コード例 #1
0
def _find_interface_lipid(traj, headgroup_indices, return_variance=False):
    """ Find the interface based on lipid head groups"""

    # Sort into top and bottom leaflet
    #midplane = np.mean(traj.xyz[:,headgroup_indices,2])
    midplane = np.mean(traj.unitcell_lengths[:, 2]) / 2
    bot_leaflet = [
        a for a in headgroup_indices
        if traj.xyz[0, a,
                    2] < midplane and abs(traj.xyz[0, a, 2] - midplane) > 1
    ]
    top_leaflet = [
        a for a in headgroup_indices
        if traj.xyz[0, a,
                    2] > midplane and abs(traj.xyz[0, a, 2] - midplane) > 1
    ]

    com_bot = mdtraj.compute_center_of_mass(traj.atom_slice(bot_leaflet))
    com_top = mdtraj.compute_center_of_mass(traj.atom_slice(top_leaflet))

    z_interface_bot = np.mean(com_bot, axis=0)[2]
    z_interface_top = np.mean(com_top, axis=0)[2]

    if len(bot_leaflet) == 0:
        z_interface_bot = None
    if len(top_leaflet) == 0:
        z_interface_top = None

    if return_variance:
        bot_variance = np.std(traj.xyz[:, bot_leaflet, 2])
        top_variance = np.std(traj.xyz[:, top_leaflet, 2])
        z_variance = np.mean([bot_variance, top_variance])
        return z_interface_bot, z_interface_top, z_variance

    return z_interface_bot, z_interface_top
コード例 #2
0
 def check_mdtraj_close_to_boundary(self, traj, milestone_variables, 
                                  verbose=False, max_avg=0.03, max_std=0.05):
     """
     
     """
     traj1 = traj.atom_slice(self.group1)
     traj2 = traj.atom_slice(self.group2)
     com1_array = mdtraj.compute_center_of_mass(traj1)
     com2_array = mdtraj.compute_center_of_mass(traj2)
     distances = []
     for frame_index in range(traj.n_frames):
         com1 = com1_array[frame_index,:]
         com2 = com2_array[frame_index,:]
         radius = np.linalg.norm(com2-com1)
         milestone_radius = milestone_variables["radius"]
         distances.append(radius - milestone_radius)
         
     avg_distance = np.mean(distances)
     std_distance = np.std(distances)
     if abs(avg_distance) > max_avg or std_distance > max_std:
         if verbose:
             warnstr = """The distance between the system and central 
 milestone were found on average to be {:.4f} nm apart.
 The standard deviation was {:.4f} nm.""".format(avg_distance, std_distance)
             print(warnstr)
         return False
         
     return True
コード例 #3
0
ファイル: mmvt_base.py プロジェクト: astokely/seekr2
    def check_mdtraj_within_boundary(self,
                                     traj,
                                     milestone_variables,
                                     verbose=False):
        """
        Check if an mdtraj Trajectory describes a system that remains
        within the expected anchor. Return True if passed, return
        False if failed.
        """
        traj1 = traj.atom_slice(self.group1)
        traj2 = traj.atom_slice(self.group2)
        com1_array = mdtraj.compute_center_of_mass(traj1)
        com2_array = mdtraj.compute_center_of_mass(traj2)
        for frame_index in range(traj.n_frames):
            com1 = com1_array[frame_index, :]
            com2 = com2_array[frame_index, :]
            radius = np.linalg.norm(com2 - com1)
            milestone_k = milestone_variables["k"]
            milestone_radius = milestone_variables["radius"]
            if milestone_k * (radius - milestone_radius) > 0.0:
                if verbose:
                    warnstr = """The center of masses of atom group1 and atom
group2 were found to be {:.4f} nm apart.
This distance falls outside of the milestone
boundary at {:.4f} nm.""".format(radius, milestone_radius)
                    print(warnstr)
                return False

        return True
コード例 #4
0
def compute_COM_distance(query1, query2, simu_traj):
    com1 = md.compute_center_of_mass(
        simu_traj.atom_slice(simu_traj.top.select(query1)))
    com2 = md.compute_center_of_mass(
        simu_traj.atom_slice(simu_traj.top.select(query2)))
    #TODO fix so that we handle periodic BC correctly here
    return np.linalg.norm(com1 - com2, axis=1)
コード例 #5
0
def get_com_distances(proteinfile, ligandfile, genfile, topology):
    lig_indices=loadtxt(ligandfile, ndmin=1, dtype=int)
    prot_indices=loadtxt(proteinfile, ndmin=1, dtype=int)
    prot_gens=md.load(genfile, top=topology, atom_indices=prot_indices)
    lig_gens=md.load(genfile, top=topology, atom_indices=lig_indices)
    prot_coms=md.compute_center_of_mass(prot_gens)
    lig_coms=md.compute_center_of_mass(lig_gens)
    com_distances=[10*get_displacement(i,j) for (i,j) in zip(prot_coms, lig_coms)]
    return array(com_distances), lig_gens
コード例 #6
0
    def _centerBilayer(self):
        print("*"*20)
        print("Centering bilayer...")
        print("*"*20)
        non_water = self._traj.topology.select('not water')
        sub_traj = self._traj.atom_slice(non_water)
        # Get center of mass of the bilayer 
        com = mdtraj.compute_center_of_mass(sub_traj)
        box = [self._traj.unitcell_lengths[0,0], 
                self._traj.unitcell_lengths[0,1], 
                self._traj.unitcell_lengths[0,2]]

