def fitfunc_3a(w, B): return B * A_i * N_i * 2 * pi * 100 * cos(w * deg_to_rad) w_array = nplinspace(-10, 100) popt_3a, pcov_3a = curve_fit(fitfunc_3a, w_3a, Uind_3a, sigma=Uind_3a_dsys) B_3a = popt_3a[0] B_3a_dsys = sqrt(pcov_3a[0][0]) pltext.initplot( num=3, title='Abbildung : Induktionsspannung als Funktion des Winkels', xlabel='Winkel in deg', ylabel='Induktionsspannung in V') plt.plot(w_array, fitfunc_3a(w_array, *popt_3a), label=' Fit') pltext.plotdata(w_3a, Uind_3a, Uind_3a_dsys, w_3a_dsys, label=' Measurements') pltext.set_layout(legend=True, xlim=(-10, 100), ylim=(0, 0.8)) print('\nAufgabe 3a:\n') print(val(B_3a, B_3a_dsys, 'B')) # Aufgabe 3b f_3b = npfarray([ 20.3, 40.4, 60.2, 80.1, 100.2, 120.0, 142.3, 165.0, 180.3, 200.5, 404.5, 595.5, 802.5, 1006, 1206, 1404, 1603, 1784, 2025 ]) f_3b_dsys = npfarray([ 0.1, 0.1, 0.2, 0.1, 0.3, 0.2, 0.2, 0.3, 0.3, 0.2, 0.3, 0.4, 1.5, 2, 2, 2, 3, 4, 3 ])
r_k = 755e-9 / 2. r_k_dsys = 30e-9 / 2. T = npfarray([22.6, 23.0]) T_dsys = npfarray([0.1, 0.1]) T_mv = mv(T) + T0 T_dtot = dtot(dsys_mv(T_dsys), dsto_mv(T)) nu = 9.40e-4 nu_dsys = 0.05e-4 # Teilchenbewegung pltext.initplot(num=1, title='Bewegung des Teilchens', xlabel='x in m', ylabel='y in m') plt.plot(x, y, marker='s') plt.savefig('fig1.pdf', format='pdf') # mittleres Verschiebungsquadrat r_sqr = dx**2 + dy**2 r_sqr_mv = mv(r_sqr) r_sqr_dsto = dsto_mv(r_sqr) dt_mv = mv(dt) dt_dsto = dsto_mv(dt) hist_D = r_sqr_mv / (4. * dt_mv) hist_D_dtot = 1. / (4. * dt_mv) * sqrt(r_sqr_dsto**2 + (r_sqr_mv * dt_dsto / dt_mv)**2) hist_kB = 6. * pi * nu * r_k * hist_D / T_mv hist_kB_dtot = 6. * pi / T_mv * sqrt((nu_dsys * r_k * hist_D)**2 + (nu * r_k_dsys * hist_D)**2 +
if abs(kl_U[n]) >= np.max([abs(kl_U[j]) for j in range(n, len(kl_U))]): U_top.append(abs(kl_U[n])) t_top.append(kl_t[n]) def gauss(x, A, mu, sigma): return A * exp(-(x - mu)**2 / (2. * sigma**2)) popt, pcov = curve_fit(gauss, t_top, U_top) sigma = popt[2] sigma_dtot = sqrt(pcov[2][2]) t_int = npfarray([0.1e-2 * n for n in range(-30, 91)]) pltext.initplot(num=2, title='Signalverlauf LED', xlabel='Zeit in s', ylabel='Spannung in V') plt.plot(kl_t, kl_U, label='Messwerte') plt.plot(t_int, gauss(t_int, popt[0], popt[1], popt[2]), label='Gaußfit') L = 2. * kl_v * sigma * 2. * sqrt(2. * ln(2.)) L_dtot = 2. * kl_v * sigma_dtot * 2. * sqrt(2. * ln(2.)) print() print('Kohärenzlänge LED:') print(val('sigma', sigma, sigma_dtot)) print(val('L', L, L_dtot)) plt.show()
fwhm_ka2o_err = 2 * sqrt(2 * ln(2)) * p_err_ka2o[2] l_kb2o = d * sin(p_opt_kb2o[1] * deg_to_rad) l_kb2o_err = d * cos(p_opt_kb2o[1] * deg_to_rad) * p_err_kb2o[1] * deg_to_rad l_ka2o = d * sin(p_opt_ka2o[1] * deg_to_rad) l_ka2o_err = d * cos(p_opt_ka2o[1] * deg_to_rad) * p_err_ka2o[1] * deg_to_rad x_kb1o_array = nplinspace(8.5, 9.4) x_ka1o_array = nplinspace(9.6, 10.7) pltext.initplot(num=3, title='Abbildung : Extrema erster Ordnung (LiF)', xlabel='Winkel in deg', ylabel='Zählrate in 1/s') pltext.plotdata(alpha_1o, rate_1o, rate_1o_err, label='Messwerte') plt.plot(x_kb1o_array, gauss(x_kb1o_array, *p_opt_kb1o), label=r'$K_\beta$ Fit') plt.plot(x_ka1o_array, gauss(x_ka1o_array, *p_opt_ka1o), label=r'$K_\alpha$ Fit') pltext.set_layout(xlim=(7.9, 11.1), ylim=(150, 1600)) x_kb2o_array = nplinspace(17.7, 18.8) x_ka2o_array = nplinspace(20.1, 21.2) pltext.initplot(num=4, title='Abbildung : Extrema zweiter Ordnung (LiF)', xlabel='Winkel in deg', ylabel='Zählrate in 1/s') pltext.plotdata(alpha_2o, rate_2o, rate_2o_err, label='Messwerte') plt.plot(x_kb2o_array, gauss(x_kb2o_array, *p_opt_kb2o),
fgr_fgang_dsys = npfarray([0.15, 0.15]) * 1e3 fgr_fgang_mv = mv(fgr_fgang) fgr_fgang_mv_dtot = dtot_mv(fgr_fgang, fgr_fgang_dsys) fgr_calc = 1 / (2 * pi * R_A3 * C_A3) fgr_calc_dsys = 1 / (2 * pi * R_A3 * C_A3) * sqrt((R_A3_dsys / R_A3)**2 + (C_A3_dsys / C_A3)**2) f_array = linspace(1e3, 10e3, 1000) pltext.initplot(num=1, title='Abbildung : Phase in Abhängigkeit der Frequenz', xlabel='Frequenz in Hz', ylabel='Phase in rad', scale='loglin') pltext.plotdata(f_A3, Phi, Phi_dsys, label='gemessene Phase') plt.plot([1e3, 10e3], [pi / 4, pi / 4], label='45°') plt.plot(f_array, phase_b(f_array), label='berechnet') plt.plot(f_array, phase_b_dys(f_array), label='berechnet, Fehler') plt.legend() print() print('Aufgabe 3:\n') print( tbl([['Messgröße', 'bei 45° Phase', 'Frequenzgang', 'berechnet'], lst([fgr_phase, fgr_fgang_mv, fgr_calc], [fgr_phase_dsys, fgr_fgang_mv_dtot, fgr_calc_dsys], 'f_gr in Hz')])) print( sig('Phase/Fgang', fgr_phase, fgr_phase_dsys, fgr_fgang_mv, fgr_fgang_mv_dtot)) print(sig('Phase/calc ', fgr_phase, fgr_phase_dsys, fgr_calc, fgr_calc_dsys))
chi2_pf = chi2stat.chi2(N_ag, N_ag_err, fitfunc_pf(t, *p_opt_pf)) chi2_red_pf = chi2stat.chi2_red(chi2_pf, len(N_ag), ddof=4) prob_pf = chi2stat.fit_prob(chi2_pf, len(N_ag), ddof=4) chi2_mf = chi2stat.chi2(N_ag, N_ag_err, fitfunc_mf(t, *p_opt_mf)) chi2_red_mf = chi2stat.chi2_red(chi2_mf, len(N_ag), ddof=4) prob_mf = chi2stat.fit_prob(chi2_mf, len(N_ag), ddof=4) t_array = nplinspace(0, 400) pltext.initplot(num=1, title='Abbildung : Zerfall von Silber', xlabel='Zeit in s', ylabel='# Zerfälle (mit Untergrund)', scale='linlog') pltext.plotdata(t, N_ag, N_ag_err, label='Messwerte') plt.plot(t_array, fitfunc(t_array, *p_opt), label='Fit') plt.plot(t_array, fitfunc_pf(t_array, *p_opt_pf), label='Fit + Fehler Ug') plt.plot(t_array, fitfunc_mf(t_array, *p_opt_mf), label='Fit - Fehler Ug') pltext.set_layout(xlim=(0, 4e2), ylim=(2e1, 4e2)) print('\nSilber:\n') print(val(unterg_ag_mv, unterg_ag_mv_dsto, name='Untergrund')) print() print( tbl([['', 'A1', 'l1', 'A2', 'l2'], [ 'Fitwerte', val(p_opt[0], p_err[0]), val(p_opt[1], p_err[1]), val(p_opt[2], p_err[2]), val(p_opt[3], p_err[3])
