コード例 #1
0
def get_mc_directories(rfrac):
    rootdir = os.getcwd()+'/monte_carlo/'    
    _dirs = []; _lbls = []
    #
    for subdir, dirs, files in os.walk(rootdir):
        if subdir != rootdir and rfrac in subdir: 
            _dirs.append(subdir)
            __sector = subdir.replace(rootdir+'relax_','').replace(rfrac,'')
            try: _lbls.append(monte_carlo(0,'base').sector_labels[__sector])
            except: _lbls.append(__sector)
    return _dirs,_lbls
コード例 #2
0
def plot_status_vs_valueadd(base_code,rfrac,fom_x,fom_y):
    mc = monte_carlo(0,'base')

    dirs,labels = get_mc_directories(rfrac)
    base_x = pd.read_csv('monte_carlo/{}/{}.csv'.format(base_code,fom_x),index_col=0).sum(axis=1)
    base_y = pd.read_csv('monte_carlo/{}/{}.csv'.format(base_code,fom_y),index_col=0).sum(axis=1)

    sf_x = 1
    sf_y = 1

    for _nd,_d in enumerate(dirs):
        _fx = pd.read_csv(_d+'/{}.csv'.format(fom_x),index_col=0)
        _fy = pd.read_csv(_d+'/{}.csv'.format(fom_y),index_col=0) 

        x_val = sf_x*(base_x.mean()-_fx.sum(axis=1).mean())
        y_val = sf_y*(base_y.mean()-_fy.sum(axis=1).mean())

        x_err = 2*(base_x-_fx.sum(axis=1)).std()/np.sqrt(float(base_x.shape[0])) 
        y_err = 2*(base_y-_fy.sum(axis=1)).std()/np.sqrt(float(base_y.shape[0]))

        if  (x_val-x_err > 0 or y_val-y_err > 0):
            plt.errorbar(x_val,y_val,xerr=x_err,yerr=y_err,fmt='o',zorder=90,color=sns_pal[1],alpha=(0.7 if (x_val-x_err>0 and y_val-y_err>0) else 0.3))
            plt.annotate(labels[_nd],xy=(x_val+x_err/10,y_val+y_err/10),fontsize=8,color=greys_pal[5],rotation=0,ha='left',va='bottom',weight=500)
        
    plt.xlim(0)
    plt.ylim(0)

    plt.annotate('{}% recovery of\nsectoral activity'.format(rfrac),xy=(0.05,0.95),
                 xycoords='axes fraction',ha='left',va='top',fontsize=8,color=greys_pal[6],annotation_clip=False)

    plt.grid(False)
    sns.despine(bottom=True,left=True)
    plt.plot([0,0],plt.gca().get_ylim(),color=greys_pal[6],zorder=10)
    plt.plot(plt.gca().get_xlim(),[0,0],color=greys_pal[6],zorder=10)

    plt.xlabel(ax_label_dict[fom_x],labelpad=10,linespacing=1.75)
    plt.ylabel(ax_label_dict[fom_y],labelpad=10,linespacing=1.75)

    # save & close
    plt.savefig('figs/scatter_{}_{}.pdf'.format(fom_x,fom_y),format='pdf',bbox_inches='tight') 
    plt.close('all')
コード例 #3
0
def explore_poverty_mysteries(hh_df, scaleup_CCT=0, mirror_subsistence=False):
    mc = monte_carlo(0, 'base')
    ul = 250
    nbins = int(50)

    # total income <-- use to structure plot
    tot_hgt, _bins = np.histogram(hh_df.eval('pcinc_initial').clip(upper=ul),
                                  bins=nbins,
                                  weights=hh_df['popwgt'])
    wid = (_bins[1] - _bins[0])

    bin_slice = '(pcinc_initial>@b)&(pcinc_initial<=@_bins[@n+1])'

    # households falling into poverty
    newpov = '&(@mc.m2d*pcinc_initial>3.20)&(@mc.m2d*pcinc_final<=3.20)'
    month1 = '&(@mc.m2d*(hhinc-income_loss+savings/1+cct4P*@scaleup_CCT)/hhsize<=3.20)'
    month2 = '&(@mc.m2d*(hhinc-income_loss+savings/1+cct4P*@scaleup_CCT)/hhsize>3.20)&(@mc.m2d*(hhinc-income_loss+savings/2+cct4P*@scaleup_CCT)/hhsize<=3.20)'
    month3 = '&(@mc.m2d*(hhinc-income_loss+savings/2+cct4P*@scaleup_CCT)/hhsize>3.20)&(@mc.m2d*(hhinc-income_loss+savings/3+cct4P*@scaleup_CCT)/hhsize<=3.20)'
    month4 = '&(@mc.m2d*(hhinc-income_loss+savings/3+cct4P*@scaleup_CCT)/hhsize>3.20)'
    # households falling into extreme poverty
    newsub = '&(@mc.m2d*pcinc_initial>1.90)&(@mc.m2d*pcinc_final<=1.90)'
    month1s = '&(@mc.m2d*(hhinc-income_loss+savings/1+cct4P*@scaleup_CCT)/hhsize<=1.90)'
    month2s = '&(@mc.m2d*(hhinc-income_loss+savings/1+cct4P*@scaleup_CCT)/hhsize>1.90)&(@mc.m2d*(hhinc-income_loss+savings/2+cct4P*@scaleup_CCT)/hhsize<=1.90)'
    month3s = '&(@mc.m2d*(hhinc-income_loss+savings/2+cct4P*@scaleup_CCT)/hhsize>1.90)&(@mc.m2d*(hhinc-income_loss+savings/3+cct4P*@scaleup_CCT)/hhsize<=1.90)'
    month4s = '&(@mc.m2d*(hhinc-income_loss+savings/3+cct4P*@scaleup_CCT)/hhsize>1.90)'

    newpov_hgt = []
    newpov_1m_hgt = []
    newpov_2m_hgt = []
    newpov_3m_hgt = []
    newpov_4m_hgt = []
    newsub_hgt = []
    newsub_1m_hgt = []
    newsub_2m_hgt = []
    newsub_3m_hgt = []
    newsub_4m_hgt = []
    for n, b in enumerate(_bins[:-1]):

        newpov_hgt.append(hh_df.loc[hh_df.eval(bin_slice + newpov),
                                    'popwgt'].sum())
        newpov_1m_hgt.append(hh_df.loc[hh_df.eval(bin_slice + newpov + month1),
                                       'popwgt'].sum())
        newpov_2m_hgt.append(hh_df.loc[hh_df.eval(bin_slice + newpov + month2),
                                       'popwgt'].sum())
        newpov_3m_hgt.append(hh_df.loc[hh_df.eval(bin_slice + newpov + month3),
                                       'popwgt'].sum())
        newpov_4m_hgt.append(hh_df.loc[hh_df.eval(bin_slice + newpov + month4),
                                       'popwgt'].sum())
        #
        newsub_1m_hgt.append(
            -1 * hh_df.loc[hh_df.eval(bin_slice + newsub + month1s),
                           'popwgt'].sum())
        newsub_2m_hgt.append(
            -1 * hh_df.loc[hh_df.eval(bin_slice + newsub + month2s),
                           'popwgt'].sum())
        newsub_3m_hgt.append(
            -1 * hh_df.loc[hh_df.eval(bin_slice + newsub + month3s),
                           'popwgt'].sum())
        newsub_4m_hgt.append(
            -1 * hh_df.loc[hh_df.eval(bin_slice + newsub + month4s),
                           'popwgt'].sum())
        #

    # plot them

    #ax = plt.step(_bins[:-1]+wid,newpov_hgt,linewidth=0.5,alpha=0.4)
    btm = 0
    lbl = '< 1 month ({} m.)'.format(round(np.sum(newpov_1m_hgt), 1))
    ax = plt.bar(_bins[:-1],
                 newpov_1m_hgt,
                 bottom=btm,
                 width=wid,
                 align='edge',
                 linewidth=0,
                 alpha=0.5,
                 facecolor=reds_pal[0],
                 label=lbl)

    btm = newpov_1m_hgt
    lbl = '1-2 months ({} m.)'.format(round(np.sum(newpov_2m_hgt), 1))
    ax = plt.bar(_bins[:-1],
                 newpov_2m_hgt,
                 width=wid,
                 bottom=btm,
                 align='edge',
                 linewidth=0,
                 alpha=0.5,
                 facecolor=reds_pal[1],
                 label=lbl)

    btm = [i + j for i, j in zip(newpov_1m_hgt, newpov_2m_hgt)]
    lbl = '2-3 months ({} m.)'.format(round(np.sum(newpov_3m_hgt), 1))
    ax = plt.bar(_bins[:-1],
                 newpov_3m_hgt,
                 width=wid,
                 bottom=btm,
                 align='edge',
                 linewidth=0,
                 alpha=0.5,
                 facecolor=reds_pal[2],
                 label=lbl)

    btm = [
        i + j + k
        for i, j, k in zip(newpov_1m_hgt, newpov_2m_hgt, newpov_3m_hgt)
    ]
    lbl = '> 3 months ({} m.)'.format(round(np.sum(newpov_4m_hgt), 1))
    ax = plt.bar(_bins[:-1],
                 newpov_4m_hgt,
                 width=wid,
                 bottom=btm,
                 align='edge',
                 linewidth=0,
                 alpha=0.5,
                 facecolor=reds_pal[3],
                 label=lbl)