        # Shift all coordinates so bilayer is at center of box
        for i, val in enumerate(self._traj.xyz):
            self._traj.xyz[i] = [[x, y, z-com[0,2]+(box[2]/2)] for x,y,z 
                    in self._traj.xyz[i][:]]

        # Go back and fix for pbc
        for i, val in enumerate(self._traj.xyz):
            for j,atom in enumerate(self._traj.xyz[i]):
                for k, coord in enumerate(self._traj.xyz[i,j]):
                    if coord < 0:
                        self._traj.xyz[i,j,k] += box[k]
                    elif coord > box[k]:
                        self._traj.xyz[i,j,k] -= box[k]
        self._traj.save(os.path.join(self._baseDir,'centered.gro'))
        #self.grofile = 'centered.gro'
        self._grofile = (os.path.join(self._baseDir,'centered.gro'))
コード例 #7
0
ファイル: helix.py プロジェクト: cing/MDGenesis
    def results(self):
        p_slice = self.trj.atom_slice(self._principal_axis_atoms)
        paxis = principal_axis(p_slice)
        paxis_com = md.compute_center_of_mass(p_slice)

        # Handle the 180 degree flip based on quadrant so there's no uncertainty
        quad_dot_paxis = np.dot(paxis, self._principal_axis_quadrant)
        paxis[quad_dot_paxis < 0] *= -1

        temp_results = []
        for ref_atom, helix_atoms in zip(self._reference_atoms, self._helix_atoms):
            if len(ref_atom) > 1:
                ref_pos = self.trj.xyz[:,ref_atom,:].mean(axis=1)
            else:
                ref_pos = self.trj.xyz[:,ref_atom[0],:]

            helix_com = self.trj.xyz[:, helix_atoms, :].mean(axis=1)

            # Principal axis defines a plane for projection
            proj_of_com = vector_projection_onto_plane(paxis_com - helix_com, paxis)
            proj_of_ref = vector_projection_onto_plane(ref_pos - helix_com, paxis)

            a = angle_between_vectors(proj_of_com, proj_of_ref)

            # Compute the signed angle
            cross = np.cross(proj_of_com, proj_of_ref)
            cross_dot_paxis = np.einsum('ij,ij->i', paxis, cross)
            a[cross_dot_paxis < 0] *= -1

            temp_results.append(a)

        return pd.DataFrame(temp_results)
コード例 #8
0
def get_com_ligand(filename):
    """get center of mass from a trajectory"""

    print("Trajectory: ", filename)
    topol_name = 'topol.prmtop'
    pdb_ref = 'start_conf.pdb'
    T1 = md.load(filename, top=topol_name)
    topol = md.load(pdb_ref)
    topology = topol.topology
    selection = 'resname GLA'
    atom_to_keep = topology.select(selection)
    print("Number of frames in trajectory:", T1.n_frames)
    T1.restrict_atoms(atom_to_keep)
    print("Number of atoms in selection:", T1.n_atoms)
    coord = md.compute_center_of_mass(T1)
    coord_cog = get_cog(T1)
    print("Dimensions of COM coordinates:", coord.shape, "\n")

    basename = os.path.basename(filename)
    out = basename.split('.')
    output_file = out[0] + '_COM.dat'
    np.savetxt(output_file, coord, fmt='%3.4f', delimiter='\t')  # Save array
    output_file = out[0] + '_COG.dat'
    np.savetxt(output_file, coord_cog, fmt='%3.4f',
               delimiter='\t')  # Save array
コード例 #9
0
def main():
    traj = md.load_pdb(sys.argv[1])
    com = md.compute_center_of_mass(traj)

    with open(
            os.path.splitext(os.path.basename(sys.argv[1]))[0] + '.CoMz.dat',
            'w') as f:
        for e in com[:, 2] * 10:
            print >> f, '%.3f' % e
コード例 #10
0
def get_current_com(simulation, top, peptide_particles):
    peptide_top = top
    positions = simulation.context.getState(getPositions=True).getPositions(
        asNumpy=True)
    new_positions = np.zeros((1, len(peptide_particles), 3))
    new_positions[0, :, :] = positions[peptide_particles, :]
    #print positions.shape, peptide_particles.shape, np.array([ positions[peptide_particles, :] ])
    peptide_traj = md.Trajectory(new_positions, peptide_top)
    return md.compute_center_of_mass(peptide_traj)[0]
コード例 #11
0
def calc_hexagonal_order_freud(traj_filename, top_filename, output_filename,
                               ndx_filename, n_chains):
    from freud.box import Box
    from freud.order import HexOrderParameter

    topology = md.load(top_filename).topology
    atoms = np.array(list(topology.atoms))
    atom_names = [atom.name for atom in atoms]

    groups = read_ndx(ndx_filename)
    bottom_chains = np.array(groups['bottom_chains']) - 1
    top_chains = np.array(groups['top_chains']) - 1
    bottom_chains = np.array_split(bottom_chains, n_chains)
    top_chains = np.array_split(top_chains, n_chains)
    bottom_termini = np.array(groups['bottom_termini']) - 1
    top_termini = np.array(groups['top_termini']) - 1
    bottom_termini = np.array_split(bottom_termini, n_chains)
    top_termini = np.array_split(top_termini, n_chains)

