho_delta)
        self.bias_o.add(output_gradient)

        # 1. Calculate the errors
        ## b. Hidden layer errors
        who_t = Matrix.static_transpose(self.weights_ho)
        hidden_errors = Matrix.static_multiply(who_t, output_errors)

        # 2. Calculate the gradient
        ## b. Hidden gradient (gradient of our hidden cost function)
        hidden_gradient = Matrix.static_map(hidden, self.dsigmoid)
        hidden_gradient = Matrix.static_map(hidden, self.dsigmoid)
        hidden_gradient.multiply(hidden_errors)

        # 3. Calculate the deltas adjustment
        ## b. Hidden deltas
        inputs_t = Matrix.static_transpose(inputs)
        weights_ih_delta = Matrix.static_multiply(hidden_gradient, inputs_t)
        weights_ih_delta.multiply(self.learning_rate)
        self.weights_ih_delta = weights_ih_delta

        # 4. Adjust the original weights
        ## b. Biases weights & hidden bias
        self.weights_ih.add(weights_ih_delta)
        self.bias_h.add(hidden_gradient)
class NeuralNetwork:
    num_of_input_nurons = None
    num_of_hiddden_nurons = None
    num_of_output_nurons = None
    error = 0
    lr = 0.1

    #initialize the  neural network layers, weights and biases
    def __init__(self,
                 no_of_input,
                 no_of_hidden,
                 no_of_output,
                 weight_file="weights.txt"):
        user_cancel = False
        if (weight_file == ""):
            user_cancel = True
        self.num_of_input_nurons = no_of_input
        self.num_of_hiddden_nurons = no_of_hidden
        self.num_of_output_nurons = no_of_output
        #check if exist the weights of the local drive
        isWeightsExist = Path(weight_file).exists()
        if (isWeightsExist and not user_cancel):
            f = open(weight_file, "r")
            f1 = f.readlines()
            w = []
            w_count = 0
            b = []
            b_count = 0
            w_i_h = []
            w_h_o = []
            b_h = []
            b_o = []
            for text in f1:
                if (text.find("w")) != -1:
                    w.append(ast.literal_eval(text.split(":")[1]))
                elif (text.find("b")) != -1:
                    b.append(ast.literal_eval(text.split(":")[1]))
            for i in range(no_of_hidden):
                w_i_h.append([])
                for j in range(no_of_input):
                    w_i_h[i].append(w[w_count])
                    w_count = w_count + 1
            for i in range(no_of_hidden):
                b_h.append([])
                for j in range(1):
                    b_h[i] = b[b_count]
                    b_count = b_count + 1
            for i in range(no_of_output):
                w_h_o.append([])
                for j in range(no_of_hidden):
                    w_h_o[i].append(w[w_count])
                    w_count = w_count + 1
            for i in range(no_of_output):
                b_o.append([])
                for j in range(1):
                    b_o[i] = b[b_count]
                    b_count = b_count + 1
            self.weight_iput_to_hidden = Matrix.array_to_matrix(
                w_i_h, no_of_hidden, no_of_input)
            self.weight_hidden_to_output = Matrix.array_to_matrix(
                w_h_o, no_of_output, no_of_hidden)
            self.bias_of_hidden = Matrix.array_to_vector(b_h)
            self.bias_of_output = Matrix.array_to_vector(b_o)
        else:
            self.weight_iput_to_hidden = Matrix(no_of_hidden, no_of_input)
            self.weight_hidden_to_output = Matrix(no_of_output, no_of_hidden)
            self.weight_iput_to_hidden.randomize()
            self.weight_hidden_to_output.randomize()
            self.bias_of_hidden = Matrix(no_of_hidden, 1)
            self.bias_of_output = Matrix(no_of_output, 1)
            self.bias_of_hidden.randomize()
            self.bias_of_output.randomize()
#sigmoid activation function

    @staticmethod
    def sigmoid(x):
        return 1 / (1 + math.exp(-x))
#derivatives of the sigmoid activation function

    @staticmethod
    def d_sigmoid(y):
        return y * (1 - y)
#this is the method which predict the result

    def predict(self, input_array):
        inputs = Matrix.array_to_vector(input_array)
        hidden = Matrix.dot_product(self.weight_iput_to_hidden, inputs)
        hidden.add(self.bias_of_hidden)
        hidden.map(NeuralNetwork.sigmoid)
        output = Matrix.dot_product(self.weight_hidden_to_output, hidden)
        output.add(self.bias_of_output)
        output.map(NeuralNetwork.sigmoid)
        return output.to_array()
#this is the method which train the network with backpropagation in gradient decent algorithm

    def train(self, input_array, target_array):
        #converts the input array to a vector
        inputs = Matrix.array_to_vector(input_array)
        hidden = Matrix.dot_product(self.weight_iput_to_hidden, inputs)
        hidden.add(self.bias_of_hidden)
        hidden.map(NeuralNetwork.sigmoid)
        output = Matrix.dot_product(self.weight_hidden_to_output, hidden)
        output.add(self.bias_of_output)
        output.map(NeuralNetwork.sigmoid)

