コード例 #1
0
def saturation(A, proof=True, p=0, max_dets=5):
    """
    Compute a saturation matrix of A.

    INPUT:
        A     -- a matrix over ZZ
        proof -- bool (default: True)
        p     -- int (default: 0); if not 0
                 only guarantees that output is p-saturated
        max_dets -- int (default: 4) max number of dets of
                 submatrices to compute.

    OUTPUT:
        matrix -- saturation of the matrix A.

    EXAMPLES:
        sage: from sage.matrix.matrix_integer_dense_saturation import saturation
        sage: A = matrix(ZZ, 2, 2, [3,2,3,4]); B = matrix(ZZ, 2,3,[1,2,3,4,5,6]); C = A*B
        sage: C
        [11 16 21]
        [19 26 33]
        sage: C.index_in_saturation()
        18
        sage: S = saturation(C); S
        [11 16 21]
        [-2 -3 -4]
        sage: S.index_in_saturation()
        1
        sage: saturation(C, proof=False)
        [11 16 21]
        [-2 -3 -4]
        sage: saturation(C, p=2)
        [11 16 21]
        [-2 -3 -4]
        sage: saturation(C, p=2, max_dets=1)
        [11 16 21]
        [-2 -3 -4]
    """
    # Find a submatrix of full rank and instead saturate that matrix.
    r = A.rank()
    if A.is_square() and r == A.nrows():
        return identity_matrix(ZZ, r)
    if A.nrows() > r:
        P = []
        while len(P) < r:
            P = matrix_integer_dense_hnf.probable_pivot_rows(A)
        A = A.matrix_from_rows(P)

    # Factor out all common factors from all rows, just in case.
    A = copy(A)
    A._factor_out_common_factors_from_each_row()

    if A.nrows() <= 1:
        return A

    A, zero_cols = A._delete_zero_columns()

    if max_dets > 0:
        # Take the GCD of at most num_dets randomly chosen determinants.
        nr = A.nrows()
        nc = A.ncols()
        d = 0
        trials = min(binomial(nc, nr), max_dets)
        already_tried = []
        while len(already_tried) < trials:
            v = random_sublist_of_size(nc, nr)
            tm = verbose('saturation -- checking det condition on submatrix')
            d = gcd(d, A.matrix_from_columns(v).determinant(proof=proof))
            verbose('saturation -- got det down to %s' % d, tm)
            if gcd(d, p) == 1:
                return A._insert_zero_columns(zero_cols)
            already_tried.append(v)

        if gcd(d, p) == 1:
            # already p-saturated
            return A._insert_zero_columns(zero_cols)

        # Factor and p-saturate at each p.
        # This is not a good algorithm, because all the HNF's in it are really slow!
        #
        #tm = verbose('factoring gcd %s of determinants'%d)
        #limit = 2**31-1
        #F = d.factor(limit = limit)
        #D = [p for p, e in F if p <= limit]
        #B = [n for n, e in F if n > limit]  # all big factors -- there will only be at most one
        #assert len(B) <= 1
        #C = B[0]
        #for p in D:
        #    A = p_saturation(A, p=p, proof=proof)

    # This is a really simple but powerful algorithm.
    # FACT: If A is a matrix of full rank, then hnf(transpose(A))^(-1)*A is a saturation of A.
    # To make this practical we use solve_system_with_difficult_last_row, since the
    # last column of HNF's are typically the only really big ones.
    B = A.transpose().hermite_form(include_zero_rows=False, proof=proof)
    B = B.transpose()

    # Now compute B^(-1) * A
    C = solve_system_with_difficult_last_row(B, A)
    return C.change_ring(ZZ)._insert_zero_columns(zero_cols)
コード例 #2
0
def saturation(A, proof=True, p=0, max_dets=5):
    """
    Compute a saturation matrix of A.

    INPUT:

    - A     -- a matrix over ZZ
    - proof -- bool (default: True)
    - p     -- int (default: 0); if not 0 only guarantees that output is
      p-saturated
    - max_dets -- int (default: 4) max number of dets of submatrices to
      compute.

    OUTPUT:

    matrix -- saturation of the matrix A.

    EXAMPLES::

        sage: from sage.matrix.matrix_integer_dense_saturation import saturation
        sage: A = matrix(ZZ, 2, 2, [3,2,3,4]); B = matrix(ZZ, 2,3,[1,2,3,4,5,6]); C = A*B
        sage: C
        [11 16 21]
        [19 26 33]
        sage: C.index_in_saturation()
        18
        sage: S = saturation(C); S
        [11 16 21]
        [-2 -3 -4]
        sage: S.index_in_saturation()
        1
        sage: saturation(C, proof=False)
        [11 16 21]
        [-2 -3 -4]
        sage: saturation(C, p=2)
        [11 16 21]
        [-2 -3 -4]
        sage: saturation(C, p=2, max_dets=1)
        [11 16 21]
        [-2 -3 -4]
    """
    # Find a submatrix of full rank and instead saturate that matrix.
    r = A.rank()
    if A.is_square() and r == A.nrows():
        return identity_matrix(ZZ, r)
    if A.nrows() > r:
        P = []
        while len(P) < r:
            P = matrix_integer_dense_hnf.probable_pivot_rows(A)
        A = A.matrix_from_rows(P)

    # Factor out all common factors from all rows, just in case.
    A = copy(A)
    A._factor_out_common_factors_from_each_row()

    if A.nrows() <= 1:
        return A

    A, zero_cols = A._delete_zero_columns()

    if max_dets > 0:
        # Take the GCD of at most num_dets randomly chosen determinants.
        nr = A.nrows()
        nc = A.ncols()
        d = 0
        trials = min(binomial(nc, nr), max_dets)
        already_tried = []
        while len(already_tried) < trials:
            v = random_sublist_of_size(nc, nr)
            tm = verbose("saturation -- checking det condition on submatrix")
            d = gcd(d, A.matrix_from_columns(v).determinant(proof=proof))
            verbose("saturation -- got det down to %s" % d, tm)
            if gcd(d, p) == 1:
                return A._insert_zero_columns(zero_cols)
            already_tried.append(v)

        if gcd(d, p) == 1:
            # already p-saturated
            return A._insert_zero_columns(zero_cols)

        # Factor and p-saturate at each p.
        # This is not a good algorithm, because all the HNF's in it are really slow!
        #
        # tm = verbose('factoring gcd %s of determinants'%d)
        # limit = 2**31-1
        # F = d.factor(limit = limit)
        # D = [p for p, e in F if p <= limit]
        # B = [n for n, e in F if n > limit]  # all big factors -- there will only be at most one
        # assert len(B) <= 1
        # C = B[0]
        # for p in D:
        #    A = p_saturation(A, p=p, proof=proof)

    # This is a really simple but powerful algorithm.
    # FACT: If A is a matrix of full rank, then hnf(transpose(A))^(-1)*A is a saturation of A.
    # To make this practical we use solve_system_with_difficult_last_row, since the
    # last column of HNF's are typically the only really big ones.
    B = A.transpose().hermite_form(include_zero_rows=False, proof=proof)
    B = B.transpose()

    # Now compute B^(-1) * A
    C = solve_system_with_difficult_last_row(B, A)
    return C.change_ring(ZZ)._insert_zero_columns(zero_cols)