    # plot hh falling into subsistence
    if mirror_subsistence:
        btm = 0
        lbl = '< 1 month ({} m.)'.format(round(-1 * np.sum(newsub_1m_hgt), 1))
        ax = plt.bar(_bins[:-1],
                     newsub_1m_hgt,
                     bottom=btm,
                     width=wid,
                     align='edge',
                     linewidth=0,
                     alpha=0.35,
                     facecolor=reds_pal[0],
                     label=lbl)

        btm = newsub_1m_hgt
        lbl = '1-2 months ({} m.)'.format(-1 * round(np.sum(newsub_2m_hgt), 1))
        ax = plt.bar(_bins[:-1],
                     newsub_2m_hgt,
                     width=wid,
                     bottom=btm,
                     align='edge',
                     linewidth=0,
                     alpha=0.35,
                     facecolor=reds_pal[1],
                     label=lbl)

        btm = [i + j for i, j in zip(newsub_1m_hgt, newsub_2m_hgt)]
        lbl = '2-3 months ({} m.)'.format(-1 * round(np.sum(newsub_3m_hgt), 1))
        ax = plt.bar(_bins[:-1],
                     newsub_3m_hgt,
                     width=wid,
                     bottom=btm,
                     align='edge',
                     linewidth=0,
                     alpha=0.35,
                     facecolor=reds_pal[2],
                     label=lbl)

        btm = [
            i + j + k
            for i, j, k in zip(newsub_1m_hgt, newsub_2m_hgt, newsub_3m_hgt)
        ]
        lbl = '> 3 months ({} m.)'.format(-1 * round(np.sum(newsub_4m_hgt), 1))
        ax = plt.bar(_bins[:-1],
                     newsub_4m_hgt,
                     width=wid,
                     bottom=btm,
                     align='edge',
                     linewidth=0,
                     alpha=0.35,
                     facecolor=reds_pal[3],
                     label=lbl)
        #

    plt.legend(title='Shock duration{}'.format('\n({}% CCT scaleup)'.format(
        int(1E2 * scaleup_CCT)) if scaleup_CCT != 0 else ''),
               labelspacing=0.75,
               ncol=1,
               fontsize=8,
               borderpad=0.75,
               fancybox=True,
               frameon=True,
               framealpha=0.9)
    plt.xlabel('pre-COVID income [PPP$/cap/month]', labelpad=10)
    plt.ylabel('Impoverished population [millions]', labelpad=10)
    if not mirror_subsistence: plt.xlim(90, ul)
    else: plt.xlim(0, ul)

    plt.grid(False)
    sns.despine(left=True, bottom=True)
    plt.plot([0, ul], [0, 0], color=greys_pal[4], lw=1)
    plt.savefig('figs/new_poverty{}{}.pdf'.format(
        '_net_sub' if mirror_subsistence else '',
        '_CCT{}x'.format(scaleup_CCT) if scaleup_CCT != 0 else ''),
                format='pdf',
                bbox_inches='tight')
    plt.close('all')
コード例 #4
0
def plot_income_scatter(hh_df, _ul=20, with_migration=True):
    mc = monte_carlo(0, 'base')
    nbins = 11
    dy = 11

    plt.scatter(mc.m2d * hh_df.loc[hh_df.income_loss != 0, 'pcinc_initial'],
                mc.m2d * hh_df.loc[hh_df.income_loss != 0, 'pcinc_final'],
                s=6,
                alpha=0.4)

    base_hgt, _bins = np.histogram(
        (mc.m2d * hh_df['pcinc_initial']).clip(upper=_ul),
        bins=[2 * n for n in range(0, 11)],
        weights=hh_df['popwgt'])
    shock_hgt, _ = np.histogram(
        (mc.m2d * hh_df['pcinc_final']).clip(upper=_ul),
        bins=_bins,
        weights=hh_df['popwgt'])
    wid = (_bins[1] - _bins[0])

    for n, b in enumerate(_bins):

        plt.plot([b, b], [0, _ul],
                 lw=0.6,
                 color=greys_pal[5],
                 ls=':',
                 zorder=100)

        try:
            plt.annotate(r'$\Delta$P' + ': {}%'.format(
                int(round(1E2 *
                          (shock_hgt[n] - base_hgt[n]) / base_hgt[n], 0))),
                         xy=(b + wid / 2, np.e**(np.log(dy) / _ul *
                                                 (b + wid / 2)) + _ul / 2 + 1),
                         color=greys_pal[7],
                         fontsize=5.5,
                         ha='center',
                         va='bottom',
                         annotation_clip=False)
        except:
            pass

        try:
            bin_slice = '(@mc.m2d*pcinc_initial>@b)&(@mc.m2d*pcinc_initial<=@_bins[@n+1])'
            i_i = mc.m2d * hh_df.loc[
                hh_df.eval(bin_slice), ['popwgt', 'pcinc_initial']].prod(
                    axis=1).sum() / hh_df.loc[hh_df.eval(bin_slice),
                                              'popwgt'].sum()

            if with_migration:
                bin_slice = '(@mc.m2d*pcinc_final>@b)&(@mc.m2d*pcinc_final<=@_bins[@n+1])'
            else:
                bin_slice = '(@mc.m2d*pcinc_initial>@b)&(@mc.m2d*pcinc_initial<=@_bins[@n+1])'
            i_f = mc.m2d * hh_df.loc[
                hh_df.eval(bin_slice), ['popwgt', 'pcinc_final']].prod(
                    axis=1).sum() / hh_df.loc[hh_df.eval(bin_slice),
                                              'popwgt'].sum()

            di = round(1E2 * (i_f - i_i) / i_i, 1)
            plt.annotate(r'$\Delta$i' + ': {}%'.format(di),
                         xy=(b + wid / 2,
                             np.e**(np.log(dy) / _ul *
                                    (b + wid / 2)) + _ul / 2 + 0.2),
                         color=greys_pal[7],
                         fontsize=5.5,
                         ha='center',
                         va='bottom',
                         annotation_clip=False)

            if n < 5:
                if n == 0:
                    plt.annotate('poverty gap',
                                 style='italic',
                                 xy=(b + wid / 2,
                                     np.e**(np.log(dy) / _ul *
                                            (b + wid / 2)) + _ul / 2 - 1),
                                 color=greys_pal[7],
                                 fontsize=5.5,
                                 ha='center',
                                 va='bottom')

                pgap_i = round(1E2 * (i_i - 3.2) / 3.2, 1)
                plt.annotate(r'initial:' + '\n{}%'.format(pgap_i),
                             xy=(b + wid / 20,
                                 np.e**(np.log(dy) / _ul *
                                        (b + wid / 2)) + _ul / 2 - 2.2),
                             color=greys_pal[7],
                             fontsize=5.5,
                             ha='left',
                             va='bottom',
                             annotation_clip=False)

                pgap_f = round(1E2 * (i_f - 3.2) / 3.2, 1)
                plt.annotate(r'final:' + '\n{}%'.format(pgap_f),
                             xy=(b + wid * 19 / 20,
                                 np.e**(np.log(dy) / _ul *
                                        (b + wid / 2)) + _ul / 2 - 3.4),
                             color=greys_pal[7],
                             fontsize=5.5,
                             ha='right',
                             va='bottom',
                             annotation_clip=False)

                #pgap_i = None

        except:
            pass

    plt.xlabel('Income [PPP$/cap/day]', labelpad=10)
    plt.ylabel('Income during shock [PPP$/cap/day]', labelpad=10)

    plt.xlim(0, _ul)
    plt.ylim(0, _ul)

    plt.xticks([2 * n for n in range(0, 11)])
    sns.despine()

    plt.savefig('figs/income_scatter_{}.pdf'.format(
        'with_bin_migrants' if with_migration else 'no_bin_migrants'),
                format='pdf',
                bbox_inches='tight')
    plt.close('all')
コード例 #5
0
def build_shock(fom='totpop_pov'):

    pal = monte_carlo().ichan_cols
    # create plot showing how impact channels add to affected, poverty

    initial = pd.read_csv('monte_carlo/inital_pop_by_class.csv'.format(fom))
    base = pd.read_csv('monte_carlo/base/{}.csv'.format(fom),
                       index_col=0)[['vul', 'sec', 'mc']].sum(axis=1)