        target_Matrix = Matrix.array_to_vector(target_array)
        #calculate error
        error = Matrix.sub(target_Matrix, output)
        self.error = error
        weight_hidden_to_output_t = Matrix.transpose(
            self.weight_hidden_to_output)
        hidden_error = Matrix.dot_product(weight_hidden_to_output_t, error)
        #calculate the gradient of the hidden layer
        hidden_gradient_matrix = Matrix.map_s(output, NeuralNetwork.d_sigmoid)
        hidden_gradient_matrix.scale(error)
        hidden_gradient_matrix.scale(self.lr)
        delta_weights_ho = Matrix.dot_product(output, Matrix.transpose(hidden))
        #update weights and biases
        self.weight_hidden_to_output.add(delta_weights_ho)
        self.bias_of_output.add(hidden_gradient_matrix)
        #calculate the gradient of the output layer
        output_gradient_matrix = Matrix.map_s(hidden, NeuralNetwork.d_sigmoid)
        output_gradient_matrix.scale(hidden_error)
        output_gradient_matrix.scale(self.lr)
        delta_weights_ih = Matrix.dot_product(hidden, Matrix.transpose(inputs))
        #update weights and biases
        self.bias_of_hidden.add(output_gradient_matrix)
        self.weight_iput_to_hidden.add(delta_weights_ih)
コード例 #21
0
class NeuralNetwork:
    def __init__(self, input_nodes, hidden_nodes=False, output_nodes=False):
        if not hidden_nodes:
            a = input_nodes
            self.input_nodes = a.input_nodes
            self.hidden_nodes = a.hidden_nodes
            self.output_nodes = a.output_nodes
            self.weights_ih = a.weights_ih.copy()
            self.weights_ho = a.weights_ho.copy()
            self.weights_ho_t = a.weights_ho_t.copy()
            self.bias_h = a.bias_h.copy()
            self.bias_o = a.bias_o.copy()
        else:
            self.input_nodes = input_nodes
            self.hidden_nodes = hidden_nodes
            self.output_nodes = output_nodes
            self.weights_ih = Matrix(self.hidden_nodes, self.input_nodes)
            self.weights_ho = Matrix(self.output_nodes, self.hidden_nodes)
            self.weights_ho_t = Matrix.transpose(self.weights_ho)
            self.bias_h = Matrix(self.hidden_nodes, 1)
            self.bias_o = Matrix(self.output_nodes, 1)
        self.weights_ih.randomize()
        self.weights_ho.randomize()
        self.bias_h.randomize()
        self.bias_o.randomize()
        self.learning_rate = 0.1

    def predict(self, input_array):
        # Computing Hidden Outputs
        inputs = Matrix.fromArray(input_array)
        hidden = Matrix.multiply1(self.weights_ih, inputs)
        hidden.add(self.bias_h)
        hidden.map1(sigmoid)  # Activation Function

        # Computing Output Layer's Output!
        outputs = Matrix.multiply1(self.weights_ho, hidden)
        outputs.add(self.bias_o)
        outputs.map1(sigmoid)

        return outputs.toArray()

    def train(self, input_array, target_array):
        # Computing Hidden Outputs
        inputs = Matrix.fromArray(input_array)
        hidden = Matrix.multiply1(self.weights_ih, inputs)
        hidden.add(self.bias_h)
        hidden.map1(sigmoid)  # Activation function

        # Computing Output Layer's Output!
        outputs = Matrix.multiply1(self.weights_ho, hidden)
        outputs.add(self.bias_o)
        outputs.map1(sigmoid)  # Neural Net's Guess

        # Converting target array to matrix object
        targets = Matrix.fromArray(target_array)

        # Calculate Error
        output_errors = Matrix.subtract(targets, outputs)

        # Calculate Hidden Errors
        hidden_errors = Matrix.multiply1(self.weights_ho_t, output_errors)

        # Calculate gradients
        gradients = Matrix.map2(outputs, dsigmoid)
        gradients.multiply2(output_errors)
        gradients.multiply2(self.learning_rate)

        # Calculate Deltas
        hidden_t = Matrix.transpose(hidden)
        weight_ho_deltas = Matrix.multiply1(gradients, hidden_t)

        # Adjust Hidden -> Output weights and output layer's biases
        self.weights_ho.add(weight_ho_deltas)
        self.bias_o.add(gradients)

        # Calculate the hidden gradients
        hidden_gradients = Matrix.map2(hidden, dsigmoid)
        hidden_gradients.multiply2(hidden_errors)
        hidden_gradients.multiply2(self.learning_rate)

        # Calculate Deltas
        input_t = Matrix.transpose(inputs)
        weight_ih_deltas = Matrix.multiply1(hidden_gradients, input_t)

        # Adjust Input -> Hidden weights and hidden biases
        self.weights_ih.add(weight_ih_deltas)
        self.bias_h.add(hidden_gradients)

    def mutate(self, rate):
        def mutate(x):
            return x + randomGaussian(0, 0.1) if random() < rate else x

        self.weights_ih.map1(mutate)
        self.weights_ho.map1(mutate)
        self.bias_h.map1(mutate)
        self.bias_o.map1(mutate)

    def copy(self):
        return NeuralNetwork(self)
コード例 #22
0
ファイル: nn.py プロジェクト: jpmouracodex/FlappyIA
class NeuralNetwork:
    def __init__(self, input_nodes, hidden_nodes, output_nodes):
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes
        self.learning_rate = 0.1

        self.weights_ih = Matrix(self.hidden_nodes, self.input_nodes)
        self.weights_ho = Matrix(self.output_nodes, self.hidden_nodes)
        self.weights_ih.randomize()
        self.weights_ho.randomize()

        self.bias_h = Matrix(self.hidden_nodes, 1)
        self.bias_o = Matrix(self.output_nodes, 1)
        self.bias_h.randomize()
        self.bias_o.randomize()

    def predict(self, input_array):
        # Gerando as saídas intermediárias
        inputs = Matrix.fromArray(input_array)
        hidden = Matrix.multiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)

        # Função de ativação
        hidden.map(sigmoid)

        # Gerando as saídas de facto
        output = Matrix.multiply(self.weights_ho, hidden)
        output.add(self.bias_o)
        output.map(sigmoid)

        return output.toArray()

    def feedfoward(self, input_array):
        # GERANDO OS HIDDEN OUTPUTS (SAIDAS DOS NÓS INTERMEDIÁRIOS)

        # Transforma a lista de entrada em um objeto vetor (ou matriz unidimensional, como quiser)
        input = Matrix.fromArray(input_array)
        # Multiplica as entradas pelos respectivos pesos
        hidden = Matrix.multiply(self.weights_ih, input)
        # Adiciona o bias
        hidden.add(self.bias_h)
        # Função de ativação!
        hidden.map(sigmoid)

