def interpmat(locs, x, y=None, z=None): """ Local interpolation computed for each receiver point in turn :param numpy.ndarray loc: Location of points to interpolate to :param numpy.ndarray x: Tensor vector of 1st dimension of grid. :param numpy.ndarray y: Tensor vector of 2nd dimension of grid. None by default. :param numpy.ndarray z: Tensor vector of 3rd dimension of grid. None by default. :rtype: scipy.sparse.csr.csr_matrix :return: Interpolation matrix .. plot:: import SimPEG import numpy as np import matplotlib.pyplot as plt locs = np.random.rand(50)*0.8+0.1 x = np.linspace(0,1,7) dense = np.linspace(0,1,200) fun = lambda x: np.cos(2*np.pi*x) Q = SimPEG.Utils.interpmat(locs, x) plt.plot(x, fun(x), 'bs-') plt.plot(dense, fun(dense), 'y:') plt.plot(locs, Q*fun(x), 'mo') plt.plot(locs, fun(locs), 'rx') plt.show() """ npts = locs.shape[0] locs = locs.astype(float) x = x.astype(float) if y is None and z is None: shape = [ x.size, ] inds, vals = _interpmat1D(mkvc(locs), x) elif z is None: y = y.astype(float) shape = [x.size, y.size] inds, vals = _interpmat2D(locs, x, y) else: y = y.astype(float) z = z.astype(float) shape = [x.size, y.size, z.size] inds, vals = _interpmat3D(locs, x, y, z) I = np.repeat(range(npts), 2**len(shape)) J = sub2ind(shape, inds) Q = sp.csr_matrix((vals, (I, J)), shape=(npts, np.prod(shape))) return Q
def interpmat(locs, x, y=None, z=None): """ Local interpolation computed for each receiver point in turn :param numpy.ndarray loc: Location of points to interpolate to :param numpy.ndarray x: Tensor vector of 1st dimension of grid. :param numpy.ndarray y: Tensor vector of 2nd dimension of grid. None by default. :param numpy.ndarray z: Tensor vector of 3rd dimension of grid. None by default. :rtype: scipy.sparse.csr_matrix :return: Interpolation matrix .. plot:: import SimPEG import numpy as np import matplotlib.pyplot as plt locs = np.random.rand(50)*0.8+0.1 x = np.linspace(0,1,7) dense = np.linspace(0,1,200) fun = lambda x: np.cos(2*np.pi*x) Q = SimPEG.Utils.interpmat(locs, x) plt.plot(x, fun(x), 'bs-') plt.plot(dense, fun(dense), 'y:') plt.plot(locs, Q*fun(x), 'mo') plt.plot(locs, fun(locs), 'rx') plt.show() """ npts = locs.shape[0] locs = locs.astype(float) x = x.astype(float) if y is None and z is None: shape = [x.size,] inds, vals = _interpmat1D(mkvc(locs), x) elif z is None: y = y.astype(float) shape = [x.size, y.size] inds, vals = _interpmat2D(locs, x, y) else: y = y.astype(float) z = z.astype(float) shape = [x.size, y.size, z.size] inds, vals = _interpmat3D(locs, x, y, z) I = np.repeat(range(npts),2**len(shape)) J = sub2ind(shape,inds) Q = sp.csr_matrix((vals,(I, J)), shape=(npts, np.prod(shape))) return Q
