def test_advanced_search(self): bnf_codes = [ "0204000C0AAAAAA", # Acebut HCl_Cap 100mg "0204000C0BBAAAA", # Sectral_Cap 100mg "0204000D0AAAAAA", # Practolol_Inj 2mg/ml 5ml Amp ] factory = DataFactory() factory.create_prescribing_for_bnf_codes(bnf_codes) search = ["nm", "contains", "acebutolol"] with patched_global_matrixstore_from_data_factory(factory): results = advanced_search(AMP, search, ["unavailable"]) self.assertFalse(results["too_many_results"]) self.assertCountEqual( results["objs"], AMP.objects.filter(pk__in=[10347111000001100, 4814811000001108]), ) querystring = results["analyse_url"].split("#")[1] params = parse_qs(querystring) self.assertEqual( params, {"numIds": ["0204000C0AA"], "denom": ["total_list_size"]} )
def _get(self, search, include=None): params = {"search": json.dumps(search), "include": include or []} bnf_codes = [ "0204000C0AAAAAA", # Acebut HCl_Cap 100mg "0204000C0BBAAAA", # Sectral_Cap 100mg "0204000D0AAAAAA", # Practolol_Inj 2mg/ml 5ml Amp ] factory = MSDataFactory() factory.create_prescribing_for_bnf_codes(bnf_codes) with patched_global_matrixstore_from_data_factory(factory): return self.client.get("/dmd/advanced-search/amp/", params)
def test_refresh_bnf_class_currency(self): Section.objects.create(bnf_id="01", bnf_chapter=1, is_current=True) Section.objects.create(bnf_id="02", bnf_chapter=2, is_current=True) Section.objects.create(bnf_id="03", bnf_chapter=3, is_current=False) Section.objects.create(bnf_id="04", bnf_chapter=4, is_current=False) Chemical.objects.create(bnf_code="010101001", is_current=True) Chemical.objects.create(bnf_code="020101001", is_current=True) Chemical.objects.create(bnf_code="030101001", is_current=False) Chemical.objects.create(bnf_code="040101001", is_current=False) Product.objects.create(bnf_code="010101001AA", is_current=True) Product.objects.create(bnf_code="020101001AA", is_current=True) Product.objects.create(bnf_code="030101001AA", is_current=False) Product.objects.create(bnf_code="040101001AA", is_current=False) Presentation.objects.create(bnf_code="010101001AAAAAA", is_current=True) Presentation.objects.create(bnf_code="020101001AAAAAA", is_current=True) Presentation.objects.create(bnf_code="030101001AAAAAA", is_current=False) Presentation.objects.create(bnf_code="040101001AAAAAA", is_current=False) factory = DataFactory() factory.create_prescribing_for_bnf_codes( ["010101001AAAAAA", "030101001AAAAAA"]) with patched_global_matrixstore_from_data_factory(factory): call_command("refresh_bnf_class_currency") self.assertEqual(Section.objects.filter(is_current=True).count(), 3) self.assertEqual(Section.objects.get(is_current=False).bnf_id, "04") self.assertEqual(Chemical.objects.filter(is_current=True).count(), 3) self.assertEqual( Chemical.objects.get(is_current=False).bnf_code, "040101001") self.assertEqual(Product.objects.filter(is_current=True).count(), 3) self.assertEqual( Product.objects.get(is_current=False).bnf_code, "040101001AA") self.assertEqual( Presentation.objects.filter(is_current=True).count(), 3) self.assertEqual( Presentation.objects.get(is_current=False).bnf_code, "040101001AAAAAA")
def setUpClass(cls): cls.factory = DataFactory() cls.factory.create_all(start_date="2018-06-01", num_months=6, num_practices=6, num_presentations=6) cls.matrixstore = matrixstore_from_data_factory(cls.factory)
def build_factory(): """Build a MatrixStore DataFactory with prescriptions for several different presentations, to allow the BNF code simplification to be meaningful.""" bnf_codes = [ "0407010Q0AAAAAA", # Co-Proxamol_Tab 32.5mg/325mg "0407010P0AAAAAA", # Nefopam HCl_Inj 20mg/ml 1ml Amp "0703021Q0AAAAAA", # Desogestrel_Tab 75mcg "0703021Q0BBAAAA", # Cerazette_Tab 75mcg "0703021P0AAAAAA", # Norgestrel_Tab 75mcg "0904010AUBBAAAA", # Mrs Crimble's_G/F W/F Cheese Bites Orig "0904010AVBBAAAA", # Mrs Crimble's_W/F Dutch Apple Cake ] factory = DataFactory() factory.create_prescribing_for_bnf_codes(bnf_codes) return factory