        # GERANDO A SAÍDA

        # Multiplica as saidas dos nós intermediários pelos respectivos pesos
        output = Matrix.multiply(self.weights_ho, hidden)
        output.add(self.bias_o)
        output.map(sigmoid)

        # Transforma o objeto vetor em uma lista
        return output.toArray()  # E manda de volta! hehe ;)

    def train(self, input_array, target_array):  # Backpropagation
        # GERANDO OS HIDDEN OUTPUTS (SAIDAS DOS NÓS INTERMEDIÁRIOS)

        # Transforma a lista de entrada em um objeto vetor (ou matriz unidimensional, como quiser)
        inputs = Matrix.fromArray(input_array)
        # Multiplica as entradas pelos respectivos pesos
        hidden = Matrix.multiply(self.weights_ih, inputs)
        # Adiciona o bias
        hidden.add(self.bias_h)
        # Função de ativação!
        hidden.map(sigmoid)

        # GERANDO A SAÍDA

        # Multiplica as saidas dos nós intermediários pelos respectivos pesos
        outputs = Matrix.multiply(self.weights_ho, hidden)
        outputs.add(self.bias_o)
        outputs.map(sigmoid)

        # Coverte para uma matriz objeto
        targets = Matrix.fromArray(target_array)

        # Calcula o erro
        # ERRO = ALVOS - SAIDAS

        output_errors = Matrix.subtract(targets, outputs)

        # Calcula o gradiente
        gradients = Matrix.mapIt(outputs, dsigmoid)
        gradients.multiplyBy(output_errors)
        gradients.multiplyBy(self.learning_rate)

        # Calcula deltas
        hidden_T = Matrix.transpose(hidden)
        weight_ho_deltas = Matrix.multiply(gradients, hidden_T)

        # Ajusta os pesos pelos deltas
        self.weights_ho.add(weight_ho_deltas)
        # Ajusta os bias pelos seus deltas
        self.bias_o.add(gradients)

        # Calcula os erros da camada intermediária
        who_t = Matrix.transpose(self.weights_ho)
        hidden_errors = Matrix.multiply(who_t, output_errors)

        # Calcula o gradiente intermediário
        hidden_gradient = Matrix.mapIt(hidden, dsigmoid)
        hidden_gradient.multiplyBy(hidden_errors)
        hidden_gradient.multiplyBy(self.learning_rate)

        # Calcula o delta intermediário
        inputs_T = Matrix.transpose(inputs)
        weight_ih_deltas = Matrix.multiply(hidden_gradient, inputs_T)

        self.weights_ih.add(weight_ih_deltas)
        # Ajusta os bias pelos seus deltas
        self.bias_h.add(hidden_gradient)

    def copy(self):
        return self

    def mutate(self, rate):
        def mutateIt(val):
            if random.random() < rate:
                return val + random.gauss(0, 0.1)
            else:
                return val

        self.weights_ih.map(mutateIt)
        self.weights_ho.map(mutateIt)
        self.bias_h.map(mutateIt)
        self.bias_o.map(mutateIt)
コード例 #23
0
ファイル: task.py プロジェクト: ppaula/kol1_gr1
#Good luck.

from matrix import Matrix

if __name__ == "__main__":

    matrix_square_ascending = Matrix(1, 2, 3, 4)
    matrix_square = Matrix(2, 2, 2, 2)
    matrix_cubic_ascending = Matrix(1, 2, 3, 4, 5, 6, 7, 8, 9)
    matrix_cubic = Matrix(1, 1, 1, 1, 1, 1, 1, 1, 1)

    print("Add:")
    print(matrix_cubic_ascending)
    print(matrix_cubic)
    print("Result:")
    matrix_added = matrix_cubic_ascending.add(matrix_cubic)
    print(matrix_added)
    print("------------------------\n")

    print("Subtract:")
    print(matrix_square_ascending)
    print(matrix_square)
    print("Result:")
    matrix_subtracted = matrix_square_ascending.subtract(matrix_square)
    print(matrix_subtracted)
    print("------------------------\n")

    print("Dummy multiply:")
    print(matrix_square_ascending)
    print(matrix_square)
    print("Result:")
コード例 #24
0
class NeuralNetwork():
    def __init__(self, number_inputs, number_hiddens, number_outputs):
        self.number_inputs = number_inputs
        self.number_hiddens = number_hiddens
        self.number_outputs = number_outputs

        self.weights_ih = Matrix(rows=self.number_hiddens,
                                 cols=self.number_inputs)
        self.weights_ho = Matrix(rows=self.number_outputs,
                                 cols=self.number_hiddens)

        self.bias_h = Matrix(rows=self.number_hiddens, cols=1)
        self.bias_h.map(lambda x: 1.0)
        self.bias_o = Matrix(rows=self.number_outputs, cols=1)
        self.bias_o.map(lambda x: 1.0)

        self.learning_rate = 0.1

        # initialize the Weights with random values
        self.weights_ih.randomize()
        self.weights_ho.randomize()

    def feedforward(self, input):
        # Extracts the output array from the 3-tuple returned by self.__guess
        return self.__guess(input)[0]

    def __guess(self, input):
        in_matrix = Matrix.fromList(input)
        hidden = Matrix.product(self.weights_ih, in_matrix)
        hidden.add(self.bias_h)
        hidden.map(self.__activate)

        output = Matrix.product(self.weights_ho, hidden)
        output.add(self.bias_o)
        output.map(self.__activate)

        return (output.toList(), hidden, in_matrix)

    def train(self, inputs, target_label):
        guess_r = self.__guess(
            inputs)  # (output as list, hidden, input matrix)
        guess = Matrix.fromList(guess_r[0])
        hidden = guess_r[1]
        input_matrix = guess_r[2]
        target_matrix = Matrix.fromList(target_label)

        # Calculate output errors
        output_errors = Matrix.subtract(target_matrix, guess)

        # Calculating gradients for Hidden -> output
        gradients_ho = Matrix(guess.data)
        gradients_ho.map(self.__activate_derivative)
        gradients_ho.multiply(output_errors)
        gradients_ho.multiply(self.learning_rate)