# Einzelspaltbreite lage_es_hmax = 499.79 lage_es_min = (npfarray([529.91, 561.26, 590.92, 623.13, 653.63]) - lage_es_hmax) * mpp lage_es_max = (lage_es_hmax - npfarray([456.82, 424.68, 394.69, 363.78, 333.80])) * mpp lage_es_d = npfarray([3, 3, 3, 3, 3]) * mpp n_es = npfarray([1, 2, 3, 4, 5]) pltext.initplot(num=1, title='Position Extrema am Einzelspalt', xlabel='Ordnung', ylabel='Abstand') [es_sl, es_dsl, es_itc, es_ditc] = linreg(n_es, lage_es_min, dy=lage_es_d) plt.plot([0, 6], [es_itc, es_itc + 6 * es_sl]) pltext.plotdata(n_es, lage_es_min, dy=lage_es_d, label='Minima') pltext.plotdata((lage_es_max - es_itc) / es_sl, lage_es_max, dx=lage_es_max / es_sl + n_es * (es_dsl / es_sl - 1) - (es_itc + es_ditc) / es_sl, label='Maxima') plt.xlim((0.8, 6)) plt.ylim((0.0, 0.0014)) plt.legend(loc=2) es_breite = schirmabstand * laser / es_sl es_breite_err = schirmabstand * laser * es_dsl / es_sl**2 print() print(val('ES Breite', es_breite, es_breite_err))
def fit_func_alpha(x, sqrt_Er, sig12): return sqrt_Er * (x - sig12) * sqrt(1 / n1**2 - 1 / n2**2) popt, pcov = curve_fit(fit_func_alpha, Z, sqrt_K_alpha, sigma=Delta_sqrt_K_alpha, p0=p0) sqrt_Er_alpha = popt[0] Delta_sqrt_Er_alpha = sqrt(pcov[0, 0]) sig12_alpha = popt[1] Delta_sig12_alpha = sqrt(pcov[1, 1]) plt.plot(Z, fit_func_alpha(Z, *popt)) print() print('K_alpha:') print(val('sqrt(Er)', sqrt_Er_alpha, Delta_sqrt_Er_alpha)) print( sig('Abweichung', sqrt_Er_alpha, Delta_sqrt_Er_alpha, sqrt_Er_lit, perc=True)) print(val('sig12', sig12_alpha, Delta_sig12_alpha)) print(sig('Abweichung', sig12_alpha, Delta_sig12_alpha, sig12_lit, perc=True)) # K_beta mit Ti
t_1perc = 10**4 * k100 / k0**2 * (1 + k100 / k0) k_delta = k100 - k0 k_delta_err = sqrt(k100_err**2 + k0_err**2) t_array = nplinspace(50, 190) pltext.initplot(num=2, title='Abbildung : Ereignisse als Funktion der Zeit', xlabel='Zeit in s', ylabel='Ereignisse') pltext.plotdata([60, 180], [N1min[0], N3min[0]], [N1min_dsto[0], N3min_dsto[0]], label=r'Messwerte $U_0+0V$') pltext.plotdata([60, 180], [N1min[1], N3min[1]], [N1min_dsto[1], N3min_dsto[1]], label=r'Messwerte $U_0+100V$') plt.plot(t_array, fitfunc_3(t_array, *p_opt_0), label=r'Fit $U_0 +0V$') plt.plot(t_array, fitfunc_3(t_array, *p_opt_100), label=r'Fit $U_0 +100V$') pltext.set_layout(xlim=(50, 190), ylim=(0.9e4, 3.1e4)) print('\nAufgabe 3\n') print( val(anstieg_1min, anstieg_1min_dsto, name='abs Anstieg (1min)', percerr=True)) print( val(rel_anstieg_1min, rel_anstieg_1min_dsto, name='rel Anstieg (1min)', percerr=True)) print(
print() print(val(popt[0], sqrt(pcov[0][0]), 'V')) print(val(popt[1], sqrt(pcov[1][1]), 'W1')) print(val(popt[2], sqrt(pcov[2][2]), 'W2')) print(val(popt[3], sqrt(pcov[3][3]), 'n1')) print(val(popt[4], sqrt(pcov[4][4]), 'n2')) pltext.initplot(num=2, title='Abbildung : Frequenzgang (Fit)', xlabel='Frequenz in Hz', ylabel='g(f)', scale='loglog') pltext.plotdata(f[17:-45], g[17:-45], label='Messwerte') f_array = nplinspace(4e2, 1.2e5) plt.plot(f_array, fitfunc(f_array, *popt), label='Fit') pltext.set_layout(legend=True, xlim=(4e2, 1.2e5), ylim=(1e1, 2e3)) def fitfuncsquare(f, V, W1, W2, n1, n2): return fitfunc(f, V, W1, W2, n1, n2)**2 B = integrate.quad(fitfuncsquare, f[17], f[-45], args=tuple(popt))[0] B_dsys = 0.02 * B print(val(B, B_dsys, name='Integral')) R = npfarray([5, 10, 15, 20, 25, 30]) * 1e3 R_dsys = 0.005 * R U_aus = npfarray([2.4146, 3.1253, 3.7027, 4.2104, 4.6677, 5.0843]) * 1e-3