def setUpTestData(cls): # Create some sets of substitutable presentations, which each consist # of a generic plus some branded equivalents substitution_sets = [] for i in range(4): generic_code = invent_generic_bnf_code(i) brands = invent_brands_from_generic_bnf_code(generic_code) substitution_sets.append([generic_code] + brands) # Create some practices and some prescribing for these presentations factory = DataFactory() factory.create_months("2020-01-01", 2) factory.create_practices(10) for bnf_codes in substitution_sets: for bnf_code in bnf_codes: factory.create_presentation(bnf_code=bnf_code) factory.create_prescribing(factory.presentations, factory.practices, factory.months) # The DataFactory creates data that can be written to the MatrixStore # but doesn't automatically create anything in the database, so we do # that manually here ccg = PCT.objects.create(name="CCG1", code="ABC", org_type="CCG") for practice in factory.practices: Practice.objects.create(name=practice["name"], code=practice["code"], setting=4, ccg=ccg) for presentation in factory.presentations: Presentation.objects.create(bnf_code=presentation["bnf_code"], name=presentation["name"]) cls.substitution_sets = substitution_sets cls.factory = factory cls._remove_patch = patch_global_matrixstore( matrixstore_from_data_factory(factory)) # Clear the cache on this memoized function get_substitution_sets.cache_clear()
def test_simplify_bnf_codes(self): # These are BNF codes for some of the presentations for two different products, # Co-Careldopa (generic, 0409010N0AA) and Sinemet (branded, 0409010N0BB). # # We check that simplifying a list of BNF codes for the branded presentations # returns the BNF prefix of the branded product. all_bnf_codes = [ "0409010N0AAAAAA", "0409010N0AAABAB", "0409010N0AAACAC", "0409010N0AAADAD", "0409010N0AAAEAE", "0409010N0BBAAAA", "0409010N0BBABAC", "0409010N0BBACAB", "0409010N0BBADAD", ] factory = DataFactory() month = factory.create_months("2018-10-01", 1)[0] practice = factory.create_practices(1)[0] for bnf_code in all_bnf_codes: presentation = factory.create_presentation(bnf_code) factory.create_prescription(presentation, practice, month) branded_bnf_codes = [ "0409010N0BBAAAA", "0409010N0BBABAC", "0409010N0BBACAB", "0409010N0BBADAD", "0409010N0BBAEAE", # This is missing from all_bnf_codes. ] with patched_global_matrixstore_from_data_factory(factory): self.assertEqual(simplify_bnf_codes(branded_bnf_codes), ["0409010N0BB"])
def setUpClass(cls): factory = DataFactory() cls.months = factory.create_months("2019-01-01", 3) # This practice won't do any prescribing but it will have practice # statistics so it should still show up in our data cls.non_prescribing_practice = factory.create_practice() # Create some practices that prescribe during the period cls.prescribing_practices = factory.create_practices(3) # Create some presentations and some prescribing cls.presentations = factory.create_presentations(4) cls.prescribing = factory.create_prescribing( cls.presentations, cls.prescribing_practices, cls.months ) # Create practices statistics for all active practices cls.active_practices = cls.prescribing_practices + [ cls.non_prescribing_practice ] cls.practice_statistics = factory.create_practice_statistics( cls.active_practices, cls.months ) # Create a presentation which changes its BNF code and create some # prescribing with both old and new codes cls.presentation_to_update = factory.create_presentation() cls.updated_presentation = factory.update_bnf_code(cls.presentation_to_update) cls.prescribing_with_old_code = factory.create_prescribing( [cls.presentation_to_update], cls.active_practices, cls.months ) cls.prescribing_with_new_code = factory.create_prescribing( [cls.updated_presentation], cls.active_practices, cls.months ) # Create a presenation without creating any prescribing for it so we can # check it doesn't appear in the final file cls.presentation_without_prescribing = factory.create_presentation() # We deliberately import data for fewer months than we've created so we # can test that only the right data is included cls.months_to_import = cls.months[1:] # This practice only has data for the month we don't import, so it # shouldn't show up at all in our data cls.closed_practice = factory.create_practice() factory.create_prescription( cls.presentations[0], cls.closed_practice, cls.months[0] ) factory.create_statistics_for_one_practice_and_month( cls.closed_practice, cls.months[0] ) cls.data_factory = factory # The format of `end_date` only uses year and month cls.end_date = max(cls.months_to_import)[:7] cls.number_of_months = len(cls.months_to_import) cls.create_matrixstore(factory, cls.end_date, cls.number_of_months)