        # Calculating deltas
        weights_ho_deltas = Matrix.product(gradients_ho,
                                           Matrix.transpose(hidden))

        # Tweaking weights_ho with the calculated deltas
        self.weights_ho.add(weights_ho_deltas)
        # Tweaking hidden -> output bias with the gradients
        self.bias_o.add(gradients_ho)

        # Calculate hidden layer errors
        hidden_errors = Matrix.product(Matrix.transpose(self.weights_ho),
                                       output_errors)

        # Calculating gradients for Input -> Hidden
        gradients_ih = Matrix(hidden.data)
        gradients_ih.map(self.__activate_derivative)
        gradients_ih.multiply(hidden_errors)
        gradients_ih.multiply(self.learning_rate)

        # Calculating deltas
        weights_ih_deltas = Matrix.product(gradients_ih,
                                           Matrix.transpose(input_matrix))

        # Tweaking weights_ih with the calculated deltas
        self.weights_ih.add(weights_ih_deltas)
        # Twaeking input -> hidden bias with the gradients
        self.bias_h.add(gradients_ih)

    def __activate(self, val):
        # Activate uses Sigmoid function
        # https://en.wikipedia.org/wiki/Sigmoid_function
        return 1.0 / (1 + math.exp(-val))

    def __activate_derivative(self, active_val):
        return active_val * (1 - active_val)
コード例 #25
0
class NeuralNetwork:
    def __init__(self, numI, numH, numO):
        self.input_nodes = numI
        self.hidden_nodes = numH
        self.output_nodes = numO

        self.weights_ih = Matrix(self.hidden_nodes, self.input_nodes)
        self.weights_ho = Matrix(self.output_nodes, self.hidden_nodes)
        self.weights_ih.randomize()
        self.weights_ho.randomize()

        self.bias_h = Matrix(self.hidden_nodes, 1)
        self.bias_o = Matrix(self.output_nodes, 1)
        self.bias_h.randomize()
        self.bias_o.randomize()
        self.learning_rate = 0.3

    def feedforward(self, inputs):

        # Generate hidden output
        hiddens = MatMath.multiply(self.weights_ih, inputs)
        hiddens.add(self.bias_h)

        # Activation function on hidden
        hiddens.map(sigmoid)

        # Generate output
        outputs = MatMath.multiply(self.weights_ho, hiddens)
        outputs.add(self.bias_o)

        # Activation function on output
        outputs.map(sigmoid)

        return (outputs, hiddens)

    def guess(self, input_arr):

        inputs = Matrix.fromArray(input_arr)
        (outputs, _) = self.feedforward(inputs)

        return outputs.toArray()

    def train(self, input_arr, target_arr):

        inputs = Matrix.fromArray(input_arr)
        (outputs, hiddens) = self.feedforward(inputs)

        targets = Matrix.fromArray(target_arr)

        # Calculate the output error
        # ERROR = TARGETS - OUTPUTS
        output_errors = MatMath.subtract(targets, outputs)

        # Calculate output gradients
        output_gradients = MatMath.map(outputs, dsigmoid)
        output_gradients.multiply(output_errors)
        output_gradients.multiply(self.learning_rate)

        # Calculate deltas
        hiddens_T = MatMath.transpose(hiddens)
        weights_ho_deltas = MatMath.multiply(output_gradients, hiddens_T)

        # Adding deltas
        self.weights_ho.add(weights_ho_deltas)
        self.bias_o.add(output_gradients)

        # Calculate the hidden layer errors
        weights_ho_T = MatMath.transpose(self.weights_ho)
        hidden_errors = MatMath.multiply(weights_ho_T, output_errors)

        # Calculate hidden gradients
        hidden_gradients = MatMath.map(hiddens, dsigmoid)
        hidden_gradients.multiply(hidden_errors)
        hidden_gradients.multiply(self.learning_rate)

        # Calculate deltas
        inputs_T = MatMath.transpose(inputs)
        weights_ih_deltas = MatMath.multiply(hidden_gradients, inputs_T)

        # Adding deltas
        self.weights_ih.add(weights_ih_deltas)
        self.bias_h.add(hidden_gradients)
コード例 #26
0
    def main(self):
        # parse the command-line arguments
        args = self.parser().parse_args()
        file_name = args.arff
        learner_name = args.L
        eval_method = args.E[0]
        eval_parameter = args.E[1] if len(args.E) > 1 else None
        print_confusion_matrix = args.verbose
        normalize = args.normalize
        random.seed(args.seed) # Use a seed for deterministic results, if provided (makes debugging easier)

        # load the model
        learner = self.get_learner(learner_name)

        # load the ARFF file
        data = Matrix()
        data.load_arff(file_name)
        if normalize:
            print("Using normalized data")
            data.normalize()

        # print some stats
        print("\nDataset name: {}\n"
              "Number of instances: {}\n"
              "Number of attributes: {}\n"
              "Learning algorithm: {}\n"
              "Evaluation method: {}\n".format(file_name, data.rows, data.cols, learner_name, eval_method))

        if eval_method == "training":

            print("Calculating accuracy on training set...")

            features = Matrix(data, 0, 0, data.rows, data.cols-1)
            labels = Matrix(data, 0, data.cols-1, data.rows, 1)
            confusion = Matrix()
            start_time = time.time()
            learner.train(features, labels)
            elapsed_time = time.time() - start_time
            print("Time to train (in seconds): {}".format(elapsed_time))
            accuracy = learner.measure_accuracy(features, labels, confusion)
            print("Training set accuracy: " + str(accuracy))

            if print_confusion_matrix:
                print("\nConfusion matrix: (Row=target value, Col=predicted value)")
                confusion.print()
                print("")

        elif eval_method == "static":

            print("Calculating accuracy on separate test set...")