    traj = md.load(traj_filename, top=top_filename)

    for i, group in enumerate(
        [bottom_chains, top_chains, bottom_termini, top_termini]):
        group_COM = []
        for chain in group:
            chain_slice = traj.atom_slice(chain)
            chain_com = md.compute_center_of_mass(chain_slice)
            for com in chain_com:
                for j in range(2):
                    if com[j] < 0:
                        com[j] += traj.unitcell_lengths[0, j]
                    elif com[j] > traj.unitcell_lengths[0, j]:
                        com[j] -= traj.unitcell_lengths[0, j]
            group_COM.append(chain_com)
        group_COM = np.array(group_COM).transpose(1, 0, 2)

        rmax = 0.75
        box = Box(Lx=traj.unitcell_lengths[0, 0],
                  Ly=traj.unitcell_lengths[0, 1],
                  Lz=traj.unitcell_lengths[0, 2])

        order_parameter = []
        for xyz in group_COM:
            median = np.median(xyz[:, 2])
            if i == 2:
                xyz = np.array(
                    [point for point in xyz if point[2] > median - 0.5])
            elif i == 3:
                xyz = np.array(
                    [point for point in xyz if point[2] < median + 0.5])
            hex_order = HexOrderParameter(rmax, 6)
            hex_order.compute(box, xyz.astype(np.float32))
            order_parameter.append(abs(hex_order.getPsi()).mean())
        print(np.mean(order_parameter[int(len(order_parameter) / 2):]))
    import pdb
    pdb.set_trace()
コード例 #12
0
def create_system_mapping(element_names, n_beads_TOTAL, t):
    """Create a system mapping

    Parameters
    ----------
    element_names : (???)
        (???)
    n_beads_TOTAL : int
        Number of beads in the system
    t : mdTraj.Trajectory
        Initial trajectory object generated from structure and trajectory files
    """

    # SLOWEST PART OF CODE IS THIS FUNCTION
    # Initialize atoms with elements
    ## for loop to traverse element_names array for elements
    ## need to expand from just carbon to more/different elements
    ## maybe use elements from periodic package
    for atom in t.top.atoms:  #possible other function
        atom.element = Element.getBySymbol(atom.name)  # check element
        #need for the xml file to have element symbol as type

    # Map the beads accordingly
    cg_idx = 0
    start_idx = 0
    propane_map = {0: [0, 1, 2]}  ## mapping definition needs to be created
    # from search and user files
    ## TEST CODE
    ######################################################################
    ######################################################################
    ## TEST CODE

    system_mapping = {}
    for n in range(n_beads_TOTAL
                   ):  # what does sections mean in this particular context
        for bead, atoms in propane_map.items():
            system_mapping[cg_idx] = [x + start_idx for x in atoms]
            start_idx += len(atoms)  # understand this part
            cg_idx += 1

    # Apply mapping for XYZ coordinates
    cg_xyz = np.empty((t.n_frames, len(system_mapping), 3))
    for cg_bead, aa_indices in system_mapping.items():
        cg_xyz[:, cg_bead, :] = md.compute_center_of_mass(
            t.atom_slice(aa_indices))

    # Apply mapping for Topology object
    cg_top = md.Topology()
    for cg_bead in system_mapping.keys():  #i got the keys keys keys
        cg_top.add_atom('carbon', element.virtual_site,
                        cg_top.add_residue('A', cg_top.add_chain()))
        ## Check element and name for items 'A'
        ## Possible interface with mbuild for better UI and aesthetics

    return cg_xyz, cg_top
コード例 #13
0
def calc_number_density(coord_file, trj_file, bin_width, area, dim, box_range,
                        data_path):
    """
    Return a 1-D number density profiles for each residue across a channel.

    """

    first_frame = md.load_frame(trj_file, top=coord_file, index=0)

    resnames = np.unique([x.name for x in first_frame.topology.residues])

    open('{0}/resnames.txt'.format(data_path), 'w').close()

    for resname in resnames:
        traj = md.load(trj_file,
                       top=coord_file,
                       atom_indices=first_frame.topology.select(
                           'resname {}'.format(resname)))

        indices = [[at.index for at in compound.atoms]
                   for compound in list(traj.topology.residues)]

        if 0 in [
                x.mass for x in [atom.element for atom in traj.topology.atoms]
        ]:
            warnings.warn(
                "mdtraj found zero mass, setting element to hydrogen",
                UserWarning)
            for atom in traj.topology.atoms:
                if atom.element in [Element.virtual, Element.virtual_site]:
                    atom.element = Element.hydrogen

        com = list()
        for i, ids in enumerate(indices):
            sub_traj = traj.atom_slice(ids)
            com.append(md.compute_center_of_mass(sub_traj))
        com = np.array(com)

        x = np.histogram(com[:, 1:, dim].reshape((-1, 1)),
                         bins=np.linspace(
                             box_range[0],
                             box_range[1],
                             num=1 + round(
                                 (box_range[1] - box_range[0]) / bin_width)))