    W1E0R0 = pd.read_csv('monte_carlo/W1E0R0/{}.csv'.format(fom),
                         index_col=0)[['vul', 'sec', 'mc']].sum(axis=1)
    W0E1R0 = pd.read_csv('monte_carlo/W0E1R0/{}.csv'.format(fom),
                         index_col=0)[['vul', 'sec', 'mc']].sum(axis=1)
    W0E0R1 = pd.read_csv('monte_carlo/W0E0R1/{}.csv'.format(fom),
                         index_col=0)[['vul', 'sec', 'mc']].sum(axis=1)

    W1E1R0 = pd.read_csv('monte_carlo/W1E1R0/{}.csv'.format(fom),
                         index_col=0)[['vul', 'sec', 'mc']].sum(axis=1)
    W0E1R1 = pd.read_csv('monte_carlo/W0E1R1/{}.csv'.format(fom),
                         index_col=0)[['vul', 'sec', 'mc']].sum(axis=1)
    W1E0R1 = pd.read_csv('monte_carlo/W1E0R1/{}.csv'.format(fom),
                         index_col=0)[['vul', 'sec', 'mc']].sum(axis=1)

    wid = 0.8
    alp = 0.6
    lw = 0.0
    plt.barh(7,
             W0E0R1.mean(),
             facecolor=pal['remits'],
             lw=lw,
             height=wid,
             alpha=alp)
    plt.annotate(' {} mil.'.format(round(W0E0R1.mean(), 1)),
                 xy=(W0E0R1.mean(), 7 + wid / 2),
                 va='center',
                 ha='left',
                 color=greys_pal[6])
    plt.barh(6,
             W0E1R0.mean(),
             facecolor=pal['entrep'],
             lw=lw,
             height=wid,
             alpha=alp)
    plt.annotate(' {} mil.'.format(round(W0E1R0.mean(), 1)),
                 xy=(W0E1R0.mean(), 6 + wid / 2),
                 va='center',
                 ha='left',
                 color=greys_pal[6])
    plt.barh(5,
             W1E0R0.mean(),
             facecolor=pal['nonag_wage'],
             lw=lw,
             height=wid,
             alpha=alp)
    plt.annotate(' {} mil.'.format(round(W1E0R0.mean(), 1)),
                 xy=(W1E0R0.mean(), 5 + wid / 2),
                 va='center',
                 ha='left',
                 color=greys_pal[6])
    #

    plt.barh(3,
             W0E1R1.mean(),
             facecolor=pal['entrep'],
             lw=lw,
             height=wid * 2 / 3,
             alpha=alp)
    plt.barh(3 + wid / 3,
             W0E1R1.mean(),
             facecolor=pal['remits'],
             lw=lw,
             height=wid * 2 / 3,
             alpha=alp)
    plt.annotate(' {} mil.'.format(round(W0E1R1.mean(), 1)),
                 xy=(W0E1R1.mean(), 3 + wid / 2),
                 va='center',
                 ha='left',
                 color=greys_pal[6])

    plt.barh(2,
             W1E0R1.mean(),
             facecolor=pal['nonag_wage'],
             lw=lw,
             height=wid * 2 / 3,
             alpha=alp)
    plt.barh(2 + wid / 3,
             W1E0R1.mean(),
             facecolor=pal['remits'],
             lw=lw,
             height=wid * 2 / 3,
             alpha=alp)
    plt.annotate(' {} mil.'.format(round(W1E0R1.mean(), 1)),
                 xy=(W1E0R1.mean(), 2 + wid / 2),
                 va='center',
                 ha='left',
                 color=greys_pal[6])

    plt.barh(1,
             W1E1R0.mean(),
             facecolor=pal['nonag_wage'],
             lw=lw,
             height=wid * 2 / 3,
             alpha=alp)
    plt.barh(1 + wid / 3,
             W1E1R0.mean(),
             facecolor=pal['entrep'],
             lw=lw,
             height=wid * 2 / 3,
             alpha=alp)
    plt.annotate(' {} mil.'.format(round(W1E1R0.mean(), 1)),
                 xy=(W1E1R0.mean(), 1 + wid / 2),
                 va='center',
                 ha='left',
                 color=greys_pal[6])

    # plt.bar(9,base.mean(),facecolor=pal['remits'],lw=lw,width=wid/3,alpha=alp)
    # plt.bar(9+wid/3,base.mean(),facecolor=pal['entrep'],lw=lw,width=wid/3,alpha=alp)
    # plt.bar(9+wid*2/3,base.mean(),facecolor=pal['nonag_wage'],lw=lw,width=wid/3,alpha=alp)
    plt.barh([1, 2, 3, 5, 6, 7],
             6 * [base.mean()],
             facecolor="None",
             lw=1,
             height=wid,
             edgecolor=greys_pal[7],
             alpha=0.3)

    plt.grid(True, axis='x', alpha=0.3)

    # plt.legend(loc='upper left',labelspacing=0.75,ncol=1,fontsize=8,borderpad=0.75,fancybox=True,frameon=True,framealpha=0.9)

    plt.yticks([_ + wid / 2 for _ in range(1, 8)], [
        'wages &\nentrepreneurial', 'wages &\nremittances',
        'entrepreneurial &\n remittances', '', 'wage\neffect',
        'entrepreneurial\neffect', 'remittance\neffect'
    ],
               va='center',
               ha='right')
    plt.xlabel('Poverty increase [mil.]', labelpad=10)
    plt.ylim(0.75, 8.05)

    sns.despine()
    plt.savefig('figs/build_a_crisis.pdf', format='pdf', bbox_inches='tight')
    plt.close('all')
コード例 #6
0
def plot_income_hist(hh_df, shock_code='base', use_expenditures=False):
    mc = monte_carlo(0, 'base')

    ###############################################
    # function can plot income or expenditures
    # --> based on flag use_expenditures above
    _fom = 'inc'
    _label = 'Income'
    if use_expenditures:
        _fom = 'exp'
        _label = 'Expenditures'

    # use central value of MC series
    ts = load_consumption_time_series(shock_code)
    classes = {
        'sub': [ts[0].T, -1E9, 1.9],
        'pov': [ts[1].T, 1.9, 3.2],
        'vul': [ts[2].T, 3.2, 5.5],
        'sec': [ts[3].T, 5.5, 15.],
        'mc': [ts[4].T, 15., 1E9]
    }

    ###############################################
    # upper limit, binning of histogram
    _ul = 20
    nbins = int(50)

    # Income dist before disaster
    ci_hgt, _bins = np.histogram(
        (mc.m2d * hh_df['pc' + _fom + '_initial']).clip(upper=_ul),
        bins=nbins,
        weights=hh_df['popwgt'])
    wid = (_bins[1] - _bins[0]) / 2

    # Income dist after disaster
    cf_hgt, _ = np.histogram(
        (mc.m2d * hh_df['pc' + _fom + '_final']).clip(upper=_ul),
        bins=_bins,
        weights=hh_df['popwgt'])

    # plot them
    ax = plt.bar(_bins[:-1],
                 ci_hgt,
                 width=wid,
                 align='edge',
                 linewidth=0,
                 alpha=0.4,
                 facecolor=cool_pal[5],
                 label='2015 FIES')
    ax = plt.bar(_bins[:-1] - wid,
                 cf_hgt,
                 width=wid,
                 align='edge',
                 linewidth=0,
                 alpha=0.4,
                 facecolor=cool_pal[0],
                 label='COVID shock')

    # annotate shifts
    pop_aff, frac_aff, tot_loss, di_tot, di_aff, affpop_sub, affpop_pov, affpop_vul = load_income_impacts(
        shock_code)

    _y = 0.0
    _dy = {'sub': 9.2, 'pov': 7.8, 'vul': 6.3, 'sec': 3.7, 'mc': 0.5}
    lbl = {
        'sub': 'extreme poverty',
        'pov': 'poverty',
        'vul': 'vulnerable',
        'sec': 'secure',
        'mc': 'middle class'
    }
    for _c in ['sub', 'pov', 'vul', 'sec', 'mc']:
        _mc, _min, _max = classes[_c]

        # segment plot
        # if _c != 'sub':
        plt.plot([max(0.05, _min), max(0.05, _min)], [0, _dy[_c] + 1.0],
                 color=greys_pal[6],
                 lw=1.4,
                 ls='-',
                 clip_on=False)
        plt.plot([max(0.05, _min), max(0.05, _min) + 0.1],
                 [_dy[_c] + 1.0, _dy[_c] + 1.10],
                 color=greys_pal[6],
                 lw=1.4,
                 ls='-',
                 clip_on=False)