            test_data = Matrix(arff=eval_parameter)
            if normalize:
                test_data.normalize()

            print("Test set name: {}".format(eval_parameter))
            print("Number of test instances: {}".format(test_data.rows))
            features = Matrix(data, 0, 0, data.rows, data.cols-1)
            labels = Matrix(data, 0, data.cols-1, data.rows, 1)

            start_time = time.time()
            learner.train(features, labels)
            elapsed_time = time.time() - start_time
            print("Time to train (in seconds): {}".format(elapsed_time))

            train_accuracy = learner.measure_accuracy(features, labels)
            print("Training set accuracy: {}".format(train_accuracy))

            test_features = Matrix(test_data, 0, 0, test_data.rows, test_data.cols-1)
            test_labels = Matrix(test_data, 0, test_data.cols-1, test_data.rows, 1)
            confusion = Matrix()
            test_accuracy = learner.measure_accuracy(test_features, test_labels, confusion)
            print("Test set accuracy: {}".format(test_accuracy))

            if print_confusion_matrix:
                print("\nConfusion matrix: (Row=target value, Col=predicted value)")
                confusion.print()
                print("")

        elif eval_method == "random":

            print("Calculating accuracy on a random hold-out set...")
            train_percent = float(eval_parameter)
            if train_percent < 0 or train_percent > 1:
                raise Exception("Percentage for random evaluation must be between 0 and 1")
            print("Percentage used for training: {}".format(train_percent))
            print("Percentage used for testing: {}".format(1 - train_percent))

            data.shuffle()

            train_size = int(train_percent * data.rows)
            train_features = Matrix(data, 0, 0, train_size, data.cols-1)
            train_labels = Matrix(data, 0, data.cols-1, train_size, 1)

            test_features = Matrix(data, train_size, 0, data.rows - train_size, data.cols-1)
            test_labels = Matrix(data, train_size, data.cols-1, data.rows - train_size, 1)

            start_time = time.time()
            learner.train(train_features, train_labels)
            elapsed_time = time.time() - start_time
            print("Time to train (in seconds): {}".format(elapsed_time))

            train_accuracy = learner.measure_accuracy(train_features, train_labels)
            print("Training set accuracy: {}".format(train_accuracy))

            confusion = Matrix()
            test_accuracy = learner.measure_accuracy(test_features, test_labels, confusion)
            print("Test set accuracy: {}".format(test_accuracy))

            if print_confusion_matrix:
                print("\nConfusion matrix: (Row=target value, Col=predicted value)")
                confusion.print()
                print("")

        elif eval_method == "cross":

            print("Calculating accuracy using cross-validation...")

            folds = int(eval_parameter)
            if folds <= 0:
                raise Exception("Number of folds must be greater than 0")
            print("Number of folds: {}".format(folds))
            reps = 1
            sum_accuracy = 0.0
            elapsed_time = 0.0
            for j in range(reps):
                data.shuffle()
                for i in range(folds):
                    begin = int(i * data.rows / folds)
                    end = int((i + 1) * data.rows / folds)

                    train_features = Matrix(data, 0, 0, begin, data.cols-1)
                    train_labels = Matrix(data, 0, data.cols-1, begin, 1)

                    test_features = Matrix(data, begin, 0, end - begin, data.cols-1)
                    test_labels = Matrix(data, begin, data.cols-1, end - begin, 1)

                    train_features.add(data, end, 0, data.cols - 1)
                    train_labels.add(data, end, data.cols - 1, 1)

                    start_time = time.time()
                    learner.train(train_features, train_labels)
                    elapsed_time += time.time() - start_time

                    accuracy = learner.measure_accuracy(test_features, test_labels)
                    sum_accuracy += accuracy
                    print("Rep={}, Fold={}, Accuracy={}".format(j, i, accuracy))

            elapsed_time /= (reps * folds)
            print("Average time to train (in seconds): {}".format(elapsed_time))
            print("Mean accuracy={}".format(sum_accuracy / (reps * folds)))

        else:
            raise Exception("Unrecognized evaluation method '{}'".format(eval_method))
コード例 #27
0
ファイル: task.py プロジェクト: Prim07/01pite
from matrix import Matrix

matrix_1 = Matrix(4, 5, 6, 7)
matrix_2 = Matrix(2, 2, 2, 1)

matrix_3 = matrix_2.add(matrix_1)
matrix_4 = matrix_2.multiply(matrix_1)

matrix_3.print()
matrix_4.print()
コード例 #28
0
class neural_network():
    def __init__(self, input_nodes: int, hidden_nodes: int, output_nodes: int):
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        self.weights_ih = Matrix(self.hidden_nodes, self.input_nodes)
        self.weights_ho = Matrix(self.output_nodes, self.hidden_nodes)
        self.weights_ih.randomize()
        self.weights_ho.randomize()

        self.bias_h = Matrix(self.hidden_nodes, 1)
        self.bias_o = Matrix(self.output_nodes, 1)
        self.bias_h.randomize()
        self.bias_o.randomize()

        self.set_learning_rate()
        self.set_activation_function()

    def copy(self):
        nn = neural_network(self.input_nodes, self.hidden_nodes,
                            self.output_nodes)
        nn.weights_ih = self.weights_ih.copy()
        nn.weights_ho = self.weights_ho.copy()
        nn.bias_h = self.bias_h.copy()
        nn.bias_o = self.bias_o.copy()
        nn.set_learning_rate()
        nn.set_activation_function()
        return nn

    def predict(self, input_list: list) -> list:
        # Generating the Hidden Outputs
        inputs = Matrix.from_list(input_list)
        hidden = Matrix.static_multiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)

        # Activation function!
        hidden.map(self.activation_function.x)

        # Generating the output's output!
        output = Matrix.static_multiply(self.weights_ho, hidden)
        output.add(self.bias_o)
        output.map(self.activation_function.x)

        # Sending back to the caller!
        return output.to_list()

    def set_learning_rate(self, learning_rate: float = 0.1):
        self.learning_rate = learning_rate

    def set_activation_function(
        self, func: activation_function = activation_function.sigmoid()):
        self.activation_function = func