        np.savetxt(
            '{0}/{1}-number-density.txt'.format(data_path, resname),
            np.vstack([
                x[1][:-1] + np.mean(x[1][:2]) - box_range[0],
                x[0] / (area * bin_width * (len(traj) - 1))
            ]).transpose())

        with open('{0}/resnames.txt'.format(data_path), "a") as myfile:
            myfile.write(resname + '\n')
コード例 #14
0
ファイル: extractCoords.py プロジェクト: leelasd/AdaptivePELE
def extractCoordinatesXTCFile(file_name, params, topology, selected_indices):
    trajectory = md.load(file_name, top=topology)
    if params.com:
        # getCOM case
        # convert nm to A
        coordinates = 10 * md.compute_center_of_mass(
            trajectory.atom_slice(selected_indices))
    else:
        coordinates = 10 * trajectory.xyz[:, selected_indices, :].reshape(
            (trajectory.n_frames, -1))
    return coordinates
コード例 #15
0
def find_interface_lipid(traj, headgroup_indices):
    """ Find the interface based on lipid head groups"""

    # Sort into top and bottom leaflet
    #midplane = np.mean(traj.xyz[:,headgroup_indices,2])
    midplane = np.mean(traj.unitcell_lengths[:, 2]) / 2
    bot_leaflet = [
        a for a in headgroup_indices
        if traj.xyz[0, a,
                    2] < midplane and abs(traj.xyz[0, a, 2] - midplane) > 1
    ]
    top_leaflet = [
        a for a in headgroup_indices
        if traj.xyz[0, a,
                    2] > midplane and abs(traj.xyz[0, a, 2] - midplane) > 1
    ]

    com_bot = mdtraj.compute_center_of_mass(traj.atom_slice(bot_leaflet))
    com_top = mdtraj.compute_center_of_mass(traj.atom_slice(top_leaflet))

    return com_bot[:, 2], com_top[:, 2]
コード例 #16
0
ファイル: lipic.py プロジェクト: yongwangCPH/PCAlipids
def lipic(traj_file, top_file, stride):
    traj = md.load_xtc(traj_file, top=top_file, stride=stride)
    traj = traj.superpose(traj[0])
    traj.unitcell_vectors = None
    avg_xyz = traj.xyz.astype(np.float64)
    avg_xyz = avg_xyz.mean(axis=0, dtype=np.float64)
    avg_traj = md.Trajectory([avg_xyz], traj.top)

    new_traj = md.Trajectory(
        traj[0].xyz.astype(np.float64) -
        md.compute_center_of_mass(traj[0]).astype(np.float64), traj[0].top)
    for i in range(1, len(traj)):
        new_traj = new_traj.join(
            md.Trajectory(
                traj[i].xyz.astype(np.float64) -
                md.compute_center_of_mass(traj[i]).astype(np.float64),
                traj[i].top))
    new_traj = new_traj.superpose(avg_traj)
    new_traj = new_traj.join(avg_traj)
    print(new_traj.xyz.shape)
    return new_traj
コード例 #17
0
ファイル: structure_mixed.py プロジェクト: dubosese/atools
def interfacial_fraction(traj_filename, top_filename, output_filename,
                         ndx_filename, n_chains):
    """Estimate the fraction of chains where termini are at the interface

    Some description of what is returned

    Parameters
    ----------
    traj_filename : str
        Name of trajectory file
    top_filename : str
        Name of topology file
    output_filename : str
        Name of output file
    ndx_filename : str
        Name of Gromacs .ndx file which specifies atom groups
    n_chains : int
        Number of chains per monolayer

    """
    traj = md.load(traj_filename, top=top_filename)

    interfacial_frac_bottom = []
    interfacial_frac_top = []

    groups = read_ndx(ndx_filename)
    for group in ['bottom_termini', 'top_termini']:
        termini = np.array(ndx[group]) - 1
        termini = np.array_split(termini, n_chains)
        xyz = []
        for chain in termini:
            chain_slice = traj.atom_slice(chain)
            chain_com = md.compute_center_of_mass(chain_slice)
            xyz.append(chain_com[0])
        termini_z = np.array([pos[2] for pos in bottom_xyz])
        if group == 'bottom_termini':
            cut = np.median(termini_z) - 0.5
            termini_xy = np.array([
                coords[:2] for i, coords in enumerate(xyz)
                if termini_z[i] > cut
            ])
            interfacial_frac_bottom.append(len(termini_xy) / 100)
        else:
            cut = np.median(termini_z) + 0.5
            termini_xy = np.array([
                coords[:2] for i, coords in enumerate(xyz)
                if termini_z[i] < cut
            ])
            interfacial_frac_top.append(len(termini_xy) / 100)

    print('Under construction!')
    '''
コード例 #18
0
ファイル: crosslink.py プロジェクト: dubosese/atools
def calc_com_2Dmsd(traj_filename, top_filename, output_filetag, ndx_filename,
                   chainlength):
    topology = md.load(top_filename).topology
    atoms = np.array(list(topology.atoms))
    atom_names = [atom.name for atom in atoms]