        # annotate population shifts
        # This loads population values from MC (consumption series)
        if not use_expenditures:
            print(
                '\n\nusing consumption (net sav), month = 12 for income hist')

        tot_pop = hh_df['popwgt'].sum()
        popi = round(1E-2 * tot_pop * _mc[0].mean(), 1)
        popf = round(1E-2 * tot_pop * _mc[12].mean(), 1)
        popf_min = round(1E-2 * tot_pop * _mc[12].quantile(0.25),
                         1)  # popf-pop_err
        popf_max = round(1E-2 * tot_pop * _mc[12].quantile(0.75),
                         1)  # popf+pop_err

        # get delta
        dp = round(popf - popi, 1)
        dp_max = round(popf_max - popi, 1)
        dp_min = round(popf_min - popi, 1)

        # pop frac affected
        frac_aff_min = int(round(frac_aff[_c].quantile(0.25)))
        frac_aff_max = int(round(frac_aff[_c].quantile(0.75)))

        if frac_aff_min != frac_aff_max:
            _anno = r'{}% $\endash$ {}%'.format(frac_aff_min, frac_aff_max)
        else:
            _anno = r'{}%'.format(int(round(frac_aff[_c].mean())))
        _anno += ' of {} m. affected'.format(popi) + '\n'

        _anno += 'final pop: {} $\endash$ {} m.\n'.format(popf_min, popf_max)
        _anno += 'net shift: {}{} $\endash$ {}{} m.'.format(
            '+' if dp_min > 0 else '', dp_min, '+' if dp_max > 0 else '',
            dp_max)

        # income loss among affected
        # pcinc_init = mc.m2d*(hh_df.loc[hh_df['initial_class']==_c,['pcinc_initial','popwgt']].prod(axis=1).sum()
        # /hh_df.loc[hh_df['initial_class']==_c,'popwgt'].sum())

        # di_aff_min = round(mc.m2d*di_aff[_c].quantile(0.25),1)
        # di_aff_max = round(mc.m2d*di_aff[_c].quantile(0.75),1)

        # if di_aff_min == di_aff_max :
        # _anno += r'\${}0{}'.format(round(mc.m2d*di_aff[_c].mean(),1),'/cap/day')
        # _anno += r' ({}%)'.format(int(1E2*mc.m2d*di_aff[_c].mean()/pcinc_init))+'lost \n'
        # else:
        # _anno += r'\${}0 $\endash$ \${}0{}'.format(di_aff_min,di_aff_max,'/cap/day')
        # _anno += r' ({}% $\endash$ {}%)'.format(int(1E2*di_aff_min/pcinc_init),int(1E2*di_aff_max/pcinc_init))+' lost\n'

        # if use_expenditures:
        plt.annotate(lbl[_c],
                     xy=(max(0, _min) + 0.3, _y + _dy[_c] + 1.05),
                     ha='left',
                     va='bottom',
                     fontsize=8,
                     color=greys_pal[7],
                     annotation_clip=False,
                     weight='bold')
        plt.annotate(_anno,
                     xy=(max(0, _min) + .55, _y + _dy[_c] + 0.94),
                     ha='left',
                     va='top',
                     fontsize=8,
                     color=greys_pal[7],
                     annotation_clip=False,
                     linespacing=1.5)

    plt.xlabel(_label + ' [PPP$/cap/day]', labelpad=10)
    plt.ylabel('Population [millions]', labelpad=10)
    plt.xlim(0)
    plt.ylim(0, 8.5)
    plt.yticks([n for n in range(1, 9)])

    plt.grid(False)

    plt.legend(labelspacing=0.75,
               ncol=1,
               fontsize=8,
               borderpad=0.75,
               fancybox=True,
               frameon=True,
               framealpha=0.9)

    sns.despine(left=True)
    plt.savefig('figs/{}_hist.pdf'.format(_label.lower()),
                format='pdf',
                bbox_inches='tight')
    plt.close('all')
コード例 #7
0
def plot_income_loss_by_channel(scode):
    pal = monte_carlo(0, 'base').ichan_cols
    _w = 0.75
    _fs = 8

    #flag
    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 5))
    plt.axes(ax[0])

    rel = 'loss'  # 'lossfrac' returns fraction *of each channel*
    agwage = pd.read_csv('monte_carlo/{}/ag_wage_{}.csv'.format(scode, rel),
                         index_col=0)
    nagwage = pd.read_csv('monte_carlo/{}/nonag_wage_{}.csv'.format(
        scode, rel),
                          index_col=0)
    remits = pd.read_csv('monte_carlo/{}/remits_{}.csv'.format(scode, rel),
                         index_col=0)
    entrep = pd.read_csv('monte_carlo/{}/entrep_{}.csv'.format(scode, rel),
                         index_col=0)
    #
    tot_loss = pd.read_csv('monte_carlo/{}/tot_loss.csv'.format(scode),
                           index_col=0)
    # load initial income [mil. PPP/month]
    init_inc_aff = pd.read_csv(
        'monte_carlo/{}/tot_inc_initial_affected.csv'.format(scode),
        index_col=0)
    # load affected population
    aff_pop = pd.read_csv('monte_carlo/{}/pop_aff.csv'.format(scode),
                          index_col=0)
    # load total population

    # plot losses in PPP/cap
    btm = [0 for _ in agwage.columns]
    for ncl, cl in enumerate(['sub', 'pov', 'vul', 'sec', 'mc']):

        plt.bar(ncl,
                nagwage[cl].mean() / aff_pop[cl].mean(),
                bottom=btm[ncl],
                color=pal['nonag_wage'],
                width=_w,
                alpha=0.6,
                linewidth=0,
                label=('wages (non-ag)' if ncl == 0 else ''))
        btm[ncl] += nagwage[cl].mean() / aff_pop[cl].mean()

        plt.bar(ncl,
                entrep[cl].mean() / aff_pop[cl].mean(),
                bottom=btm[ncl],
                color=pal['entrep'],
                width=_w,
                alpha=0.6,
                linewidth=0,
                label=('entrepreneurial' if ncl == 0 else ''))
        btm[ncl] += entrep[cl].mean() / aff_pop[cl].mean()

        plt.bar(ncl,
                remits[cl].mean() / aff_pop[cl].mean(),
                bottom=btm[ncl],
                color=pal['remits'],
                width=_w,
                alpha=0.6,
                linewidth=0,
                label=('intl. remittances' if ncl == 0 else ''))
        btm[ncl] += remits[cl].mean() / aff_pop[cl].mean()

        plt.bar(ncl,
                agwage[cl].mean() / aff_pop[cl].mean(),
                bottom=btm[ncl],
                color=pal['ag_wage'],
                width=_w,
                alpha=0.6,
                linewidth=0,
                label=('agricultural wages' if ncl == 0 else ''))
        btm[ncl] += agwage[cl].mean() / aff_pop[cl].mean()

        # annotate with range
        _low = int(round(tot_loss[cl].quantile(0.25) / aff_pop[cl].mean()))
        _high = int(round(tot_loss[cl].quantile(0.75) / aff_pop[cl].mean()))

        plt.annotate('\${}$\endash${}'.format(_low, _high),
                     xy=(_w / 2 + ncl, btm[ncl]),
                     fontsize=_fs,
                     color=greys_pal[7],
                     ha='center',
                     va='bottom')

    plt.xticks([_w / 2 + _ for _ in range(0, 5)], [
        'extreme\npoverty', 'poverty', 'vulnerable', 'secure', 'middle\nclass'
    ],
               fontsize=_fs,
               rotation=0)
    plt.xlim(-0.1, 4 + _w + 0.1)
    plt.yticks([_ * 50 for _ in range(0, 6)], fontsize=_fs)
    plt.ylabel('Value [PPP$/cap/month]',
               labelpad=10,
               linespacing=1.75,
               fontsize=_fs)

    plt.legend(loc='upper left',
               labelspacing=0.75,
               ncol=1,
               fontsize=_fs,
               borderpad=0.75,
               fancybox=True,
               frameon=True,
               framealpha=0.9)
    plt.grid(False)
    plt.grid(True, axis='y', alpha=0.4)
    sns.despine(left=True)
    # plt.savefig('figs/income_{}_by_channel.pdf'.format(rel),format='pdf',bbox_inches='tight')
    # plt.close('all')