    ##own
    def mutate(self, rate: float):
        def func(val, i, j):
            if random.uniform(0, 1) < rate:
                return val + random.uniform(-0.07, 0.07)
            else:
                return val

        self.weights_ih.map(func)
        self.weights_ho.map(func)
        self.bias_h.map(func)
        self.bias_o.map(func)
        return

    def train(self, input_list: list, target_list: list):
        # Generating the Hidden Outputs
        inputs = Matrix.from_list(input_list)
        hidden = Matrix.static_multiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)
        # activation function!
        hidden.map(self.activation_function.x)

        # Generating the output's output!
        outputs = Matrix.static_multiply(self.weights_ho, hidden)
        outputs.add(self.bias_o)
        outputs.map(self.activation_function.x)

        # Convert array to matrix object
        targets = Matrix.from_list(target_list)

        # Calculate the error
        # ERROR = TARGETS - OUTPUTS
        output_errors = Matrix.subtract(targets, outputs)

        # Calculate gradient
        gradients = Matrix.static_map(outputs, self.activation_function.y)
        gradients.multiply(output_errors)
        gradients.multiply(self.learning_rate)

        # Calculate deltas
        hidden_T = Matrix.transpose(hidden)
        weight_ho_deltas = Matrix.static_multiply(gradients, hidden_T)

        # Calculate the hidden layer errors
        who_t = Matrix.transpose(self.weights_ho)
        hidden_errors = Matrix.static_multiply(who_t, output_errors)

        # Calculate hidden gradient
        hidden_gradient = Matrix.static_map(hidden, self.activation_function.y)
        hidden_gradient.multiply(hidden_errors)
        hidden_gradient.multiply(self.learning_rate)

        # Calcuate input->hidden deltas
        inputs_T = Matrix.transpose(inputs)
        weight_ih_deltas = Matrix.static_multiply(hidden_gradient, inputs_T)

        self.weights_ih.add(weight_ih_deltas)
        # Adjust the bias by its deltas(which is just the gradients)
        self.bias_h.add(hidden_gradient)

        # Adjust the weights by deltas
        self.weights_ho.add(weight_ho_deltas)
        # Adjust the bias by its deltas(which is just the gradients)
        self.bias_o.add(gradients)

    def serialize(self) -> bytes:
        return dill.dumps(self)

    @staticmethod
    def deserialize(data: bytes) -> 'neural_network':
        return dill.loads(data)
コード例 #29
0
class NeuralNetwork():
    def __init__(self, input_nodes, hidden_nodes, output_nodes):
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # set the learning rate
        self.lr = 0.1

        # inputs -> hidden layer -> outputs
        self.weights_ih = Matrix(self.hidden_nodes, self.input_nodes)
        self.weights_ho = Matrix(self.output_nodes, self.hidden_nodes)

        # biases for hidden and output layer
        self.bias_h = Matrix(self.hidden_nodes, 1)
        self.bias_o = Matrix(self.output_nodes, 1)

        # randomize weigts and biases
        self.weights_ih.randomize()
        self.weights_ho.randomize()
        self.bias_h.randomize()
        self.bias_o.randomize()

    ''' sets the learning rate '''
    def setLR(lr):
        self.lr = lr
        
    def confusion_matrix(self, xs, ys, labels, normalize=False):
        ''' generate a confusion matrix ''' 
        ''' cols are the predictions and the rows are the vals ''' 
        cm = Matrix(len(labels), len(labels))
        
        for x, y in zip(xs, ys):
            index_prediction, index_actual = self.get_index_val(x, y)
            # print(f'{index_actual}, {index_prediction}')
            cm.data[index_actual][index_prediction] += 1
            
        if normalize:
            cm.multiply(1/len(xs))
        return cm
    
    def get_index_val(self, x, y):
        prediction = self.feed_forward(x)
        index_prediction = prediction.index(max(prediction))
        index_actual = y.index(max(y))
        return index_prediction, index_actual
        
    def compare_index_val(self, x, y):
        ''' compare indicies of individual points ''' 
        index_prediction, index_actual = self.get_index_val(x, y)
        if (index_prediction == index_actual):
            return True
        else:
            return False
            
    ''' computes the accuracy '''
    def get_accuracy(self, xs, ys):
        ''' compare the values of the indicies of the arrays ''' 
        score = 0        
        for x, y in zip(xs, ys):
            if self.compare_index_val(x, y):
                score += 1            
        return score / len(xs)
    
    ''' predict '''
    def predict(self, input_array):
        return self.feed_forward(input_array)
        
    ''' predicts output '''
    def feed_forward(self, input_array):
        # get the values for the hidden nodes
        inputs = Matrix.fromArray(input_array)
        hidden = Matrix.matMultiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)

        # activation function on the hidden nodes
        hidden.map(sigmoid)

        # get the values for the output
        output = Matrix.matMultiply(self.weights_ho, hidden) # multiply ho wegths with hidden nodes
        output.add(self.bias_o) # add bias
        output.map(sigmoid) # sigmoid activation
        
        # TODO: apply softmax layer
        # return output as array
        return output.toArray()

    ''' trains the nn '''
    def train(self, input_array, target_array):
        inputs = Matrix.fromArray(input_array)
        targets = Matrix.fromArray(target_array)

        # get values for hidden nodes
        hidden = Matrix.matMultiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)
        hidden.map(sigmoid)
        # get values for output nodes
        outputs = Matrix.matMultiply(self.weights_ho, hidden)
        outputs.add(self.bias_o)
        outputs.map(sigmoid)
        
        # TODO: apply softmax layer

        # calculate the error, ERROR = TARGETS - OUTPUTS
        output_errors = Matrix.subtract(targets, outputs)

        # get derivative of output_errors: gradien = ouptuts * (1 - outputs)
        gradients = Matrix.static_map(outputs, dsigmoid)

        gradients.multiply(output_errors)
        gradients.multiply(self.lr)