    groups = read_ndx(ndx_filename)
    bottom_chains = [
        id - 1 for id in groups['bottom_chains'] if atom_names[id - 1] == 'C'
    ]
    n_chains = int(len(bottom_chains) / chainlength)
    bottom_chains = [
        chain.tolist() for chain in np.array_split(bottom_chains, n_chains)
    ]
    top_chains = [
        id - 1 for id in groups['top_chains'] if atom_names[id - 1] == 'C'
    ]
    top_chains = [
        chain.tolist() for chain in np.array_split(top_chains, n_chains)
    ]

    traj = md.load(traj_filename, top=top_filename)
    locations = []
    for i, chain in enumerate(bottom_chains):
        chain_slice = traj.atom_slice(chain)
        com = md.compute_center_of_mass(chain_slice)
        for com_frame in com:
            for j in range(2):
                if com_frame[j] < 0:
                    com_frame[j] += traj.unitcell_lengths[0, j]
                elif com_frame[j] > traj.unitcell_lengths[0, j]:
                    com_frame[j] -= traj.unitcell_lengths[0, j]
        locations.append(com)
    locations = np.array(locations).transpose(1, 0, 2)
    com_traj = _create_com_traj(locations, traj.time, traj.unitcell_lengths,
                                traj.unitcell_angles)

    msd = []
    for frame in com_traj:
        msd_frame = 0
        for i, atom in enumerate(com_traj.top.atoms):
            disp = frame.xyz[0, i, :2] - com_traj.xyz[0, i, :2]
            for j, dim in enumerate(disp):
                if dim > com_traj.unitcell_lengths[0, j] / 2:
                    dim -= traj.unitcell_lengths[0, j]
                elif dim < -com_traj.unitcell_lengths[0, j] / 2:
                    dim += traj.unitcell_lengths[0, j]
            msd_frame += np.linalg.norm(dim)**2
        msd_frame /= com_traj.top.n_atoms
        msd.append(msd_frame)

    np.savetxt(output_filetag + '.txt', np.column_stack((traj.time, msd)))
コード例 #19
0
ファイル: extractCoords.py プロジェクト: cescgina/msm_pele
def extractCoordinatesXTCFile(file_name, ligand, atom_Ids, writeCA, topology,
                              selected_indices, sidechains):
    trajectory = md.load(file_name, top=topology)
    if not writeCA and (atom_Ids is None
                        or len(atom_Ids) == 0) and not sidechains:
        # getCOM case
        # convert nm to A
        coordinates = 10 * md.compute_center_of_mass(
            trajectory.atom_slice(selected_indices))
    else:
        coordinates = 10 * trajectory.xyz[:, selected_indices, :].reshape(
            (trajectory.n_frames, -1))
    return coordinates
コード例 #20
0
def SUMO_ligand_dist(tr):
    #coordinates for the Cgamma of SUMO1_F36, SUMO2_F31, or SUMO3_F31:
    select_str = '(resname==PHE and (resid==15 or resid==30 or resid==17)) and (name==CG)'
    atom_ix = tr.topology.select(select_str)[0]
    a = tr.xyz[:, atom_ix]

    # ligand all atom coordinatess:
    lig = tr.atom_slice(tr.topology.select('chainid==1'))
    # ligand center of mass:
    b = md.compute_center_of_mass(lig)

    # distance between K37/K32_CA and ligand center of mass:
    return (((a - b)**2).sum(1))**0.5
コード例 #21
0
def _get_z_variation(sweep, sim, resname=''):
    os.chdir(os.path.join(curr_dir, sweep, sim))
    xtc_file = glob.glob("Stage4_Eq*.xtc")[0]
    gro_file = glob.glob("Stage4_Eq*.gro")[0]
    traj = mdtraj.load(xtc_file, top=gro_file)
    topol = traj.topology
    lipid_dict, headgroup_dict = bilayer_analysis_functions.get_lipids(topol)
    lipid_tails, lipid_heads = bilayer_analysis_functions.get_lipid_tails(
        topol, lipid_dict)

    bot_leaf, top_leaf = bilayer_analysis_functions.identify_leaflets(
        traj, topol, lipid_dict)

    n_lipid = len(lipid_dict.keys())
    n_lipid_tails = len(lipid_tails.keys())
    n_tails_per_lipid = n_lipid_tails / n_lipid

    # Iterate through the bot leaflet or top leaflet
    # Get an atom, its residue, and its residue index
    # If the residue index hasn't been tabulated, add the average z coordinate
    already_examined_resids = set()
    top_avgs = []
    top_stds = []
    bot_avgs = []
    bot_stds = []
    for i, leaflet in enumerate((bot_leaf, top_leaf)):
        all_avgs = []
        all_stds = []
        for atomid in leaflet:
            resindex = topol.atom(atomid).residue.index
            resname_i = topol.atom(atomid).residue.name
            if str(resindex) in lipid_heads.keys() and resname in resname_i:
                if resindex not in already_examined_resids:
                    #z_stats = np.array([[np.mean(xyz), np.std(xyz)] for xyz in \
                    #     traj.xyz[:,lipid_heads[str(resindex)],2]])
                    #pdb.set_trace()
                    #z_stats = [mdtraj.compute_center_of_mass(frame)[0,2] for frame \
                    #in traj.atom_slice(lipid_heads[str(resindex)])]
                    z_stats = mdtraj.compute_center_of_mass(
                        traj.atom_slice(lipid_heads[str(resindex)]))[:, 2]
                    already_examined_resids.add(resindex)
                    all_avgs.append(z_stats)
                    #all_avgs.append(z_stats[:,0])
                    #all_stds.append(z_stats[:,1])
        if i == 0:
            bot_avgs = np.mean(np.asarray(all_avgs), axis=0)
            bot_stds = np.std(np.asarray(all_avgs), axis=0)
        else:
            top_avgs = np.mean(np.asarray(all_avgs), axis=0)
            top_stds = np.std(np.asarray(all_avgs), axis=0)
    return bot_stds, top_stds
コード例 #22
0
ファイル: add_restraint.py プロジェクト: msultan/drug_binding
def get_atoms_nearest_centroid(kinase,run_index=0):
    t=mdt.load("/home/msultan/research/kinase/drug_binding/2016/drug_binding/%s_models/%d/prot.pdb"%(kinase,run_index))
    