    # plot fractional losses
    plt.axes(ax[1])
    btm = [0 for _ in agwage.columns]
    for ncl, cl in enumerate(['sub', 'pov', 'vul', 'sec', 'mc']):

        plt.bar(ncl,
                1E2 * nagwage[cl].mean() / init_inc_aff[cl].mean(),
                bottom=btm[ncl],
                color=pal['nonag_wage'],
                width=_w,
                alpha=0.6,
                linewidth=0,
                label=('non-ag wages' if ncl == 0 else ''))
        btm[ncl] += 1E2 * nagwage[cl].mean() / init_inc_aff[cl].mean()

        plt.bar(ncl,
                1E2 * entrep[cl].mean() / init_inc_aff[cl].mean(),
                bottom=btm[ncl],
                color=pal['entrep'],
                width=_w,
                alpha=0.6,
                linewidth=0,
                label=('entrepreneurial income' if ncl == 0 else ''))
        btm[ncl] += 1E2 * entrep[cl].mean() / init_inc_aff[cl].mean()

        plt.bar(ncl,
                1E2 * remits[cl].mean() / init_inc_aff[cl].mean(),
                bottom=btm[ncl],
                color=pal['remits'],
                width=_w,
                alpha=0.6,
                linewidth=0,
                label=('remittances' if ncl == 0 else ''))
        btm[ncl] += 1E2 * remits[cl].mean() / init_inc_aff[cl].mean()

        plt.bar(ncl,
                1E2 * agwage[cl].mean() / init_inc_aff[cl].mean(),
                bottom=btm[ncl],
                color=pal['ag_wage'],
                width=_w,
                alpha=0.6,
                linewidth=0,
                label=('ag wages' if ncl == 0 else ''))
        btm[ncl] += 1E2 * agwage[cl].mean() / init_inc_aff[cl].mean()

        # annotate with range
        _low = int(
            round(1E2 * tot_loss[cl].quantile(0.25) / init_inc_aff[cl].mean()))
        _high = int(
            round(1E2 * tot_loss[cl].quantile(0.75) / init_inc_aff[cl].mean()))

        plt.annotate('{}$\endash${}%'.format(_low, _high),
                     xy=(_w / 2 + ncl, btm[ncl]),
                     fontsize=_fs,
                     color=greys_pal[7],
                     ha='center',
                     va='bottom')

    plt.xticks([_w / 2 + _ for _ in range(0, 5)], [
        'extreme\npoverty', 'poverty', 'vulnerable', 'secure', 'middle\nclass'
    ],
               fontsize=_fs,
               rotation=0)
    plt.xlim(-0.1, 4 + _w + 0.1)
    plt.yticks([_ * 10 for _ in range(0, 5)], fontsize=_fs)
    plt.ylabel('Percentage of total income [%]',
               labelpad=10,
               linespacing=1.5,
               fontsize=_fs)
    #plt.legend(loc='upper left',labelspacing=0.75,ncol=1,fontsize=8,borderpad=0.75,fancybox=True,frameon=True,framealpha=0.9)
    plt.grid(False)
    plt.grid(True, axis='y', alpha=0.4)
    #plt.grid(True,axis='y')
    sns.despine(left=True)
    plt.savefig('figs/income_loss_by_channel.pdf'.format(rel),
                format='pdf',
                bbox_inches='tight')
    plt.close('all')
コード例 #8
0
def plot_regional_poverty(scode):
    mc = monte_carlo(0, 'base')

    pov_init = pd.read_csv('monte_carlo/regional_poverty.csv',
                           index_col=0,
                           dtype='float',
                           header=None).fillna(0)
    pov_init.columns = ['init']
    pov_init.index = pov_init.index.astype('int')
    #
    pov_covid = pd.read_csv(
        'monte_carlo/{}/regional_pov_covid.csv'.format(scode),
        index_col=0,
        dtype='float').mean(axis=0).T.to_frame(name='covid')
    pov_covid.index = pov_covid.index.astype('int')
    #
    pov_ESP = pd.read_csv(
        'monte_carlo/{}/regional_pov_ESP_eligerr50.csv'.format(scode),
        index_col=0,
        dtype='float').mean(axis=0).T.to_frame(name='ESP')
    pov_ESP.index = pov_ESP.index.astype('int')
    #
    pov = pd.concat([pov_init, pov_covid, pov_ESP], axis=1)
    pov.index.name = 'region'
    pov = pov.reset_index()
    prov_code, reg_code = get_places_dict('PH')
    pov['region'].replace(reg_code, inplace=True)
    pov = pov.reset_index(drop=True).set_index('region')

    pov = pov.sort_values(by='ESP', ascending=True)
    pov.to_csv('csv/regional_poverty.csv')

    for _n, _ in enumerate(pov.index):
        _lbl = 'pre-COVID (total = {} mil.)'.format(round(
            pov['init'].sum(), 1)) if _n == 0 else ''
        plt.plot([3 * _n, 3 * _n + 2],
                 [pov.loc[_, 'init'], pov.loc[_, 'init']],
                 lw=1,
                 color=greys_pal[6],
                 zorder=90,
                 label=_lbl)

    plt.bar([3 * _ for _ in range(len(pov.index))],
            pov['covid'],
            facecolor=mc.sns_pal[2],
            lw=0,
            width=1,
            alpha=0.6,
            label='COVID shock ({} mil.)'.format(round(pov['covid'].sum(), 1)),
            zorder=80)
    plt.bar([3 * _ + 1 for _ in range(len(pov.index))],
            pov['ESP'],
            facecolor=mc.sns_pal[1],
            lw=0,
            width=1,
            alpha=0.6,
            label='with SAP benefits ({} mil.)'.format(
                round(pov['ESP'].sum(), 1)),
            zorder=80)

    plt.grid(True, axis='y', alpha=0.3)

    plt.legend(loc='upper left',
               labelspacing=0.75,
               ncol=1,
               fontsize=8,
               borderpad=0.75,
               fancybox=True,
               frameon=True,
               framealpha=0.9)

    plt.xticks([3 * _ + 1 for _ in range(len(pov.index))],
               pov.index,
               rotation=90)
    plt.ylabel('Poverty incidence [mil.]', labelpad=10)

    sns.despine(left=True)
    plt.savefig('figs/regional_poverty.pdf', format='pdf', bbox_inches='tight')
    plt.close('all')
コード例 #9
0
def plot_income_profile(hh_df, affected_only=False):
    pal = monte_carlo().ichan_cols

    _ul = 500
    nbins = int(40)

    # total income <-- use to structure plot
    tot_hgt, _bins = np.histogram(hh_df.eval('pcinc_initial').clip(upper=_ul),
                                  bins=nbins,
                                  weights=hh_df['popwgt'])
    wid = (_bins[1] - _bins[0])

    frac_nonag_hgt = []
    frac_ag_hgt = []
    frac_totent_hgt = []
    frac_public_hgt = []
    frac_remit_hgt = []
    frac_dom_remit_hgt = []
    for n, b in enumerate(_bins):
        try:
            bin_slice = '(pcinc_initial>@b)&(pcinc_initial<=@_bins[@n+1]){}'.format(
                '&(income_loss>0)' if affected_only else '')
            frac_nonag_hgt.append(
                float(hh_df.loc[hh_df.eval(bin_slice)].eval(
                    '1E2*popwgt*nonagri_sal').sum() / hh_df.loc[hh_df.eval(
                        bin_slice)].eval('popwgt*hhinc').sum()))
            frac_ag_hgt.append(
                float(hh_df.loc[hh_df.eval(bin_slice)].eval(
                    '1E2*popwgt*agri_sal').sum() / hh_df.loc[hh_df.eval(
                        bin_slice)].eval('popwgt*hhinc').sum()))
            frac_public_hgt.append(
                float(hh_df.loc[hh_df.eval(bin_slice)].eval(
                    '1E2*popwgt*total_public').sum() / hh_df.loc[hh_df.eval(
                        bin_slice)].eval('popwgt*hhinc').sum()))
            frac_remit_hgt.append(
                float(hh_df.loc[hh_df.eval(bin_slice)].eval(
                    '1E2*popwgt*cash_abroad').sum() / hh_df.loc[hh_df.eval(
                        bin_slice)].eval('popwgt*hhinc').sum()))
            frac_dom_remit_hgt.append(
                float(hh_df.loc[hh_df.eval(bin_slice)].eval(
                    '1E2*popwgt*cash_domestic').sum() / hh_df.loc[hh_df.eval(
                        bin_slice)].eval('popwgt*hhinc').sum()))
            frac_totent_hgt.append(
                float(hh_df.loc[hh_df.eval(bin_slice)].eval(
                    '1E2*popwgt*total_entrepreneurial').sum() / hh_df.loc[
                        hh_df.eval(bin_slice)].eval('popwgt*hhinc').sum()))
        except:
            pass

