コード例 #1
0
def qr_gs_inverse(A: matrix):

    B = matrix(A.size1, A.size2)
    I = matrix(A.size1, A.size2)

    e_i = vector(I.size1)
    c = vector(I.size1)

    for ii in range(I.size1):
        for jj in range(I.size2):
            if ii == jj:
                I[ii, jj] = 1
            else:
                I[ii, jj] = 0

    for ii in range(A.size1):
        for jj in range(A.size1):
            e_i[jj] = matrix.get(I, jj, ii)

        c = qr_gs_solve(A, e_i)

        for jj in range(A.size2):

            B[jj, ii] = vector.get(c, jj)

    return B
コード例 #2
0
def outer(a: vector, b: vector):

    A = matrix(a.size, b.size)

    for ii in range(a.size):
        for jj in range(b.size):
            A[ii,jj] = a[ii] * b[jj]

    return A
コード例 #3
0
def qr_gs_decomp(A: matrix):

    n = A.size1
    m = A.size2

    Q = matrix(n, m)
    R = matrix(m, m)
    A_new = mt_copy(A)

    for ii in range(m):  #iteration over columns
        R[ii, ii] = matrix.dot_prod(A_new.get_col(ii),
                                    A_new.get_col(ii))**(1. / 2)

        for jj in range(n):  #iteration over rows
            Q[jj, ii] = A_new[jj, ii] / R[ii, ii]

        for kk in range(ii + 1, m):
            R[ii, kk] = matrix.dot_prod(Q.get_col(ii), A_new.get_col(kk))

            for ll in range(n):
                A_new[ll, kk] = A_new[ll, kk] - Q[ll, ii] * R[ii, kk]

    return Q, R
コード例 #4
0
import numpy as np
import qr_decomp
from eigen import *
from matrix_codes import matrix, trans, matrix_mult
import random
from vector_codes import vector, mt_vt_mult

n = 3
A = matrix(n, n)
N = matrix(n, n)

for ii in range(0, n):
    A[ii, ii] = np.random.random()
    N[ii, ii] = np.random.random()
    for jj in range(ii, n):
        A[ii, jj] = np.random.random()
        A[jj, ii] = A[ii, jj]
        N[ii, jj] = np.random.random()
        N[jj, ii] = N[ii, jj]

NtN = matrix_mult(trans(N), N)

for ii in range(NtN.size1):
    N[ii, ii] = NtN[ii, ii]  #Make N real positive definite

print("Printing matrix A")
matrix.printing(A)

print("\n\nPrinting matrix N")
matrix.printing(N)
コード例 #5
0
import numpy as np
import qr_decomp
from matrix_codes import matrix, trans, matrix_mult
import random
from vector_codes import vector, mt_vt_mult

n = 5
m = 3

A = matrix(n, m)

for ii in range(0, n):
    for jj in range(0, m):
        A[ii, jj] = np.random.random()

print("\n----------Part A.1----------\n")
print("\nTesting decomposition:\n")

Q, R = qr_decomp.qr_gs_decomp(A)

print("My Q matrix: \n")
matrix.printing(Q)

print("My R matrix: \n")
matrix.printing(R)

print("My QTQ matrix: \n")
QT = trans(Q)
QTQ = matrix_mult(QT, Q)
matrix.printing(QTQ)