    all_protein_slice = t.atom_slice([i.index for i in t.top.atoms if i.residue.is_protein])
    protein_slice = t.atom_slice([i.index for i in t.top.atoms if i.residue.is_protein and i.element.name!="hydrogen"])
    drug_slice = t.atom_slice([i.index for i in t.top.atoms if i.residue.name=='LIG'])


    prot_com = mdt.compute_center_of_mass(protein_slice)
    drug_com = mdt.compute_center_of_mass(drug_slice)



    prot_atom_index =  np.argmin([np.linalg.norm(t.xyz[:,a.index,:]-prot_com) 
                                     for a in t.top.atoms])
    #since we need to limit to drug, i slice and then add back 
    drug_atom_index =  np.argmin([np.linalg.norm(t.xyz[:,a.index,:] - drug_com) \
                                         for a in t.top.atoms if a.residue.name=='LIG']) + all_protein_slice.n_atoms
    
    assert(t.top.atom(prot_atom_index).residue.is_protein)
    assert(t.top.atom(drug_atom_index).residue.name=="LIG")
    distance_between_atoms = mdt.compute_distances(t,[[prot_atom_index,drug_atom_index]])
    return prot_atom_index,drug_atom_index,distance_between_atoms
コード例 #23
0
def _map_waters(traj, water_start, frame_index):
    """ Worker function to parallelize mapping waters via kmeans

    Parameters
    ----------
    traj : mdtraj trajectory
        full atomstic trajectory
    frame index : int
        parallelizing calculation frame by frame
    water_start : int
        counter denoting which index in the CG coordiantes is water

    """
    from sklearn import cluster
    start = time.time()
    frame = traj[frame_index]
    # Get atom indices of all water oxygens
    waters = frame.topology.select('resname tip3p and name O1')

    # Get coordinates and number of all water oxygens
    n_aa_water = len(waters)
    aa_water_xyz = frame.atom_slice(waters).xyz[0, :, :]

    # Number of CG water molecules based on mapping scheme
    water_bead_mapping = 4
    n_cg_water = int(n_aa_water / water_bead_mapping)
    # Water clusters are a list (n_cg_water) of empty lists
    water_clusters = [[] for i in range(n_cg_water)]

    # Perform the k-means clustering based on the AA water xyz
    k_means = cluster.KMeans(n_clusters=n_cg_water)
    k_means.fit(aa_water_xyz)

    # Each cluster index says which cluster an atom belongs to
    for atom_index, cluster_index in enumerate(k_means.labels_):
        # Sort each water atom into the corresponding cluster
        # The item being added should be an atom index
        water_clusters[cluster_index].append(waters[atom_index])

    single_frame_coms = []
    # For each cluster, compute enter of mass
    for cg_index, water_cluster in enumerate(water_clusters):
        com = mdtraj.compute_center_of_mass(frame.atom_slice(water_cluster))
        single_frame_coms.append((frame_index, cg_index + water_start, com))
        #CG_xyz[frame_index, cg_index + water_start,:] = com
    end = time.time()
    print("K-means for frame {}: {}".format(frame_index, end - start))

    return single_frame_coms
コード例 #24
0
 def run(self):
     # determine if file already exists
     if os.path.exists(self.output_name):
         pass
     else:
         # load centers
         centers = md.load("./data/full_centers.xtc",
                           top="./prot_masses.pdb")
         # optionall calculate center of mass between pairs
         if self.center_of_mass:
             # slice domains
             iis_domain0 = self.atom_pairs[:, 0]
             iis_domain0 = np.array(iis_domain0[np.where(iis_domain0)],
                                    dtype=int)
             iis_domain1 = self.atom_pairs[:, 1]
             iis_domain1 = np.array(iis_domain1[np.where(iis_domain1)],
                                    dtype=int)
             domain0 = centers.atom_slice(iis_domain0)
             domain1 = centers.atom_slice(iis_domain1)
             # obtain masses
             center_of_mass_domain0 = md.compute_center_of_mass(domain0)
             center_of_mass_domain1 = md.compute_center_of_mass(domain1)
             # obtain distances
             diffs = np.abs(center_of_mass_domain0 - center_of_mass_domain1)
             distances = np.sqrt(np.einsum('ij,ij->i', diffs, diffs))[:,
                                                                      None]
         else:
             # get distances of atom pairs
             distances = md.compute_distances(centers,
                                              atom_pairs=self.atom_pairs)
         if self.set_points is not None:
             diffs = np.abs(distances - self.set_points)
         else:
             diffs = np.abs(distances)
         norm_dists = np.sum(diffs**self.p_norm, axis=1)**(1 / self.p_norm)
         np.save(self.output_name, norm_dists)
コード例 #25
0
def SUMO_ligand_dist(traj):
    '''
    given a SUMO1-compound trajectory, 
    compute distance between center of compound and F36CG
    '''
    #coordinates for the Cgamma of SUMO1_F36, SUMO2/3_F31
    atom_ix = traj.topology.select('residue==36 and name==CG')[0]
    a = traj.xyz[:, atom_ix]

