def test_CloneLayer(): node = mdp.nodes.PCANode(input_dim=10, output_dim=5) x = numx_rand.random([10, 70]).astype('f') layer = mh.CloneLayer(node, 7) layer.train(x) y = layer.execute(x) assert layer.dtype == numx.dtype('f') assert y.dtype == layer.dtype
def test_SFA_net(noisenode): sfa_node = mdp.nodes.SFANode(input_dim=20 * 20, output_dim=10, dtype='f') switchboard = mh.Rectangular2dSwitchboard(in_channels_xy=100, field_channels_xy=20, field_spacing_xy=10) flownode = mh.FlowNode(mdp.Flow([noisenode, sfa_node])) sfa_layer = mh.CloneLayer(flownode, switchboard.output_channels) flow = mdp.Flow([switchboard, sfa_layer]) train_gen = numx.cast['f'](numx_rand.random((3, 10, 100 * 100))) flow.train([None, train_gen])
def testHiNetHTML(noisenode): # create some flow for testing sfa_node = mdp.nodes.SFANode(input_dim=20 * 20, output_dim=10) switchboard = mh.Rectangular2dSwitchboard(in_channels_xy=100, field_channels_xy=20, field_spacing_xy=10) flownode = mh.FlowNode(mdp.Flow([noisenode, sfa_node])) sfa_layer = mh.CloneLayer(flownode, switchboard.output_channels) flow = mdp.Flow([switchboard, sfa_layer]) # create dummy file to write the HTML representation html_file = io.StringIO() hinet_html = mdp.hinet.HiNetHTMLVisitor(html_file) hinet_html.convert_flow(flow) html_file.close()
def test_hinet_simple_net(): switchboard = mh.Rectangular2dSwitchboard(in_channels_xy=(12, 8), field_channels_xy=4, field_spacing_xy=2, in_channel_dim=3) node = mdp.nodes.PCANode(input_dim=4 * 4 * 3, output_dim=5) flownode = mh.FlowNode(mdp.Flow([ node, ])) layer = mh.CloneLayer(flownode, switchboard.output_channels) flow = mdp.Flow([switchboard, layer]) x = numx_rand.random([5, switchboard.input_dim]) flow.train(x)