        # calculate deltas: delta_w = error * hidden_t * lr
        hidden_T = Matrix.transpose(hidden)
        weights_ho_deltas = Matrix.matMultiply(gradients, hidden_T)

        # adjsut the weights
        self.weights_ho.add(weights_ho_deltas)
        # adjust bias
        self.bias_o.add(gradients)

        # hidden layer errors
        # weights hidden out tranpose
        who_t = Matrix.transpose(self.weights_ho)
        hidden_errors = Matrix.matMultiply(who_t, output_errors)

        # hidden gradient
        hidden_gradient = Matrix.static_map(hidden, dsigmoid)
        hidden_gradient.multiply(hidden_errors)
        hidden_gradient.multiply(self.lr)

        # calc input -> hidden deltas
        inputs_T = Matrix.transpose(inputs)
        weights_ih_deltas = Matrix.matMultiply(hidden_gradient, inputs_T)

        # adjust weights for input_hidden
        self.weights_ih.add(weights_ih_deltas)
        self.bias_h.add(hidden_gradient)
コード例 #30
0
from matrix import Matrix
from vector import Vector

matrix = Matrix(4)
matrix.add(Vector.fromList([7, -5, 6, -7]))
matrix.add(Vector.fromList([2, -3, 10, 9]))
matrix.add(Vector.fromList([-5, 4, -2, 2]))
matrix.add(Vector.fromList([8, -9, 7, 15]))
m = matrix.simplify()
# m.printMe()

matrix = Matrix(4)
matrix.add(Vector.fromList([12, -9, -6, 4]))
matrix.add(Vector.fromList([-7, 4, 11, -6]))
matrix.add(Vector.fromList([11, -8, -7, 10]))
matrix.add(Vector.fromList([-9, 7, 3, -5]))
matrix.add(Vector.fromList([5, -3, -9, 12]))
m = matrix.simplify()
# m.printMe()

matrix = Matrix(3)
matrix.add(Vector.fromList([0, 3, 3]))
matrix.add(Vector.fromList([3, -7, -9]))
matrix.add(Vector.fromList([-6, 8, 12]))
matrix.add(Vector.fromList([6, -5, -9]))
matrix.add(Vector.fromList([4, 8, 6]))
matrix.add(Vector.fromList([-5, 9, 15]))
m = matrix.simplify()
# m.printMe()

# Matrix.create([[1,3],[3,9],[4,7],[7,6]]).simplify().printMe()
コード例 #31
0
class NeuralNetwork():
    def __init__(self, input_nodes, hidden_nodes, output_nodes):
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # set the learning rate
        self.lr = 0.1

        # inputs -> hidden layer -> outputs
        self.weights_ih = Matrix(self.hidden_nodes, self.input_nodes)
        self.weights_ho = Matrix(self.output_nodes, self.hidden_nodes)

        # biases for hidden and output layer
        self.bias_h = Matrix(self.hidden_nodes, 1)
        self.bias_o = Matrix(self.output_nodes, 1)

        # randomize weigts and biases
        self.weights_ih.randomize()
        self.weights_ho.randomize()
        self.bias_h.randomize()
        self.bias_o.randomize()

    ''' sets the learning rate '''
    def setLR(lr):
        self.lr = lr

    ''' predicts output '''
    def feed_forward(self, input_array):
        # get the values for the hidden nodes
        inputs = Matrix.fromArray(input_array)
        hidden = Matrix.matMultiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)

        # activation function on the hidden nodes
        hidden.map(sigmoid)

        # get the values for the output
        output = Matrix.matMultiply(self.weights_ho, hidden) # multiply ho wegths with hidden nodes
        output.add(self.bias_o) # add bias
        output.map(sigmoid) # sigmoid activation

        # return output as array
        return output.toArray()

    ''' trains the nn '''
    def train(self, input_array, target_array):
        inputs = Matrix.fromArray(input_array)
        targets = Matrix.fromArray(target_array)

        # get values for hidden nodes
        hidden = Matrix.matMultiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)
        hidden.map(sigmoid)
        # get values for output nodes
        outputs = Matrix.matMultiply(self.weights_ho, hidden)
        outputs.add(self.bias_o)
        outputs.map(sigmoid)


        # calculate the error, ERROR = TARGETS - OUTPUTS
        output_errors = Matrix.subtract(targets, outputs)

        # get derivative of output_errors: gradien = ouptuts * (1 - outputs)
        gradients = Matrix.static_map(outputs, dsigmoid)

        gradients.multiply(output_errors)
        gradients.multiply(self.lr)

        # calculate deltas: delta_w = error * hidden_t * lr
        hidden_T = Matrix.transpose(hidden)
        weights_ho_deltas = Matrix.matMultiply(gradients, hidden_T)

        # adjsut the weights
        self.weights_ho.add(weights_ho_deltas)
        # adjust bias
        self.bias_o.add(gradients)

        # hidden layer errors
        # weights hidden out tranpose
        who_t = Matrix.transpose(self.weights_ho)
        hidden_errors = Matrix.matMultiply(who_t, output_errors)

        # hidden gradient
        hidden_gradient = Matrix.static_map(hidden, dsigmoid)
        hidden_gradient.multiply(hidden_errors)
        hidden_gradient.multiply(self.lr)

        # calc input -> hidden deltas
        inputs_T = Matrix.transpose(inputs)
        weights_ih_deltas = Matrix.matMultiply(hidden_gradient, inputs_T)