    # ligand all atom coordinatess:
    lig = traj.atom_slice(traj.topology.select('chainid==1'))
    # ligand center of mass: 
    b = md.compute_center_of_mass(lig)

    return (((a - b) ** 2).sum(1)) ** 0.5
コード例 #26
0
def create_system_mapping(element_names, n_sections_TOTAL, t):
    # Initialize atoms with elements
    ## for loop to traverse element_names array for elements
    ## first test - only use for carbon (one element)
    ## then expand later
    ## need to allow for different types of elements together
    ## maybe use element library from msibi repo
    from mdtraj.core import element
    list(t.top.atoms)[0].element = element.carbon  # check element
    list(t.top.atoms)[0].element.mass
    for atom in t.top.atoms:
        atom.element = element.carbon  # check element

    # Map the beads accordingly
    cg_idx = 0
    start_idx = 0
    propane_map = {0: [0, 1, 2]}  ## mapping definition needs to be created
    # from search and user files
    ## TEST CODE
    ######################################################################
    ######################################################################

    ######################################################################
    ######################################################################
    ## TEST CODE

    system_mapping = {}
    for n in range(n_sections_TOTAL):
        for bead, atoms in propane_map.items():
            system_mapping[cg_idx] = [x + start_idx for x in atoms]
            start_idx += len(atoms)  # understand this part
            cg_idx += 1

    # Apply mapping for XYZ coordinates
    cg_xyz = np.empty((t.n_frames, len(system_mapping), 3))
    for cg_bead, aa_indices in system_mapping.items():
        cg_xyz[:, cg_bead, :] = md.compute_center_of_mass(
            t.atom_slice(aa_indices))

    # Apply mapping for Topology object
    cg_top = md.Topology()
    for cg_bead in system_mapping.keys():  #i got the keys keys keys
        cg_top.add_atom('carbon', element.virtual_site,
                        cg_top.add_residue('A', cg_top.add_chain()))
        ## Check element and name for items 'A'
        ## Possible interface with mbuild for better UI and aesthetics

    return cg_xyz, cg_top
コード例 #27
0
def protsize(path,name,wd):
    if not os.path.isfile(path+"/"+name):
        print("File "+path+"/"+name+" does not exist! Please check.")
        quit
    else:
        prot=md.load(path+"/"+name)
        minx=np.min(prot.xyz[0][:,0])
        miny=np.min(prot.xyz[0][:,1])
        minz=np.min(prot.xyz[0][:,2])
        maxx=np.max(prot.xyz[0][:,0])
        maxy=np.max(prot.xyz[0][:,1])
        maxz=np.max(prot.xyz[0][:,2])
        protcom=md.compute_center_of_mass(prot)
        #process pdb with AMBERTool
        os.system("reduce -Trim "+path+"/"+name+" > "+wd+"/prot-reduce.pdb ")
    return minx,maxx,miny,maxy,minz,maxz,protcom[0]
コード例 #28
0
ファイル: crosslink.py プロジェクト: dubosese/atools
def calc_hexagonal_order_freud(traj_filename, top_filename, output_filename,
                               ndx_filename, chainlength):
    from freud.box import Box
    from freud.order import HexOrderParameter

    topology = md.load(top_filename).topology
    atoms = np.array(list(topology.atoms))
    atom_names = [atom.name for atom in atoms]

    groups = read_ndx(ndx_filename)
    bottom_chains = [
        id - 1 for id in groups['bottom_chains'] if atom_names[id - 1] == 'C'
    ]
    n_chains = int(len(bottom_chains) / chainlength)
    bottom_chains = np.array_split(bottom_chains, n_chains)
    top_chains = [
        id - 1 for id in groups['top_chains'] if atom_names[id - 1] == 'C'
    ]
    top_chains = np.array_split(top_chains, n_chains)

    traj = md.load(traj_filename, top=top_filename)

    for i, group in enumerate([bottom_chains, top_chains]):
        group_COM = []
        for chain in group:
            chain_slice = traj.atom_slice(chain)
            chain_com = md.compute_center_of_mass(chain_slice)
            for com in chain_com:
                for j in range(2):
                    if com[j] < 0:
                        com[j] += traj.unitcell_lengths[0, j]
                    elif com[j] > traj.unitcell_lengths[0, j]:
                        com[j] -= traj.unitcell_lengths[0, j]
            group_COM.append(chain_com)
        group_COM = np.array(group_COM).transpose(1, 0, 2)

        rmax = 0.75
        box = Box(Lx=traj.unitcell_lengths[0, 0],
                  Ly=traj.unitcell_lengths[0, 1],
                  Lz=traj.unitcell_lengths[0, 2])

        order_parameter = []
        for xyz in group_COM:
            hex_order = HexOrderParameter(rmax, 6)
            hex_order.compute(box, xyz.astype(np.float32))
            order_parameter.append(abs(hex_order.getPsi()).mean())
        print(np.mean(order_parameter[int(len(order_parameter) / 2):]))
コード例 #29
0
def batch_coordinate_loader(trajectory,
                            surface_parameters,
                            topology=None,
                            chunk=500):
    """Generates molecular positions and centre of mass for each frame