def indexCube(nodes, gridSize, n=None): """ Returns the index of nodes on the mesh. Input: nodes - string of which nodes to return. e.g. 'ABCD' gridSize - size of the nodal grid n - number of nodes each i,j,k direction: [ni,nj,nk] Output: index - index in the order asked e.g. 'ABCD' --> (A,B,C,D) TWO DIMENSIONS:: node(i,j) node(i,j+1) A -------------- B | | | cell(i,j) | | I | | | D -------------- C node(i+1,j) node(i+1,j+1) THREE DIMENSIONS:: node(i,j,k+1) node(i,j+1,k+1) E --------------- F /| / | / | / | / | / | node(i,j,k) node(i,j+1,k) A -------------- B | | H ----------|---- G | /cell(i,j) | / | / I | / | / | / D -------------- C node(i+1,j,k) node(i+1,j+1,k) """ assert type(nodes) == str, "Nodes must be a str variable: e.g. 'ABCD'" assert isinstance(gridSize, np.ndarray), "Number of nodes must be an ndarray" nodes = nodes.upper() # Make sure that we choose from the possible nodes. possibleNodes = 'ABCD' if gridSize.size == 2 else 'ABCDEFGH' for node in nodes: assert node in possibleNodes, "Nodes must be chosen from: '{0!s}'".format( possibleNodes) dim = gridSize.size if n is None: n = gridSize - 1 if dim == 2: ij = ndgrid(np.arange(n[0]), np.arange(n[1])) i, j = ij[:, 0], ij[:, 1] elif dim == 3: ijk = ndgrid(np.arange(n[0]), np.arange(n[1]), np.arange(n[2])) i, j, k = ijk[:, 0], ijk[:, 1], ijk[:, 2] else: raise Exception('Only 2 and 3 dimensions supported.') nodeMap = { 'A': [0, 0, 0], 'B': [0, 1, 0], 'C': [1, 1, 0], 'D': [1, 0, 0], 'E': [0, 0, 1], 'F': [0, 1, 1], 'G': [1, 1, 1], 'H': [1, 0, 1] } out = () for node in nodes: shift = nodeMap[node] if dim == 2: out += (sub2ind(gridSize, np.c_[i + shift[0], j + shift[1]]).flatten(), ) elif dim == 3: out += (sub2ind(gridSize, np.c_[i + shift[0], j + shift[1], k + shift[2]]).flatten(), ) return out
def indexCube(nodes, gridSize, n=None): """ Returns the index of nodes on the mesh. Input: nodes - string of which nodes to return. e.g. 'ABCD' gridSize - size of the nodal grid n - number of nodes each i,j,k direction: [ni,nj,nk] Output: index - index in the order asked e.g. 'ABCD' --> (A,B,C,D) TWO DIMENSIONS:: node(i,j) node(i,j+1) A -------------- B | | | cell(i,j) | | I | | | D -------------- C node(i+1,j) node(i+1,j+1) THREE DIMENSIONS:: node(i,j,k+1) node(i,j+1,k+1) E --------------- F /| / | / | / | / | / | node(i,j,k) node(i,j+1,k) A -------------- B | | H ----------|---- G | /cell(i,j) | / | / I | / | / | / D -------------- C node(i+1,j,k) node(i+1,j+1,k) """ assert type(nodes) == str, "Nodes must be a str variable: e.g. 'ABCD'" assert isinstance(gridSize, np.ndarray), "Number of nodes must be an ndarray" nodes = nodes.upper() # Make sure that we choose from the possible nodes. possibleNodes = 'ABCD' if gridSize.size == 2 else 'ABCDEFGH' for node in nodes: assert node in possibleNodes, "Nodes must be chosen from: '%s'" % possibleNodes dim = gridSize.size if n is None: n = gridSize - 1 if dim == 2: ij = ndgrid(np.arange(n[0]), np.arange(n[1])) i, j = ij[:, 0], ij[:, 1] elif dim == 3: ijk = ndgrid(np.arange(n[0]), np.arange(n[1]), np.arange(n[2])) i, j, k = ijk[:, 0], ijk[:, 1], ijk[:, 2] else: raise Exception('Only 2 and 3 dimensions supported.') nodeMap = {'A': [0, 0, 0], 'B': [0, 1, 0], 'C': [1, 1, 0], 'D': [1, 0, 0], 'E': [0, 0, 1], 'F': [0, 1, 1], 'G': [1, 1, 1], 'H': [1, 0, 1]} out = () for node in nodes: shift = nodeMap[node] if dim == 2: out += (sub2ind(gridSize, np.c_[i+shift[0], j+shift[1]]).flatten(), ) elif dim == 3: out += (sub2ind(gridSize, np.c_[i+shift[0], j+shift[1], k+shift[2]]).flatten(), ) return out