    _btm = [0 for _ in frac_remit_hgt]
    for istream in [[frac_totent_hgt, 'entrepreneurial', pal['entrep']],
                    [frac_nonag_hgt, 'wages (non-ag)', pal['nonag_wage']],
                    [frac_ag_hgt, 'agricultural wages', pal['ag_wage']],
                    [frac_public_hgt, 'public transfers', pal['pub_trans']],
                    [frac_remit_hgt, 'intl. remittances', pal['remits']],
                    [
                        frac_dom_remit_hgt, 'domestic remittances',
                        pal['dom_remits']
                    ]]:

        ax = plt.bar(_bins[:-1],
                     istream[0],
                     bottom=_btm,
                     width=wid,
                     align='edge',
                     linewidth=0,
                     alpha=0.6,
                     facecolor=istream[2],
                     label=istream[1])
        _btm = [i + j for i, j in zip(_btm, istream[0])]

    plt.legend(loc='center right',
               labelspacing=0.75,
               ncol=1,
               fontsize=8,
               borderpad=0.75,
               fancybox=True,
               frameon=True,
               framealpha=0.9)
    plt.xlabel('pre-COVID income [PPP$/cap/month]', labelpad=8)
    plt.ylabel('fraction of total income [%]', labelpad=8)
    plt.xlim(0)
    plt.ylim(0, 100)

    plt.grid(True, axis='y', alpha=0.3)
    sns.despine(left=True)
    #plt.plot([0,_ul],[0,0],color=greys_pal[4],lw=1)
    plt.savefig('figs/income_composition{}.pdf'.format(
        '_affected_only' if affected_only else ''),
                format='pdf',
                bbox_inches='tight')
    plt.close('all')
コード例 #10
0
def plot_sectoral_income(plot_losses=False):

    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 7))

    df = pd.read_csv('monte_carlo/sectoral_income_by_decile.csv',
                     index_col=['decile', 'LFS_sector']).sort_index()
    df[['nonagri_sal', 'agri_sal', 'nonag_wage_loss', 'ag_wage_loss']] *= 1E-3

    df_sum = df.sum(level='LFS_sector')
    df_sum.loc['total'] = df_sum.sum(axis=0)

    # split into 2 dfs: categories > (threshold)%, and all others
    threshold = 0.07
    df_sum_other = df_sum.drop(
        'ag', axis=0).loc[df_sum['nonagri_sal'] < threshold *
                          float(df_sum.loc['total', 'nonagri_sal'])]

    # get categories > (threshold)%
    df_sum = df_sum.loc[df_sum['nonagri_sal'] >= threshold *
                        float(df_sum.loc['total', 'nonagri_sal'])].drop(
                            'total', axis=0)
    df_sum.loc['remaining categories'] = df_sum_other.sum(axis=0)

    # put this info back into decile-level df
    df_other = df.reset_index().set_index('LFS_sector').loc[df_sum_other.index]
    df_other = df_other.reset_index().set_index(['decile', 'LFS_sector'
                                                 ]).sum(level='decile')
    df_other['LFS_sector'] = 'remaining categories'

    # drop other sectors from df
    df = df.reset_index().set_index('LFS_sector').drop(df_sum_other.index,
                                                       axis=0)

    # merge
    df = pd.concat([df.reset_index(), df_other.reset_index()],
                   ignore_index=True).set_index(['decile', 'LFS_sector'
                                                 ]).sort_index().reset_index()

    # merge ag & non-ag columns
    df['wage_loss'] = df['nonag_wage_loss'].copy()
    df.loc[df.LFS_sector == 'ag', 'wage_loss'] = df.loc[df.LFS_sector == 'ag',
                                                        'ag_wage_loss']
    df['total_wages'] = df['nonagri_sal'].copy()
    df.loc[df.LFS_sector == 'ag',
           'total_wages'] = df.loc[df.LFS_sector == 'ag', 'agri_sal']
    df.drop(['nonag_wage_loss', 'ag_wage_loss', 'nonagri_sal', 'agri_sal'],
            axis=1,
            inplace=True)

    # calculate sectoral contribution to wage income, by decile
    df['sector_frac_total_wages'] = df['total_wages'] / df.groupby(
        'decile')['total_wages'].transform('sum')
    df['sector_losses_frac_total_wages'] = df['wage_loss'] / df.groupby(
        'decile')['total_wages'].transform('sum')

    # plotz
    # left subplot: total value of each sector
    plt.axes(ax[0])

    output_col = 'wage_loss' if plot_losses else 'total_wages'

    bot = [0 for _ in range(1, 11)]
    sectors = df.LFS_sector.unique()
    for _n, _sec in enumerate(
            np.append(sectors[sectors != 'remaining categories'],
                      'remaining categories')):

        try:
            sec_lbl = monte_carlo().sector_labels[_sec]
        except:
            sec_lbl = _sec

        ddf = df.loc[df['LFS_sector'] == _sec]

        plt.bar(ddf['decile'],
                ddf[output_col],
                bottom=bot,
                label=sec_lbl,
                facecolor=sns_pal[_n],
                alpha=0.7,
                lw=0)
        bot += np.array(ddf[output_col].squeeze().T)

    plt.xlim(0.75, 11)
    plt.xticks([_ + 0.4 for _ in range(1, 11)],
               range(1, 11),
               linespacing=0.80,
               fontsize=9,
               ha='center')
    plt.xlabel('Income decile', fontsize=9, labelpad=10)

    plt.yticks([0.5 * _ for _ in range(1, 8)],
               linespacing=0.80,
               fontsize=9,
               ha='center')
    plt.ylabel('Wage income {}[billion PPP\$]'.format(
        'losses ' if plot_losses else ''),
               fontsize=9,
               labelpad=10)

    plt.grid(True, axis='y', alpha=0.3)
    plt.legend(loc='upper left',
               labelspacing=0.75,
               ncol=1,
               fontsize=8,
               borderpad=0.75,
               fancybox=True,
               frameon=True,
               framealpha=0.9)
    sns.despine(left=True)

    # right subplot: relative contribution of each sector to total wage inome
    plt.axes(ax[1])

    output_col = 'sector_losses_frac_total_wages' if plot_losses else 'sector_frac_total_wages'

    bot = [0 for _ in range(1, 11)]
    sectors = df.LFS_sector.unique()
    for _n, _sec in enumerate(
            np.append(sectors[sectors != 'remaining categories'],
                      'remaining categories')):

        try:
            sec_lbl = monte_carlo().sector_labels[_sec]
        except:
            sec_lbl = _sec

        ddf = df.loc[df['LFS_sector'] == _sec]

        plt.bar(ddf['decile'],
                ddf[output_col],
                bottom=bot,
                label=sec_lbl,
                facecolor=sns_pal[_n],
                alpha=0.7,
                lw=0)
        bot += np.array(ddf[output_col].squeeze().T)

    plt.xlim(0.75, 11)
    plt.xticks([_ + 0.4 for _ in range(1, 11)],
               range(1, 11),
               linespacing=0.80,
               fontsize=9,
               ha='center')
    plt.xlabel('Income decile', fontsize=9, labelpad=10)

    plt.ylim(0, 1)
    plt.yticks([0.2 * _ for _ in range(1, 6)],
               linespacing=0.80,
               fontsize=9,
               ha='center')
    plt.ylabel('Fraction of total wage income {}[%]'.format(
        'lost ' if plot_losses else ''),
               fontsize=9,
               labelpad=10)

    plt.grid(True, axis='y', alpha=0.3)

    plt.savefig('figs/wage_income_sectoral_{}.pdf'.format(
        'losses' if plot_losses else 'composition'),
                format='pdf',
                bbox_inches='tight')
    plt.close('all')
コード例 #11
0
def plot_losses_total_value(scode):
    plt.gcf().set_size_inches(6, 8)
    barwid = 2

    ##########################################
    # LOAD RESULTS
    # wage sector total value
    wage_val = pd.read_csv(
        'monte_carlo/{}/total_value_wages.csv'.format(scode),
        index_col=0).multiply(1E-3)
    tot_wage_val = wage_val.sum(axis=1).mean()

    # wage sector losses
    wage_loss = pd.read_csv(
        'monte_carlo/{}/total_loss_wages.csv'.format(scode),
        index_col=0).multiply(1E-3)
    tot_wage_loss = wage_loss.sum(axis=1).mean()

    #####
    # entrepreneurial total value
    ent_val = pd.read_csv('monte_carlo/{}/total_value_ent.csv'.format(scode),
                          index_col=0).multiply(1E-3)
    tot_ent_val = ent_val.sum(axis=1).mean()

    # entrepreneurial losses
    ent_loss = pd.read_csv('monte_carlo/{}/total_loss_ent.csv'.format(scode),
                           index_col=0).multiply(1E-3)
    tot_ent_loss = ent_loss.sum(axis=1).mean()

    #####
    # remittances total value
    remits_value = pd.read_csv(
        'monte_carlo/{}/total_value_remits.csv'.format(scode),
        index_col=0).multiply(1E-3)
    intl_remits_val = remits_value['intl'].mean()

    # remittances losses
    remits_loss = pd.read_csv(
        'monte_carlo/{}/total_loss_remits.csv'.format(scode),
        index_col=0).multiply(1E-3)
    tot_remits_loss = remits_loss.sum(axis=1).mean()