    Parameters
    ----------
    trajectory:  str
        Path to trajectory file
    surface_parameters:  instance of SurfaceParameters
        Parameters for intrinsic surface
    topology:  str, optional
        Path to topology file
    chunk  int, optional
        Maximum chunk size for mdtraj batch loading
    """
    mol_traj = np.empty((0, surface_parameters.n_mols, 3))
    mol_vec = np.empty((0, surface_parameters.n_mols, 3))
    com_traj = np.empty((0, 3))
    cell_dim = np.zeros((0, 3))

    masses = np.repeat(surface_parameters.masses, surface_parameters.n_mols)

    for index, traj in enumerate(
            md.iterload(trajectory, chunk=chunk, top=topology)):

        cell_dim_chunk = traj.unitcell_lengths * 10
        com_chunk = md.compute_center_of_mass(traj) * 10

        traj = traj.atom_slice(surface_parameters.atom_indices)
        mol_chunk = coordinate_arrays(traj,
                                      surface_parameters.atoms,
                                      masses,
                                      mode=surface_parameters.com_mode,
                                      com_sites=surface_parameters.com_sites)

        mol_traj = np.concatenate([mol_traj, mol_chunk])
        com_traj = np.concatenate([com_traj, com_chunk])
        cell_dim = np.concatenate([cell_dim, cell_dim_chunk])

        vec_chunk = orientation(traj, surface_parameters.center_atom,
                                surface_parameters.vector_atoms)
        mol_vec = np.concatenate([mol_vec, vec_chunk])

    return mol_traj, com_traj, cell_dim, mol_vec
コード例 #30
0
ファイル: misc.py プロジェクト: jito-tj/pairing
def make_comtrj(trj):
    """Takes a trj and returns a trj with COM positions as atoms"""

    comtop = md.Topology()
    coords = np.ndarray(shape=(trj.n_frames, trj.n_residues, 3))

    for j, res in enumerate(trj.topology.residues):
        comtop.add_atom(res.name, virtual_site, comtop.add_residue(res.name, comtop.add_chain()))
        res_frame = trj.atom_slice([at.index for at in res.atoms])
        coords[:, j, :] = md.compute_center_of_mass(res_frame)

    comtrj = md.Trajectory(xyz=coords,
                           topology=comtop,
                           time=trj.time,
                           unitcell_angles=trj.unitcell_angles,
                           unitcell_lengths=trj.unitcell_lengths)

    return comtrj
コード例 #31
0
    def setUp(self):
        super(Test_COM_utils, self).setUp()
        self.pdb_file = test_filenames.top_pdb
        self.file_xtc = test_filenames.traj_xtc_stride_20
        self.top = md.load(self.pdb_file).top
        self.traj = md.load(self.file_xtc, top=self.top)

        self.traj_5_frames = self.traj[:5]
        # Very slow, but what other way of directly computing the COM is there?
        COMS_mdtraj = [
            md.compute_center_of_mass(
                self.traj_5_frames.atom_slice([aa.index for aa in rr.atoms]))
            for rr in self.top.residues
        ]
        # re order along the time axis
        self.COMS_mdtraj = _np.zeros((5, self.top.n_residues, 3))
        for ii in range(5):
            self.COMS_mdtraj[ii, :, :] = [jcom[ii] for jcom in COMS_mdtraj]
コード例 #32
0
    def _generateWindows(self):
        """ Build simWindows out from the center of mass"""
        print("*"*20)
        print("Generating windows from center of mass...")
        print("*"*20)
        non_water = self._traj.topology.select('not water')
        sub_traj = self._traj.atom_slice(non_water)
        com = mdtraj.compute_center_of_mass(sub_traj)
        center_z = round(com[0,2], 2)
        self._windows = np.zeros(self._n_windows)
        midpoint = int(self._n_windows/2)
        self._windows[midpoint] = center_z

        # Fill in lower half from centerpoint outward
        for i in range(1, midpoint+1):
            self._windows[midpoint-i] = center_z - i * self._dz
        # Fill in top half from centerpoint outward
        for i in range(midpoint+1, self._n_windows):
            self._windows[i] = self._windows[0] + i * self._dz
コード例 #33
0
    def _getTracerCoordinates(self, tracer):
        """ 

        Parameters
        ----------
        tracer : int
            Molecule number

        Notes
        -----
        Gromacs is 1-indexed, while mdtraj is 0-indexed
        Getting the coordinates of gmx resid 3 means
        getting the coordinates of mdtraj resid 2
            """
        tracer_atoms = self._traj.topology.select('resid {}'.format(tracer-1))
        sub_traj = self._traj.atom_slice(tracer_atoms)
        com = mdtraj.compute_center_of_mass(sub_traj)

        return [com[0,0], com[0,1], com[0,2]]