def handle(self, *args, **kwargs): # Ensure that we'll use the test BQ instance assert settings.BQ_PROJECT == "ebmdatalabtest", settings.BQ_PROJECT # Ensure we won't pick up any unexpected models for model in [ Measure, MeasureGlobal, MeasureValue, Practice, Prescription, PCT, STP, RegionalTeam, ]: assert model.objects.count() == 0, model # Delete any ImportLogs that were created by migrations ImportLog.objects.all().delete() # Create a bunch of RegionalTeams, STPs, CCGs, Practices for regtm_ix in range(2): regtm = RegionalTeam.objects.create( code="Y0{}".format(regtm_ix), name="Region {}".format(regtm_ix)) for stp_ix in range(2): stp = STP.objects.create( ons_code="E000000{}{}".format(regtm_ix, stp_ix), name="STP {}/{}".format(regtm_ix, stp_ix), ) pcns = [] for pcn_ix in range(2): pcn = PCN.objects.create( code="E00000{}{}{}".format(regtm_ix, stp_ix, pcn_ix), name="PCN {}/{}/{}".format(regtm_ix, stp_ix, pcn_ix), ) pcns.append(pcn) # Function to return next PCN, looping round forever get_next_pcn = itertools.cycle(pcns).__next__ for ccg_ix in range(2): ccg = PCT.objects.create( regional_team=regtm, stp=stp, code="{}{}{}".format(regtm_ix, stp_ix, ccg_ix).replace("0", "A"), name="CCG {}/{}/{}".format(regtm_ix, stp_ix, ccg_ix), org_type="CCG", ) for prac_ix in range(2): Practice.objects.create( ccg=ccg, pcn=get_next_pcn(), code="P0{}{}{}{}".format(regtm_ix, stp_ix, ccg_ix, prac_ix), name="Practice {}/{}/{}/{}".format( regtm_ix, stp_ix, ccg_ix, prac_ix), setting=4, address1="", address2="", address3="", address4="", address5="", postcode="", ) # import_measures uses this ImportLog to work out which months it # should import data. ImportLog.objects.create(category="prescribing", current_at="2018-08-01") # The practice, CCG etc dashboards use this date ImportLog.objects.create(category="dashboard_data", current_at="2018-08-01") # Set up BQ, and upload STPs, CCGs, Practices. Client("measures").create_dataset() client = Client("hscic") table = client.get_or_create_table("ccgs", schemas.CCG_SCHEMA) table.insert_rows_from_pg(PCT, schemas.CCG_SCHEMA, transformer=schemas.ccgs_transform) table = client.get_or_create_table("practices", schemas.PRACTICE_SCHEMA) table.insert_rows_from_pg(Practice, schemas.PRACTICE_SCHEMA) # Create measures definitions and record the BNF codes used bnf_codes = [] for ix in range(5): numerator_bnf_codes_filter = ["0{}01".format(ix)] denominator_bnf_codes_filter = ["0{}".format(ix)] if ix in [0, 1]: measure_id = "core_{}".format(ix) name = "Core measure {}".format(ix) tags = ["core"] tags_focus = None elif ix in [2, 3]: measure_id = "lp_{}".format(ix) name = "LP measure {}".format(ix) tags = ["lowpriority"] tags_focus = None else: assert ix == 4 measure_id = "lpzomnibus" name = "LP omnibus measure" tags = ["core"] tags_focus = ["lowpriority"] numerator_bnf_codes_filter = ["0201", "0301"] denominator_bnf_codes_filter = ["02", "03"] measure_definition = { "name": name, "title": "{} Title".format(ix), "description": "{} description".format(name), "why_it_matters": "Why {} matters".format(name), "url": "http://example.com/measure-{}".format(measure_id), "numerator_short": "Numerator for {}".format(measure_id), "numerator_type": "bnf_quantity", "numerator_bnf_codes_filter": numerator_bnf_codes_filter, "denominator_short": "Denominator for {}".format(measure_id), "denominator_type": "bnf_quantity", "denominator_bnf_codes_filter": denominator_bnf_codes_filter, "is_cost_based": True, "is_percentage": True, "low_is_good": True, "tags": tags, "tags_focus": tags_focus, } path = os.path.join(settings.MEASURE_DEFINITIONS_PATH, "{}.json".format(measure_id)) with