def main(): # init maze environment including observation and action interfaces env = maze_env_factory(max_pieces_in_inventory=200, raw_piece_size=[100, 100], static_demand=(30, 15)) # wrap environment with logging wrapper env = LogStatsWrapper(env, logging_prefix="main") # register a console writer and connect the writer to the statistics logging system with SimpleStatsLoggingSetup(env): # reset environment obs = env.reset() # run interaction loop for i in range(15): # sample random action action = env.action_space.sample() # take actual environment step obs, reward, done, info = env.step(action)
from docs.tutorial_maze_env.part04_events.env.maze_env import maze_env_factory from maze.utils.log_stats_utils import SimpleStatsLoggingSetup from maze.core.wrappers.log_stats_wrapper import LogStatsWrapper # init maze environment env = maze_env_factory(max_pieces_in_inventory=200, raw_piece_size=[100, 100], static_demand=(30, 15)) # wrap environment with logging wrapper env = LogStatsWrapper(env, logging_prefix="main") # register a console writer and connect the writer to the statistics logging system with SimpleStatsLoggingSetup(env): # reset environment and run interaction loop obs = env.reset() for i in range(15): action = env.action_space.sample() obs, reward, done, info = env.step(action)