    #####
    # total economic value
    economic_value = pd.read_csv(
        'monte_carlo/{}/total_value_economy.csv'.format(scode),
        index_col=0).multiply(1E-3)
    total_economic_val = economic_value['income'].mean()
    total_economic_loss = economic_value['loss'].mean()

    # concat & transpose
    #value = pd.concat([wage_val,ent_val], axis=1)
    loss = pd.concat([wage_loss, ent_loss, remits_loss], axis=1).T
    loss['avg'] = loss.mean(axis=1)
    loss = loss.loc[loss.avg > 5E-2 * loss['avg'].max()]
    loss = loss.sort_values(by='avg', ascending=True).drop('avg', axis=1).T

    # coloring
    # pal = monte_carlo(0,'base').ichan_cols
    # colors = [pal['nonag_wage'] if _ in wage_loss.columns else (pal['entrep'] if _ in ent_loss.columns else pal['remits']) for _ in loss.columns]

    # joyplot
    min_loss = loss.min(axis=0)
    d_loss = loss.max(axis=0) - loss.min(axis=0)
    mean_loss = loss.mean(axis=0)

    joyplot_loss = loss.T.stack().reset_index()
    joyplot_loss.columns = ['wage_sector', 'nsim', 'result']

    joyplot_grouped = joyplot_loss.groupby('wage_sector', sort=False)

    sector_labels = monte_carlo(0, 'base').sector_labels

    _ylabelsA = [
        _ + ' (w)' if _ in wage_loss.columns else
        (_ + ' (e)' if _ in ent_loss.columns else _ + 'xxxx')
        for _ in loss.columns
    ]
    _ylabels = [(sector_labels[_[:-4]] + _[-4:]).lower().replace('xxxx', '')
                if _[:-4] in sector_labels else _.lower() for _ in _ylabelsA]

    fig, axes = joypy.joyplot(joyplot_grouped,
                              column='result',
                              by='wage_sector',
                              overlap=3,
                              x_range=[0, 1.20],
                              grid='y',
                              figsize=(10, 10),
                              linewidth=0.02,
                              alpha=0.8,
                              ylabelsize=15,
                              xlabelsize=15,
                              labels=_ylabels,
                              range_style='own',
                              colormap=cm.RdYlGn_r)

    for n, y in enumerate(loss.columns):
        if mean_loss[y] != 0:

            axes[n].plot(
                [loss.quantile(.25, axis=0)[y],
                 loss.quantile(.25, axis=0)[y]], [-2, 2],
                lw=1.,
                color=greys_pal[7],
                zorder=99,
                clip_on=False)
            axes[n].plot(
                [loss.quantile(.75, axis=0)[y],
                 loss.quantile(.75, axis=0)[y]], [-2, 2],
                lw=1.0,
                color=greys_pal[7],
                zorder=99,
                clip_on=False)
            axes[n].plot(
                [loss.quantile(.25, axis=0)[y],
                 loss.quantile(.75, axis=0)[y]], [0, 0],
                lw=1.0,
                color=greys_pal[7],
                zorder=99,
                clip_on=False)
            axes[n].annotate(
                round(mean_loss[y], 2),
                xy=(mean_loss[y],
                    0.05 - (-1 if _ylabels[n] == 'wholesale (w)' else 1.5)),
                fontsize=9,
                ha='center',
                annotation_clip=False,
                zorder=100,
                va=('bottom' if _ylabels[n] == 'wholesale (w)' else 'top'),
                color=("white"
                       if _ylabels[n] == 'wholesale (w)' else greys_pal[7]))

        else:
            plt.annotate('no impact',
                         xy=(mean_loss[y] + 0.95, n + 0.9),
                         fontsize=7,
                         ha='left',
                         va='center',
                         weight='bold',
                         zorder=92,
                         style='italic')

    # loss = loss.T.stack().reset_index()
    # loss.columns = ['sector','sim','loss_value']

    # Editing /Users/brian/Software/anaconda3/lib/python3.5/site-packages/seaborn/categorical.py (draw_box_lines) to customize
    # sns.violinplot(x='loss_value', y='sector', data=loss, scale='count', inner='box',cut=0,palette=colors,saturation=0.6,linewidth=0.05)

    # sectoral labels
    sector_labels = monte_carlo(0, 'base').sector_labels
    seclabels = [
        sector_labels[_] if _ in sector_labels else _.lower()
        for _ in loss.columns
    ]
    plt.yticks([barwid / 2 + _ * 1.4 for _ in range(len(loss.columns))],
               seclabels,
               linespacing=0.80,
               fontsize=9)

    # totals
    plt.annotate('Monthly losses',
                 xy=(0.655, 0.868),
                 xycoords='axes fraction',
                 ha='left',
                 va='top',
                 fontsize=14,
                 weight='bold')

    anno1 = round(1E2 * economic_value['loss'].quantile(.25) / 699.258, 1)
    anno2 = round(1E2 * economic_value['loss'].quantile(.75) / 699.258, 1)
    annostr = (r'PPP\${} $\endash$ {} bil.'.format(
        round(economic_value['loss'].quantile(.25), 1),
        round(economic_value['loss'].quantile(.75), 1)) + '\n' +
               r'{}%$\endash${}% of total income'.format(
                   round(
                       1E2 * (economic_value['loss'].quantile(.25)) /
                       total_economic_val, 1),
                   round(
                       1E2 * (economic_value['loss'].quantile(.75)) /
                       total_economic_val, 1), round(total_economic_val, 1)) +
               '\n' + r'{}%$\endash${}% of GDP per month'.format(anno1, anno2))
    plt.annotate(annostr,
                 xy=(0.985, 0.838),
                 xycoords='axes fraction',
                 ha='right',
                 va='top',
                 fontsize=12,
                 linespacing=1.25,
                 zorder=100)

    # wages
    annostr = ('(w) wage sectors:\nPPP\${} $\endash$ {} bil.'.format(
        round(wage_loss.sum(axis=1).quantile(0.25), 1),
        round(wage_loss.sum(axis=1).quantile(0.75), 1)
    ) + r' ({}%$\endash${}%)'.format(
        int(round(1E2 * wage_loss.sum(axis=1).quantile(0.25) / tot_wage_val)),
        int(round(1E2 * wage_loss.sum(axis=1).quantile(0.75) / tot_wage_val)),
        round(tot_wage_val, 1)))
    plt.annotate(annostr,
                 xy=(0.655, 0.758),
                 xycoords='axes fraction',
                 ha='left',
                 va='top',
                 fontsize=12,
                 linespacing=1.25,
                 zorder=100)

    # entrepreneurial
    annostr = (
        '(e) entrepreneurial sectors:\nPPP\${} $\endash$ {} bil.'.format(
            round(ent_loss.sum(axis=1).quantile(0.25), 1),
            round(ent_loss.sum(axis=1).quantile(0.75), 1)) +
        r' ({}%$\endash${}%)'.format(
            int(round(
                1E2 * ent_loss.sum(axis=1).quantile(0.25) / tot_ent_val)),
            int(round(1E2 * ent_loss.sum(axis=1).quantile(0.75) /
                      tot_ent_val)), round(tot_ent_val, 1)))
    plt.annotate(annostr,
                 xy=(0.655, 0.700),
                 xycoords='axes fraction',
                 ha='left',
                 va='top',
                 fontsize=12,
                 linespacing=1.25,
                 zorder=100)

    # remittances
    q25a = round(remits_loss['intl'].quantile(0.25), 1)
    q75a = round(remits_loss['intl'].quantile(0.75), 1)
    q25b = int(
        round(1E2 * remits_loss['intl'].quantile(0.25) / intl_remits_val))
    q75b = int(
        round(1E2 * remits_loss['intl'].quantile(0.75) / intl_remits_val))
    if q25a != q75a:
        annostr = (
            'international remittances:\nPPP\${} $\endash$ {} bil.'.format(
                q25a, q75a) + r' ({}%$\endash${}%)'.format(q25b, q75b))
    else:
        annostr = ('international remittances:\nPPP\${} bil.'.format(q25a) +
                   r' ({}%)'.format(q25b))
    plt.annotate(annostr,
                 xy=(0.655, 0.643),
                 xycoords='axes fraction',
                 ha='left',
                 va='top',
                 fontsize=12,
                 linespacing=1.25,
                 zorder=100)

    # need to add bbox behind annotations

    # x-ax label
    plt.xlabel('Aggregate loss [billion PPP$/month]', labelpad=10, fontsize=15)

    plt.grid(True, axis='y', alpha=0.5, zorder=80)

    sns.despine(left=True)
    plt.savefig('figs/sectoral_losses_total_value.pdf',
                format='pdf',
                bbox_inches='tight')
    plt.close('all')
コード例 #12
0
def plot_sectoral_impacts(scode):
    pal = monte_carlo().ichan_cols

