コード例 #1
0
def mrmr_selection(input_data_x, input_data_y):
    max_mi = np.argmax(mutual_info_classif(input_data_x, input_data_y))
    input_data_y = np.reshape(input_data_y, (-1, 1))
    select_index = []
    select_index.append(max_mi)
    selected_features = input_data_x[:, max_mi].reshape(-1, 1)
    diff = []
    for x in range(0, num_of_features):
        #print(str(x)+' / '+str(num_of_features))
        for i in range(0, input_data_x.shape[1]):
            key = 0
            for j in range(0, len(select_index)):
                if i == select_index[j]:
                    key = 1
            if key == 0:
                feature = input_data_x[:, i]
                MI = 0
                count = 0
                for k in range(0, selected_features.shape[1]):
                    MI = MI + mutinf(
                        100, feature.reshape(-1, 1),
                        np.reshape(selected_features[:, k], (-1, 1)))
                    count = count + 1
                diff.append(
                    mutinf(100, feature.reshape(-1, 1), input_data_y) -
                    float(MI) / count)
            else:
                diff.append(-99.9)
        max_new = np.argmax(diff)
        select_index.append(max_new)
        del diff[:]
        selected_features = np.append(selected_features,
                                      input_data_x[:, max_new].reshape(-1, 1),
                                      axis=1)
    return select_index
コード例 #2
0
def bias_value(input_data_x, input_data_y):
    bias_num = []
    input_data_y = np.reshape(input_data_y, (-1, 1))
    input_data_x = np.array(input_data_x)
    input_data_x_old = input_data_x
    high_score = mutinf(100, input_data_x, input_data_y)
    input_data_x_old = input_data_x
    for i in range(0, input_data_x.shape[1]):
        input_data_x = np.delete(input_data_x, i, 1)
        diff = high_score - mutinf(100, input_data_x, input_data_y)
        bias_num.append(diff)
        input_data_x = input_data_x_old
    bias_num = np.array(bias_num)
    bias_num[bias_num < 0] = 0
    return bias_num
コード例 #3
0
def JMI_selection(input_data_x, input_data_y):
    max_mi = np.argmax(mutual_info_classif(input_data_x, input_data_y))
    input_data_y = np.reshape(input_data_y, (-1, 1))
    select_index = []
    select_index.append(max_mi)
    selected_features = input_data_x[:, max_mi].reshape(-1, 1)
    diff = []
    for x in range(0, num_of_features):
        for i in range(0, input_data_x.shape[1]):
            key = 0
            for j in range(0, len(select_index)):
                if i == select_index[j]:
                    key = 1
            if key == 0:
                feature = input_data_x[:, i].reshape(-1, 1)
                MI = 0
                for k in range(0, selected_features.shape[1]):
                    MI = MI + mutinf(
                        100, feature,
                        np.reshape(selected_features[:, k], (-1, 1)))
                diff.append(MI)
            else:
                diff.append(-99.9)
        max_new = np.argmax(diff)
        select_index.append(max_new)
        del diff[:]
        selected_features = np.append(selected_features,
                                      input_data_x[:, max_new].reshape(-1, 1),
                                      axis=1)
    return select_index
コード例 #4
0
def GSA_selection_UR(input_data_x, input_data_y):
    bias = bias_value(input_data_x, input_data_y)
    max_mi = np.argmax(mutual_info_classif(input_data_x, input_data_y))
    input_data_y = np.reshape(input_data_y, (-1, 1))
    data_new = input_data_x[:, max_mi]
    all_data = np.reshape(data_new, (-1, 1))
    select_index = []
    select_index.append(max_mi)
    for i in range(0, num_of_features):
        score = []
        all_data_old = all_data
        for j in range(0, input_data_x.shape[1]):
            key = 1
            for k in range(0, len(select_index)):
                if j == select_index[k]:
                    key = 0
            if key == 1:
                all_data = np.append(all_data,
                                     np.reshape(input_data_x[:, j], (-1, 1)),
                                     axis=1)
                score.append(
                    mutinf(100, np.reshape(all_data,
                                           (-1, i + 2)), input_data_y) *
                    (1 - beta) + beta * bias[j])
            else:
                score.append(-99.9)
            all_data = all_data_old
        new_index = np.argmax(score)
        select_index.append(new_index)
        all_data = np.append(all_data,
                             np.reshape(input_data_x[:, new_index], (-1, 1)),
                             axis=1)
    return select_index
コード例 #5
0
def JMIM_selection_UR(input_data_x, input_data_y):
    bias = bias_value(input_data_x, input_data_y)
    max_mi = np.argmax(mutual_info_classif(input_data_x, input_data_y))
    input_data_y = np.reshape(input_data_y, (-1, 1))
    select_index = []
    select_index.append(max_mi)
    selected_features = input_data_x[:, max_mi].reshape(-1, 1)
    for x in range(0, num_of_features):
        all_min = []
        for i in range(0, input_data_x.shape[1]):
            key = 0
            for j in range(0, len(select_index)):
                if i == select_index[j]:
                    key = 1
            if key == 0:
                feature = input_data_x[:, i]
                MI = []
                for k in range(0, selected_features.shape[1]):
                    MI.append(
                        mutinf(100, np.reshape(feature, (-1, 1)),
                               np.reshape(selected_features[:, k], (-1, 1))))
                all_min.append((1 - beta) * np.min(MI) + beta * bias[i])
            else:
                all_min.append(-99.9)
        max_new = np.argmax(all_min)
        select_index.append(max_new)
        selected_features = np.append(selected_features,
                                      input_data_x[:, max_new].reshape(-1, 1),
                                      axis=1)
    return select_index
コード例 #6
0
def MI_selection(all_data):
	all_MI = []
	original_number = np.unique(all_data.values[:,0])
	for i in range(0,len(original_number)):
		MI = 0
		sample_num = original_number[i]
		for j in range(0,len(original_number)):
			sample_num_2 = original_number[j]
			if sample_num_2 != sample_num:
				P1 = all_data[all_data['Subject No']==sample_num].T
				P2 = all_data[all_data['Subject No']==sample_num_2].T
				MI = MI + mutinf(3,P1,P2)
		all_MI.append(MI)
	order = np.argsort(all_MI)[::-1]
	new_order = original_number[order]

	return new_order
コード例 #7
0
ファイル: process_step_response.py プロジェクト: Humhu/infitu
    def normalize_trace(tr):
        ts, rs = zip(*tr)
        ts = np.array(ts) - ts[0]
        interp = interp1d(x=ts, y=rs, kind='linear')
        return interp(norm_trace_times)

    print 'Normalizing reward traces...'
    norm_reward_traces = [normalize_trace(tr) for tr in reward_traces]
    norm_reward_traces = np.array(norm_reward_traces)

    # TODO Consider context as well

    # 2. Compute MI between pre/actions, reward values
    pre_act_mi = [
        mde.mutinf(n_bins=11,
                   x=pre_actions_contexts,
                   y=norm_reward_traces[:, i]) for i in range(num_trace_times)
    ]
    post_act_mi = [
        mde.mutinf(n_bins=11, x=actions_contexts, y=norm_reward_traces[:, i])
        for i in range(num_trace_times)
    ]

    plt.ion()
    plt.figure()
    plt.title('Instantaneous reward MI vs. time')
    plt.plot(norm_trace_times, pre_act_mi, 'r.-', label='prev_act')
    plt.plot(norm_trace_times, post_act_mi, 'b.-', label='curr_act')
    plt.xlabel('Time after action, t (s)')
    plt.ylabel('Mutual Information')
    plt.legend(loc='best')