コード例 #1
0
ファイル: insert.py プロジェクト: DIYWealth/diyw-database
 def insert_company(self):
     print( "Insert new company information" )
     mdb_query = Query()
     iex = Iex()
     #Get all symbols in MongoDB
     mdb_symbols = mdb_query.get_symbols()
     #Get companies already in MongoDB
     mdb_companies = mdb_query.get_company( mdb_symbols['symbol'].tolist() )
     #Initial call to print 0% progress
     printProgressBar(0, len(mdb_symbols.index), prefix = 'Progress:', suffix = '', length = 50)
     #Loop through symbols
     for index, mdb_symbol in mdb_symbols.iterrows():
         #Insert if no mdb company data exists
         if mdb_companies.empty:
             #Get company data from IEX
             iex_company = iex.get_company( mdb_symbol["symbol"] )
             #Update progress bar
             printProgressBar(index+1, len(mdb_symbols.index), prefix = 'Progress:', suffix = "Inserting company for " + mdb_symbol["symbol"] + "      ", length = 50)
             self.db.iex_company.insert_many( iex_company.to_dict('records') )
             continue
         #Skip company if already in MongoDB
         if not mdb_companies[ mdb_companies['symbol'] == mdb_symbol['symbol'] ].empty:
             #Update progress bar
             printProgressBar(index+1, len(mdb_symbols.index), prefix = 'Progress:', suffix = "No new data for " + mdb_symbol["symbol"] + "      ", length = 50)
             continue
         #Get company data from IEX
         iex_company = iex.get_company( mdb_symbol["symbol"] )
         #Insert if company data exists
         if not iex_company.empty:
             #Update progress bar
             printProgressBar(index+1, len(mdb_symbols.index), prefix = 'Progress:', suffix = "Inserting company for " + mdb_symbol["symbol"] + "      ", length = 50)
             self.db.iex_company.insert_many( iex_company.to_dict('records') )
         else:
             #Update progress bar
             printProgressBar(index+1, len(mdb_symbols.index), prefix = 'Progress:', suffix = "No data for " + mdb_symbol["symbol"] + "      ", length = 50)
コード例 #2
0
    def calculate_top_stocks_old(self, ref_date):
        """
        Calculate ranked list of stocks
        @params:
            ref_date    - Required  : date YYYY-MM-DD (Str)
        """

        mdb_query = Query()
        #Get ranked stock list for given date
        symbols = mdb_query.get_active_companies().tolist()
        print("Query earnings")
        earnings = mdb_query.get_earnings(symbols, ref_date, "latest",
                                          "EPSReportDate")
        earnings = earnings[[
            "EPSReportDate", "actualEPS", "fiscalEndDate", "fiscalPeriod",
            "symbol"
        ]]
        #print( earnings )
        #Get financials within 6 months
        print("Query financials")
        sixMonthsBeforeDate = (
            pandas.Timestamp(ref_date) +
            pandas.DateOffset(months=-6)).strftime('%Y-%m-%d')
        financials = mdb_query.get_financials(symbols, sixMonthsBeforeDate,
                                              "after")
        financials = financials[
            financials['reportDate'] <= earnings['fiscalEndDate'].max()]
        financials = financials[[
            "symbol", "reportDate", "netIncome", "shareholderEquity"
        ]]
        #print( financials )
        #Get prices for inception date
        print("Query prices")
        idx_min = 0
        query_num = 100
        prices = pandas.DataFrame()
        while idx_min < len(symbols):
            idx_max = idx_min + query_num
            if idx_max > len(symbols):
                idx_max = len(symbols)
            symbols_split = symbols[idx_min:idx_max]
            prices_split = mdb_query.get_chart(symbols_split, ref_date,
                                               "latest")
            prices = prices.append(prices_split, ignore_index=True, sort=False)
            idx_min = idx_min + query_num
        prices.reset_index(drop=True, inplace=True)
        #print( prices )
        #Get company data
        company = mdb_query.get_company(symbols)
        company = company[['symbol', 'companyName', 'industry', 'sector']]
        #Merge dataframes together
        print("Merge dataframes")
        merged = pandas.merge(earnings,
                              financials,
                              how='inner',
                              left_on=["symbol", "fiscalEndDate"],
                              right_on=["symbol", "reportDate"],
                              sort=False)
        merged = pandas.merge(merged,
                              prices,
                              how='inner',
                              on="symbol",
                              sort=False)
        merged = pandas.merge(merged,
                              company,
                              how='inner',
                              on='symbol',
                              sort=False)
        #Remove any rows with missing values
        merged = merged.dropna(
            axis=0,
            subset=["netIncome", "actualEPS", "close", "shareholderEquity"])
        #Calculate marketCap value
        # price * netIncome / EPS = price * sharesOutstanding = mcap
        # Actually not 100% accurate, should be netIncome - preferred dividend
        # Doesn't perfectly match IEX value or google - probably good enough
        merged["sharesOutstanding"] = merged.netIncome / merged.actualEPS
        merged["marketCap"] = merged.sharesOutstanding * merged.close
        #Calculate PE, ROE, and ratio
        merged["peRatio"] = merged.close / merged.actualEPS
        merged["returnOnEquity"] = merged.netIncome / merged.shareholderEquity
        merged["peROERatio"] = merged.peRatio / merged.returnOnEquity
        #Count number of stocks above mcap value
        # A useful indicator of how universe compares to S&P500
        print("Universe before cuts...")