    ###################################################
    # wage sectors (LFS)
    mc_floss = pd.read_csv('monte_carlo/{}/frac_loss_wages.csv'.format(scode),
                           index_col=0).T

    try:
        mc_floss = mc_floss.drop('unemployed', axis=0)
    except:
        pass

    try:
        mc_floss = mc_floss.drop('unclassified', axis=0)
    except:
        pass

    mc_floss['avg'] = mc_floss.mean(axis=1)
    mc_floss.sort_values(by='avg', ascending=True, inplace=True)
    mc_floss = mc_floss.drop(['avg'], axis=1).T

    #mc_loss = pd.read_csv('monte_carlo/{}/total_loss_wages.csv'.format(scode),index_col=0)
    #mc_value = pd.read_csv('monte_carlo/{}/total_value_wages.csv'.format(scode),index_col=0)

    min_floss = mc_floss.min(axis=0)
    d_floss = mc_floss.max(axis=0) - mc_floss.min(axis=0)
    mean_floss = mc_floss.mean(axis=0)

    joyplot_floss = mc_floss.T.stack().reset_index()
    joyplot_floss.columns = ['wage_sector', 'nsim', 'result']
    joyplot_grouped = joyplot_floss.groupby('wage_sector', sort=False)

    sector_labels = monte_carlo(0, 'base').sector_labels
    _ylabels = [
        sector_labels[_] if _ in sector_labels else _.lower()
        for _ in mc_floss.columns
    ]

    fig, axes = joypy.joyplot(joyplot_grouped,
                              column='result',
                              by='wage_sector',
                              overlap=3,
                              x_range=[0, 100],
                              grid='y',
                              figsize=(10, 10),
                              colormap=cm.RdYlGn_r,
                              linewidth=0.02,
                              alpha=0.8,
                              ylabelsize=15,
                              xlabelsize=15,
                              labels=_ylabels,
                              range_style='own')

    up_cats = ['government', 'information', 'agriculture']
    for n, y in enumerate(mc_floss.columns):
        if mean_floss[y] != 0:

            axes[n].plot([
                mc_floss.quantile(.25, axis=0)[y],
                mc_floss.quantile(.25, axis=0)[y]
            ], [-0.01, 0.01],
                         lw=1.,
                         color=greys_pal[7],
                         zorder=99,
                         clip_on=False)
            axes[n].plot([
                mc_floss.quantile(.75, axis=0)[y],
                mc_floss.quantile(.75, axis=0)[y]
            ], [-0.01, 0.01],
                         lw=1.0,
                         color=greys_pal[7],
                         zorder=99,
                         clip_on=False)
            axes[n].plot([
                mc_floss.quantile(.25, axis=0)[y],
                mc_floss.quantile(.75, axis=0)[y]
            ], [0, 0],
                         lw=1.0,
                         color=greys_pal[7],
                         zorder=99,
                         clip_on=False)
            axes[n].annotate(
                '{}'.format(int(round(mean_floss[y]))),
                xy=(mean_floss[y],
                    0.005 - (-0.00 if _ylabels[n] in up_cats else 0.01)),
                fontsize=9,
                ha='center',
                annotation_clip=False,
                zorder=100,
                va=('bottom' if _ylabels[n] in up_cats else 'top'),
                color=("white" if _ylabels[n] in up_cats else greys_pal[7]))

            # axes[n].plot([mean_floss[y],mean_floss[y]],[0,0.055],lw=2.0,color=greys_pal[7],zorder=100)
            # axes[n].annotate('{}%'.format(int(round(mean_floss[y]))),xy=(mean_floss[y]+1,0.025),fontsize=10,ha='left',va='top',weight='bold',zorder=92,color=greys_pal[8])
        else:
            plt.annotate('no impact',
                         xy=(mean_floss[y] + 0.95, n + 0.9),
                         fontsize=7,
                         ha='left',
                         va='center',
                         weight='bold',
                         zorder=92,
                         style='italic')

    # plt.yticks([0.9+_ for _ in range(0,len(mc_floss.columns))],_ylabels)
    plt.xticks([0, 20, 40, 60, 80, 100],
               ['0%', '20%', '40%', '60%', '80%', '100%'])

    plt.xlabel('Total income loss, by wage sector', labelpad=10, fontsize=15)
    plt.grid(False)  #True,axis='x',alpha=1.0)

    sns.despine(left=True, bottom=True)
    plt.savefig('figs/sectoral_losses_wage.pdf',
                format='pdf',
                bbox_inches='tight')
    plt.close('all')

    ###################################################
    # entrepreneurial sectors (FIES-prescribed sectors)
    ###################################################
    # wage sectors (LFS)
    mc_floss = pd.read_csv('monte_carlo/{}/frac_loss_ent.csv'.format(scode),
                           index_col=0).T
    mc_floss['avg'] = mc_floss.mean(axis=1)
    mc_floss.sort_values(by='avg', ascending=True, inplace=True)
    mc_floss = mc_floss.drop(['avg'], axis=1).T

    #mc_loss = pd.read_csv('monte_carlo/{}/total_loss_wages.csv'.format(scode),index_col=0)
    #mc_value = pd.read_csv('monte_carlo/{}/total_value_wages.csv'.format(scode),index_col=0)

    min_floss = mc_floss.min(axis=0)
    d_floss = mc_floss.max(axis=0) - mc_floss.min(axis=0)
    mean_floss = mc_floss.mean(axis=0)

    joyplot_floss = mc_floss.T.stack().reset_index()
    joyplot_floss.columns = ['wage_sector', 'nsim', 'result']
    joyplot_grouped = joyplot_floss.groupby('wage_sector', sort=False)

    sector_labels = monte_carlo(0, 'base').sector_labels
    _ylabels = [
        sector_labels[_] if _ in sector_labels else _.lower()
        for _ in mc_floss.columns
    ]

    fig, axes = joypy.joyplot(joyplot_grouped,
                              column='result',
                              by='wage_sector',
                              overlap=3,
                              x_range=[0, 100],
                              grid='y',
                              figsize=(10, 10),
                              colormap=cm.RdYlGn_r,
                              linewidth=0.02,
                              alpha=0.8,
                              ylabelsize=15,
                              xlabelsize=15,
                              labels=_ylabels,
                              range_style='own')

    up_cats = ['fishing', 'livestock & poultry', 'crop farming & gardening']
    for n, y in enumerate(mc_floss.columns):

        if mean_floss[y] != 0:
            axes[n].plot([
                mc_floss.quantile(.25, axis=0)[y],
                mc_floss.quantile(.25, axis=0)[y]
            ], [-0.01, 0.01],
                         lw=1.,
                         color=greys_pal[7],
                         zorder=99,
                         clip_on=False)
            axes[n].plot([
                mc_floss.quantile(.75, axis=0)[y],
                mc_floss.quantile(.75, axis=0)[y]
            ], [-0.01, 0.01],
                         lw=1.0,
                         color=greys_pal[7],
                         zorder=99,
                         clip_on=False)
            axes[n].plot([
                mc_floss.quantile(.25, axis=0)[y],
                mc_floss.quantile(.75, axis=0)[y]
            ], [0, 0],
                         lw=1.0,
                         color=greys_pal[7],
                         zorder=99,
                         clip_on=False)
            axes[n].annotate(
                '{}'.format(int(round(mean_floss[y]))),
                xy=(mean_floss[y],
                    0.005 - (-0.0 if _ylabels[n] in up_cats else 0.01)),
                fontsize=9,
                ha='center',
                annotation_clip=False,
                zorder=100,
                va=('bottom' if _ylabels[n] in up_cats else 'top'),
                color=("white" if _ylabels[n] in up_cats else greys_pal[7]))
            # axes[n].plot([mean_floss[y],mean_floss[y]],[0,0.055],lw=2.0,color=greys_pal[7],zorder=100)
            # axes[n].annotate('{}%'.format(int(round(mean_floss[y]))),xy=(mean_floss[y]+1,0.025),fontsize=10,ha='left',va='top',weight='bold',zorder=92,color=greys_pal[8])

        else:
            plt.annotate('no impact',
                         xy=(mean_floss[y] + 0.95, n + 0.9),
                         fontsize=7,
                         ha='left',
                         va='center',
                         weight='bold',
                         zorder=92,
                         style='italic')

    # plt.yticks([0.9+_ for _ in range(0,len(mc_floss.columns))],_ylabels)
    plt.xticks([0, 20, 40, 60, 80, 100],
               ['0%', '20%', '40%', '60%', '80%', '100%'])

    plt.xlabel('Total income loss, by entrepreneurial sector',
               labelpad=10,
               fontsize=15)
    plt.grid(False)  #True,axis='x',alpha=1.0)

    sns.despine(left=True, bottom=True)
    plt.savefig('figs/sectoral_losses_entrepreneurial.pdf',
                format='pdf',
                bbox_inches='tight')
    plt.close('all')