コード例 #1
0
def test_plot_bar_and_class_map(pytestconfig):
    m = class_map(30, 10, 20, 8)
    fig, ax = plt.subplots(1, 2)
    data = init_class_data(m,
                           ax=ax[0],
                           colorbar_settings={
                               'ax': ax,
                               'location': 'bottom'
                           })
    plot_class_map(data=data, ax=ax[0])
    bar(data=data, ax=ax[1])
コード例 #2
0
def test_no_args():
    # Custom errors as not required if data keyword argument given.

    with pytest.raises(TypeError) as e:
        bar()
    assert "bar() missing 1 required positional argument: 'class_map'" == str(
        e.value)

    with pytest.raises(TypeError) as e:
        plot_class_map()
    assert "plot_class_map() missing 1 required positional argument: 'class_map'" == str(
        e.value)
コード例 #3
0
#%%
# Now that we have a trained neural network,
# we can use it to classify spectra.
# Usually spectra will be classified automatically
# during the fitting process, however, you
# can request the classification by themselves,

classifications = model.classify_spectra(row=range(60), column=range(50))

#%%
# These classifications look as follows,

from mcalf.visualisation import plot_class_map

plot_class_map(classifications)

#%%
# Creating a reproducible classifier
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The neural network classifier introduces a certain amount
# of randomness when it it fitting based on the training
# data. This randomness arises in the initial values
# of the weights and biases that are fitted during the
# training process, as well as the order in which the
# training data are used.
#
# This means that two neural networks trained on identical
# data will not produce the same results. To aid the
# reproducibility of results that rely on a neural
コード例 #4
0
# new axes.
# The colorbar axes can be set to ``fig.axes`` such that
# the colorbar takes the full height of the figure, as
# in this case, its colours are the same as the line plots.

import matplotlib.pyplot as plt
from mcalf.visualisation import plot_classifications, plot_class_map

fig = plt.figure(constrained_layout=True)

gs = plot_classifications(spectra, labels, nrows=2, show_labels=False)

ax = fig.add_subplot(gs[-1])
plot_class_map(class_map,
               ax=ax,
               colorbar_settings={
                   'ax': fig.axes,
                   'label': 'classification',
               })

#%%
# The function :func:`mcalf.visualisation.init_class_data`` is
# intended to be an internal function for generating data that
# is common to multiple plotting functions. However, it may be
# used externally if necessary.

from mcalf.visualisation import init_class_data, bar

fig, ax = plt.subplots(1, 2, constrained_layout=True)

data = init_class_data(class_map, resolution=(0.25, 0.25), ax=ax[1])
コード例 #5
0
n = 5  # Possible classifications [0, 1, 2, 3, 4]

class_map = c(t, x, y, n)  # 3D array of classifications (t, y, x)

#%%
# Next, we shall import :func:`mcalf.visualisation.plot_class_map`.

from mcalf.visualisation import plot_class_map

#%%
# We can now simply plot the 3D array.
# By default, the first dimension of a 3D array will be averaged to
# produce a time average, selecting the most common classification
# at each (x, y) coordinate.

plot_class_map(class_map)

#%%
# A spatial resolution with units can be specified for each axis.

import astropy.units as u

plot_class_map(class_map, resolution=(0.75 * u.km, 1.75 * u.Mm),
               offset=(-25, -10),
               dimension=('x distance', 'y distance'))

#%%
# A narrower range of classifications to be plotted can be
# requested with the ``vmin`` and ``vmax`` parameters.
# Classifications outside of the range will appear as grey,
# the same as pixels with a negative, unassigned classification.
コード例 #6
0
def test_plot_class_map_allbad(pytestconfig):
    m = class_map(30, 10, 20, 8)
    m[:] = -1
    plot_class_map(m)
コード例 #7
0
def test_plot_class_map_units(pytestconfig):
    m = class_map(30, 10, 20, 8)
    plot_class_map(m,
                   resolution=(2.5 * u.m, 3.5 * u.km),
                   offset=(5, 10),
                   dimension=('dim x', 'dim y'))
コード例 #8
0
def test_plot_class_map_range(pytestconfig):
    m = class_map(30, 10, 20, 8)
    plot_class_map(m, vmin=2, vmax=4)
コード例 #9
0
def test_plot_class_map_nocolorbar(pytestconfig):
    m = class_map(30, 10, 20, 8)
    plot_class_map(m, show_colorbar=False)
コード例 #10
0
def test_plot_class_map(pytestconfig):
    m = class_map(30, 10, 20, 8)
    plot_class_map(m)
コード例 #11
0
#%%
# This function plots the spectra grouped
# by classification,

from mcalf.visualisation import plot_classifications

plot_classifications(spectra_1d, classifications.flatten())

#%%
# This function plots a spatial map of
# the classifications on the 2x3 grid,

from mcalf.visualisation import plot_class_map

plot_class_map(classifications)

#%%
# Merge output data
# ~~~~~~~~~~~~~~~~~
#
# The :class:`~mcalf.models.FitResult` objects in the
# ``fits`` 1D list can be merged into a grid.
# Each of these objects can be appended to a
# single :class:`~mcalf.models.FitResults` object.
# This allows for increased data portability,

from mcalf.models import FitResults

# Initialise with the grid shape and num. params.
results = FitResults((2, 3), 8)