        print("mcap > 50M: " +
              str(merged[merged["marketCap"] > 50000000].count()["marketCap"]))
        print(
            "mcap > 100M: " +
            str(merged[merged["marketCap"] > 100000000].count()["marketCap"]))
        print(
            "mcap > 500M: " +
            str(merged[merged["marketCap"] > 500000000].count()["marketCap"]))
        print(
            "mcap > 1B: " +
            str(merged[merged["marketCap"] > 1000000000].count()["marketCap"]))
        print(
            "mcap > 5B: " +
            str(merged[merged["marketCap"] > 5000000000].count()["marketCap"]))
        print("mcap > 10B: " + str(merged[
            merged["marketCap"] > 10000000000].count()["marketCap"]))
        print("mcap > 50B: " + str(merged[
            merged["marketCap"] > 50000000000].count()["marketCap"]))
        print("mcap > 100B: " + str(merged[
            merged["marketCap"] > 100000000000].count()["marketCap"]))
        #Rank stocks
        #Cut negative PE and ROE
        merged = merged[(merged.peRatio > 0) & (merged.returnOnEquity > 0)]
        #Remove invalid stock symbols, and different voting options
        # Do the different voting options affect marketCap?
        #forbidden = [ "#", ".", "-" ]
        #merged = merged[ merged.apply( lambda x: not any( s in x['symbol'] for s in forbidden ), axis=1 ) ]
        #Remove American Depositary Shares
        #ads_str = 'American Depositary Shares'
        #merged = merged[ merged.apply( lambda x: ads_str not in x['companyName'], axis=1 ) ]
        #Remove industries that do not compare well
        # e.g. Companies that have investments as assets
        #forbidden_industry = ['Brokers & Exchanges','REITs','Asset Management','Banks']
        #merged = merged[ ~merged.industry.isin( forbidden_industry ) ]
        #Count number of stocks after cuts
        print("Universe after cuts...")
        print("mcap > 50M: " +
              str(merged[merged["marketCap"] > 50000000].count()["marketCap"]))
        print(
            "mcap > 100M: " +
            str(merged[merged["marketCap"] > 100000000].count()["marketCap"]))
        print(
            "mcap > 500M: " +
            str(merged[merged["marketCap"] > 500000000].count()["marketCap"]))
        print(
            "mcap > 1B: " +
            str(merged[merged["marketCap"] > 1000000000].count()["marketCap"]))
        print(
            "mcap > 5B: " +
            str(merged[merged["marketCap"] > 5000000000].count()["marketCap"]))
        print("mcap > 10B: " + str(merged[
            merged["marketCap"] > 10000000000].count()["marketCap"]))
        print("mcap > 50B: " + str(merged[
            merged["marketCap"] > 50000000000].count()["marketCap"]))
        print("mcap > 100B: " + str(merged[
            merged["marketCap"] > 100000000000].count()["marketCap"]))
        #Order by peROERatio
        merged = merged.sort_values(by="peROERatio",
                                    ascending=True,
                                    axis="index")

        return merged