コード例 #1
0
ファイル: main_module.py プロジェクト: MachineColony/pyColony
def main_handler(ctx):
    """
    :param ctx:
     Dict
     ctx is the context object containing message data, the user who owns the bot instance, and

    :return:
        The bot's return value will be POSTed to its specified webhook address, if one is provided.
    """
    # First create an instance of the API interface
    api = MC(ctx)
    # Replace 'pass' with your code.
    # Try uncommenting the line(s) below to send an email to yourself with the original message.
    # api.send_email(ctx['user']['email'], "Original message:\n" + str(ctx['message']),
    #                                  subject='Hello from Machine Colony!')
    pass
コード例 #2
0
import gym
import matplotlib.pyplot as plt
import numpy as np

from mc import FiniteMCModel as MC

env = gym.make("CliffWalking-v0")

# WARNING: If you try to set eps to a very low value,
# And you attempt to get the m.score() of m.pi, there may not
# be guarranteed convergence.
eps = 10000
S = 4*12
A = 4
START_EPS = 0.7
m = MC(S, A, epsilon=START_EPS)
for i in range(1, eps+1):
    ep = []
    observation = env.reset()
    while True:
        # Choosing behavior policy
        action = m.choose_action(m.b, observation)

        # Run simulation
        next_observation, reward, done, _ = env.step(action)
        ep.append((observation, action, reward))
        observation = next_observation
        if done:
            break
    m.update_Q(ep)
    # Decaying epsilon, reach optimal policy
コード例 #3
0
import gym
env = gym.make("Blackjack-v0")

# The typical imports
import gym
import numpy as np
import matplotlib.pyplot as plt
from mc import FiniteMCModel as MC

eps = 1000000
S = [(x, y, z) for x in range(4,22) for y in range(1,11) for z in [True,False]]
A = 2
m = MC(S, A, epsilon=1)
for i in range(1, eps+1):
    ep = []
    observation = env.reset()
    while True:
        # Choosing behavior policy
        action = m.choose_action(m.b, observation)

        # Run simulation
        next_observation, reward, done, _ = env.step(action)
        ep.append((observation, action, reward))
        observation = next_observation
        if done:
            break

    m.update_Q(ep)
    # Decaying epsilon, reach optimal policy
    m.epsilon = max((eps-i)/eps, 0.1)
コード例 #4
0
ファイル: legacy.py プロジェクト: burmisov/oface-test
import json
import os
import re

OBJECTS_PATH = "./dets/objects/"
RECOG_PATH = "./dets/recogobj/"
FRAME_MDATA_PATH = "./dets/"

if len(sys.argv) < 6:
    print "no db arg"
    print "legacy.py <db server url> <db server port> <username> <password>"
    exit(1)

mc = MC({'serverUrl': sys.argv[1],
         'port': int(sys.argv[2]),
         'userName': sys.argv[3],
         'password': sys.argv[4],
         'dbName': sys.argv[5]})

# upload objects (facetraces)
print "uploading objects (facetraces)"
object_files = os.listdir(OBJECTS_PATH)
total_obj_files = len(object_files)
processed_obj_files = 0
for obj_file in object_files:
    print "processing file {0}".format(obj_file)
    obj_json = open(OBJECTS_PATH + obj_file).read()
    obj_data = json.loads(obj_json)
    mc.addFaceTrace(obj_data)
    processed_obj_files = processed_obj_files + 1
    print "uploaded facetrace {0} of {1}".format(processed_obj_files, total_obj_files)
コード例 #5
0
	def __init__(self, symbole = 'O', num_tirages_MC = 3, num_descentes_dans_arbre = 7, facteur_uct = 0.0):
		'''Créer un joueur du symbole indiqué'''
		MC.__init__(self, symbole, num_tirages_MC)
		self.num_descentes_dans_arbre = num_descentes_dans_arbre
		self.facteur_uct = facteur_uct