import matplotlib.pyplot as plt import mdp.offroad_grid as offroad_grid import numpy as np from network.hybrid_dilated import HybridDilated from torch.autograd import Variable import torch from os.path import join import scipy.io as sio from loader.util import leastsq_circle, calc_sign import seaborn as sns import viz # initialize parameters grid_size = 80 discount = 0.9 model = offroad_grid.OffroadGrid(grid_size, discount) n_states = model.n_states n_actions = model.n_actions net = HybridDilated(feat_out_size=25, regression_hidden_size=64) net.init_weights() net.load_state_dict( torch.load(join('example_data', 'example_weights6.34.pth'))['net_state']) net.eval() def load(grid_size): """ load sample demo input data""" mean_std = sio.loadmat(join('example_data', 'data_mean_std.mat')) data_mat = sio.loadmat(join('example_data', 'demo_input.mat')) feat = data_mat['feat']
save_per_steps = 10 # resume = 'step8800-loss1.346111536026001.pth' resume = None exp_name = '4.0' grid_size = 30 discount = 0.9 lr = 5e-3 n_train = 100000 # number of training traj if not os.path.exists(os.path.join('exp', exp_name)): os.makedirs(os.path.join('exp', exp_name)) # host = os.environ['HOSTNAME'] # vis = visdom.Visdom(env='v{}-{}'.format(exp_name, host), server='http://128.2.176.221', port=4546) vis = visdom.Visdom(env='main') model = offroad_grid.OffroadGrid(grid_size, discount) ## takes a long time to init n_states = model.n_states n_actions = model.n_actions train_loader = kinematic_loader.KinematicLoader(grid_size=grid_size, n_traj=n_train) train_loader = DataLoader(train_loader, num_workers=1, batch_size=1, shuffle=True) net = SimpleFCN(input_size=4) step = 0 nll_cma = 0 acc_test = 0 if resume is None: net.init_weights() else: checkpoint = torch.load(os.path.join('exp', exp_name, resume))