def test_normalize_modules(capsys, monkeypatch, tmpdir): """Test that normalize modules works as expected.""" # Test the warning when we skip the validation normalize_modules(modules=["gromacs/2016.4"], skip_validation=True) out, err = capsys.readouterr() assert out == "WARNING Not performing module name validation.\n" # Test the warning when we do not skip the validation normalize_modules(modules=["gromacs/2016.4"], skip_validation=False) out, err = capsys.readouterr() assert (out == "WARNING Cannot locate modules available on this host. " "Not performing module name validation.\n") with tmpdir.as_cwd(): for k, v in DIR_STRUCTURE.items(): for k2, v2 in v.items(): os.makedirs(os.path.join(k, k2)) for v3 in v2: open(os.path.join(k, k2, v3), "a").close() # Prepare path variable that we are going to monkeypatch for # `get_available_modules` dirs = ":".join( [os.path.join(os.getcwd(), x) for x in os.listdir(os.getcwd())]) monkeypatch.setenv("MODULEPATH", dirs) output = ( "WARNING We have problems finding all of your requested modules on this host.\n" "We were not able to find the following modules for MD engine gromacs: " "doesnotexist.\n" "Available modules are:\n" "gromacs/2016.4\n" "gromacs/2018.1\n" "gromacs/5.1.4-plumed2.3\n\n") normalize_modules(modules=["gromacs/doesnotexist"], skip_validation=False) out, err = capsys.readouterr() assert out == output
def do_not_skip_validation(): normalize_modules(modules=['gromacs/2016.4'], skip_validation=False)
def skip_validation(): normalize_modules(modules=['gromacs/2016.4'], skip_validation=True)
def test_normalize(): normalize_modules(modules=['gromacs/doesnotexist'], skip_validation=False)
def do_generate( name, cpu, gpu, module, host, min_nodes, max_nodes, time, skip_validation, job_name, yes, physical_cores, logical_cores, number_of_ranks, enable_hyperthreading, multidir, ): """Generate a bunch of benchmarks.""" # Instantiate the version we are going to use benchmark_version = Version3Categories() # Validate the CPU and GPU flags validate_cpu_gpu_flags(cpu, gpu) # Validate the number of nodes validate_number_of_nodes(min_nodes=min_nodes, max_nodes=max_nodes) if logical_cores < physical_cores: console.error( "The number of logical cores cannot be smaller than the number of physical cores." ) if physical_cores and not logical_cores: console.warn("Assuming logical_cores = 2 * physical_cores") logical_cores = 2 * physical_cores if physical_cores and logical_cores: processor = Processor(physical_cores=physical_cores, logical_cores=logical_cores) else: processor = Processor() # Hyperthreading check if enable_hyperthreading and not processor.supports_hyperthreading: console.error( "The processor of this machine does not support hyperthreading.") if not number_of_ranks: number_of_ranks = (processor.physical_cores, ) # Validate number of simulations validate_number_of_simulations(multidir, min_nodes, max_nodes, number_of_ranks) # Grab the template name for the host. This should always work because # click does the validation for us template = utils.retrieve_host_template(host) # Warn the user that NAMD support is still experimental. if any(["namd" in m for m in module]): console.warn(NAMD_WARNING, "--gpu") # Stop if we cannot find any modules. If the user specified multiple # modules, we will continue with only the valid ones. modules = mdengines.normalize_modules(module, skip_validation) if not modules: console.error("No requested modules available!") # Check if all needed files exist. Throw an error if they do not. validate_required_files(name=name, modules=modules) # Validate that we can use the number of ranks and threads. # We can continue, if no ValueError is thrown for ranks in number_of_ranks: try: processor.get_ranks_and_threads( ranks, with_hyperthreading=enable_hyperthreading) except ValueError as e: console.error(e) # Create all benchmark combinations and put them into a DataFrame data = construct_generate_data( name, job_name, modules, host, template, cpu, gpu, time, min_nodes, max_nodes, processor, number_of_ranks, enable_hyperthreading, multidir, ) df = pd.DataFrame(data, columns=benchmark_version.generate_categories) # Consolidate the data by grouping on the number of nodes and print to the # user as an overview. consolidated_df = consolidate_dataframe( df, columns=benchmark_version.consolidate_categories) print_dataframe( consolidated_df[benchmark_version.generate_printing], columns=map_columns( map_dict=benchmark_version.category_mapping, columns=benchmark_version.generate_printing, ), ) # Save the number of benchmarks for later printing number_of_benchmarks = df.shape[0] # Ask the user for confirmation to generate files. # If the user defined `--yes`, we will skip the confirmation immediately. if yes: console.info( "We will generate {} " + "{benchmark}.".format(benchmark="benchmark" if number_of_benchmarks == 1 else "benchmarks"), number_of_benchmarks, ) elif not click.confirm("We will generate {} benchmarks. Continue?".format( number_of_benchmarks)): console.error("Exiting. No benchmarks were generated.") # Generate the benchmarks with click.progressbar( df.iterrows(), length=number_of_benchmarks, show_pos=True, label="Generating benchmarks", ) as bar: for _, row in bar: relative_path, file_basename = os.path.split(row["name"]) mappings = benchmark_version.generate_mapping kwargs = {"name": file_basename, "relative_path": relative_path} for key, value in mappings.items(): kwargs[value] = row[key] write_benchmark(**kwargs) # Finish up by telling the user how to submit the benchmarks console.info( "Finished! You can submit the jobs with {}.", "mdbenchmark submit", )
def do_generate( name, cpu, gpu, module, host, min_nodes, max_nodes, time, skip_validation, job_name, yes, ): """Generate a bunch of benchmarks.""" # Validate the CPU and GPU flags validate_cpu_gpu_flags(cpu, gpu) # Validate the number of nodes validate_number_of_nodes(min_nodes=min_nodes, max_nodes=max_nodes) # Grab the template name for the host. This should always work because # click does the validation for us template = utils.retrieve_host_template(host) # Warn the user that NAMD support is still experimental. if any(["namd" in m for m in module]): console.warn(NAMD_WARNING, "--gpu") module = mdengines.normalize_modules(module, skip_validation) # If several modules were given and we only cannot find one of them, we # continue. if not module: console.error("No requested modules available!") df_overview = pd.DataFrame(columns=[ "name", "job_name", "base_directory", "template", "engine", "module", "nodes", "run time [min]", "gpu", "host", ]) i = 1 for m in module: # Here we detect the MD engine (supported: GROMACS and NAMD). engine = mdengines.detect_md_engine(m) # Check if all needed files exist. Throw an error if they do not. engine.check_input_file_exists(name) gpu_cpu = {"cpu": cpu, "gpu": gpu} for pu, state in sorted(gpu_cpu.items()): if not state: continue directory = "{}_{}".format(host, m) gpu = False gpu_string = "" if pu == "gpu": gpu = True directory += "_gpu" gpu_string = " with GPUs" console.info("Creating benchmark system for {}.", m + gpu_string) base_directory = dtr.Tree(directory) for nodes in range(min_nodes, max_nodes + 1): df_overview.loc[i] = [ name, job_name, base_directory, template, engine, m, nodes, time, gpu, host, ] i += 1 console.info("{}", "Benchmark Summary:") df_short = ConsolidateDataFrame(df_overview) PrintDataFrame(df_short) if yes: console.info("Generating the above benchmarks.") elif not click.confirm( "The above benchmarks will be generated. Continue?"): console.error("Exiting. No benchmarks generated.") for _, row in df_overview.iterrows(): relative_path, file_basename = os.path.split(row["name"]) write_benchmark( engine=row["engine"], base_directory=row["base_directory"], template=row["template"], nodes=row["nodes"], gpu=row["gpu"], module=row["module"], name=file_basename, relative_path=relative_path, job_name=row["job_name"], host=row["host"], time=row["run time [min]"], ) # Provide some output for the user console.info( "Finished generating all benchmarks.\n" "You can now submit the jobs with {}.", "mdbenchmark submit", )