open(path, "w") as f: json.dump(measure_definition, f, indent=2) bnf_codes.append("0{}0000000000000".format(ix)) bnf_codes.append("0{}0100000000000".format(ix)) # Generate random prescribing data. We don't currently save this to the # database as it would make the fixture too big and isn't needed. # Later we create the minimal prescribing needed by the MatrixStore. prescribing_rows = [] timestamps = [ "2018-0{}-01 00:00:00 UTC".format(month) for month in [1, 2, 3, 4, 5, 6, 7, 8] ] for practice_ix, practice in enumerate(Practice.objects.all()): for month, timestamp in enumerate(timestamps, start=1): # 0 <= practice_ix <= 15; 1 <= month <= 8 item_ratio = (22 + practice_ix - 2 * month + randint(-5, 5)) / 43.0 assert 0 < item_ratio < 1 numerator_items = 100 + randint(0, 100) denominator_items = int(numerator_items / item_ratio) for bnf_code_ix, bnf_code in enumerate(bnf_codes): if bnf_code_ix % 2 == 0: items = denominator_items else: items = numerator_items quantity = 28 * items unit_cost = 1 + bnf_code_ix actual_cost = unit_cost * quantity # We don't care about net_cost. net_cost = actual_cost row = [ "sha", # This value doesn't matter. practice.ccg_id, practice.code, bnf_code, "bnf_name", # This value doesn't matter items, net_cost, actual_cost, quantity, timestamp, ] prescribing_rows.append(row) # Create the minimal amount of prescribing necessary for the # MatrixStore to build and for the homepages to load. This means # at least one prescription for each practice. for practice in Practice.objects.all(): bnf_code = bnf_codes[-1] timestamp = timestamps[-1] items = 10 quantity = 500 net_cost = 100 actual_cost = 95 row = [ "sha", # This value doesn't matter. practice.ccg_id, practice.code, bnf_code, "bnf_name", # This value doesn't matter items, net_cost, actual_cost, quantity, timestamp, ] prescribing_rows.append(row) # Unlike the measure prescribing we created earlier this # prescribing needs to be written to the database so it gets # included in the fixture we create Prescription.objects.create( practice_id=row[2], pct_id=row[1], presentation_code=row[3], total_items=row[5], net_cost=row[6], actual_cost=row[7], quantity=row[8], processing_date=row[9][:10], ) # Upload presentations to BigQuery: the new measures system requires them table = client.get_or_create_table("presentation", schemas.PRESENTATION_SCHEMA) with tempfile.NamedTemporaryFile(mode="wt", encoding="utf8", newline="") as f: writer = csv.DictWriter( f, [field.name for field in schemas.PRESENTATION_SCHEMA]) for bnf_code in bnf_codes: writer.writerow({"bnf_code": bnf_code}) f.seek(0) table.insert_rows_from_csv(f.name, schemas.PRESENTATION_SCHEMA) # In production, normalised_prescribing is actually a view, # but for the tests it's much easier to set it up as a normal table. table = client.get_or_create_table("normalised_prescribing", schemas.PRESCRIBING_SCHEMA) # Upload prescribing_rows to normalised_prescribing. with tempfile.NamedTemporaryFile(mode="wt", encoding="utf8", newline="") as f: writer = csv.writer(f) for row in prescribing_rows: writer.writerow(row) f.seek(0) table.insert_rows_from_csv(f.name, schemas.PRESCRIBING_SCHEMA) # Create some dummy prescribing data in the MatrixStore. factory = DataFactory() month = factory.create_months("2018-10-01", 1)[0] practice = factory.create_practices(1)[0] for bnf_code in bnf_codes: presentation = factory.create_presentation(bnf_code) factory.create_prescription(presentation, practice, month) # Do the work. with patched_global_matrixstore_from_data_factory(factory): call_command("import_measures", measure="core_0,core_1,lp_2,lp_3,lpzomnibus") # Clean up. for ix in range(5): if ix in [0, 1]: measure_id = "core_{}".format(ix) elif ix in [2, 3]: measure_id = "lp_{}".format(ix) else: assert ix == 4 measure_id = "lpzomnibus" path = os.path.join(settings.MEASURE_DEFINITIONS_PATH, "{}.json".format(measure_id)) os.remove(path) # Dump the fixtures. fixture_path = os.path.join("frontend", "tests", "fixtures", "functional-measures-dont-edit.json") call_command("dumpdata", "frontend", indent=2, output=fixture_path)