        # adjust weights for input_hidden
        self.weights_ih.add(weights_ih_deltas)
        self.bias_h.add(hidden_gradient)
コード例 #32
0
class NeuralNetwork:
    def __init__(self, input_nodes, hidden_nodes, output_nodes):
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        self.weights_ih = Matrix(self.hidden_nodes, self.input_nodes)
        self.weights_ho = Matrix(self.output_nodes, self.hidden_nodes)
        self.weights_ih.randomize()
        self.weights_ho.randomize()

        self.bias_h = Matrix(self.hidden_nodes, 1)
        self.bias_o = Matrix(self.output_nodes, 1)
        self.bias_h.randomize()
        self.bias_o.randomize()

        self.learning_rate = 0.1

    # @staticmethod
    # def sigmoid(*args):
    # 	for x in args:
    # 		return 1/(1+Math.exp(-x))

    def feed_forward(self, input_array):
        #Generating the hidden outputs
        inputs = Matrix.fromArray(input_array)
        hidden = Matrix.multiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)
        #activation function
        # print("--------------------")
        # print("----------------")
        hidden.mapper(sigmoid)

        output = Matrix.multiply(self.weights_ho, hidden)
        output.add(self.bias_o)
        output.mapper(sigmoid)

        return output.toArray()

    def train(self, input_array, target_array):
        """------FEED_FORWARD------"""
        inputs = Matrix.fromArray(input_array)

        hidden = Matrix.multiply(self.weights_ih, inputs)
        hidden.add(self.bias_h)
        #activation function
        # print("--------------------")
        # print("----------------")
        hidden.mapper(sigmoid)

        outputs = Matrix.multiply(self.weights_ho, hidden)
        outputs.add(self.bias_o)
        outputs.mapper(sigmoid)
        """-----TRAINING-------"""

        #Convert array to Matrix object
        # outputs = Matrix.fromArray(outputs)
        targets = Matrix.fromArray(target_array)

        output_errors = Matrix.subtract(targets, outputs)
        #Calculate output gradient
        gradients = Matrix.map(outputs, dsigmoid)
        gradients.scalar_multiply(output_errors)
        gradients.scalar_multiply(self.learning_rate)

        hiddden_T = Matrix.transpose(hidden)

        weights_ho_deltas = Matrix.multiply(gradients, hiddden_T)
        #Adjust the weight delatas
        self.weights_ho.add(weights_ho_deltas)
        #Adjust the bias
        self.bias_o.add(gradients)

        who_t = Matrix.transpose(self.weights_ho)
        #Calculate the hidden layer errors
        hidden_errors = Matrix.multiply(who_t, output_errors)
        #Calculate hidden gradient
        hidden_gradient = Matrix.map(hidden, dsigmoid)
        hidden_gradient.scalar_multiply(hidden_errors)
        hidden_gradient.scalar_multiply(self.learning_rate)

        inputs_T = Matrix.transpose(inputs)
        weights_ih_deltas = Matrix.multiply(hidden_gradient, inputs_T)

        self.weights_ih.add(weights_ih_deltas)
        self.bias_h.add(hidden_gradient)
コード例 #33
0
ファイル: nn.py プロジェクト: yvessavoy/simplenn
class NeuralNetwork:
    def __init__(self, in_nodes, hid_nodes, out_nodes):
        if type(in_nodes) == NeuralNetwork:
            a = in_nodes
            self.input_nodes = a.input_nodes
            self.hidden_nodes = a.hidden_nodes
            self.output_nodes = a.output_nodes

            self.weights_ih = a.weights_ih.copy()
            self.weights_ho = a.weights_ho.copy()

            self.bias_h = a.bias_h.copy()
            self.biah_o = a.bias_o.copy()
        else:
            self.input_nodes = in_nodes
            self.hidden_nodes = hid_nodes
            self.output_nodes = out_nodes

            self.weights_ih = Matrix(self.hidden_nodes, self.input_nodes)
            self.weights_ho = Matrix(self.output_nodes, self.hidden_nodes)
            self.weights_ih.randomize()
            self.weights_ho.randomize()

            self.bias_h = Matrix(self.hidden_nodes, 1)
            self.bias_o = Matrix(self.output_nodes, 1)
            self.bias_h.randomize()
            self.bias_o.randomize()

            self.set_learning_rate()
            self.set_activation_function()

        def predict(self, input_array):
            inputs = Matrix.from_array(input_array)
            hidden = Matrix.static_multiply(self.weights_ih, inputs)
            hidden.add(self.bias_h)
            hidden.map(self.activation_function.func)

            output = Matrix.static_multiply(self.weights_ho, hidden)
            output.add(self.bias_o)
            output.map(self.activation_function.func)

            return output.to_array()

        def set_learning_rate(self, learning_rate=0.1):
            self.learning_rate = learning_rate

        def set_activation_function(self, func=sigmoid):
            self.activation_function = func

        def train(self, input_array, target_array):
            inputs = Matrix.from_array(input_array)
            hidden = Matrix.static_multiply(self.weights_ih, inputs)
            hidden.add(self.bias_h)
            hidden.map(self.activation_function.func)

            outputs = Matrix.static_multiply(self.weights_ho, hidden)
            outputs.add(self.bias_o)
            outputs.map(self.activation_function.func)

            targets = Matrix.from_array(target_array)

            output_errors = Matrix.subtract(targets, outputs)

            gradients = Matrix.static_map(outputs,
                                          self.activation_function.dfunc)
            gradients.multiply(output_errors)
            gradients.multiply(self.learning_rate)

            hidden_T = Matrix.transpose(hidden)
            weight_ho_deltas = Matrix.static_multiply(gradients, hidden_T)
            self.weights_ho.add(weight_ho_deltas)
            self.bias_o.add(gradients)

            who_T = Matrix.transpose(self.weights_ho)
            hidden_errors = Matrix.static_multiply(who_T, output_errors)
            hidden_gradient = Matrix.static_map(hidden,
                                                self.activation_function.dfunc)
            hidden_gradient.multiply(hidden_errors)
            hidden_gradient.multiply(self.learning_rate)

            inputs_T = Matrix.transpose(inputs)
            weight_ih_deltas = Matrix.static_multiply(hidden_gradient,
                                                      inputs_T)
            self.weights_ih.add(weight_ih_deltas)
            self.bias_h.add(hidden_gradient)

        def copy(self):
            return NeuralNetwork(self)

        def mutate(func):
            self.weights_ih.map(func)
            self.weights_ho.map(func)
            self.bias_h.map(func)
            self.biah_o.map(func)