コード例 #1
0
ファイル: PAP22-253.py プロジェクト: stephanlachnit/PAP
    [30, 30, 30, 30, 30, 30, 30, 60, 120, 120, 120, 120, 120, 120, 300])
d = npfarray(
    [0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.9])
N = npfarray(
    [1196, 677, 449, 289, 189, 143, 78, 86, 123, 91, 61, 68, 65, 42, 131])
N_err = sqrt(N)

N_t_ratio = N / t - ug_1s
N_t_ratio_err = sqrt((N_err / t)**2 + ug_1s_err**2)

pltext.initplot(num=1,
                title=r'Abbildung   : Absoprtion $\beta$-Strahlung',
                xlabel='Dicke in mm',
                ylabel='Ereignisse pro Sekunde',
                scale='linlog')
pltext.plotdata(d, N_t_ratio, N_t_ratio_err, label='Messwerte')
pltext.set_layout(xlim=(-0.2, 5.2), ylim=(1e-2, 6e1))

pltext.initplot(num=2,
                title=r'Abbildung   : Absoprtion $\beta$-Strahlung',
                xlabel='Dicke in mm',
                ylabel='Ereignisse pro Sekunde',
                scale='linlin')
pltext.plotdata(d[-6:], N_t_ratio[-6:], N_t_ratio_err[-6:], label='Messwerte')
[slope, dslope, yitc, dyitc] = linreg(d[-6:],
                                      N_t_ratio[-6:],
                                      N_t_ratio_err[-6:],
                                      plot=True,
                                      prange=(2.5, 5))
pltext.set_layout(xlim=(2.5, 5), ylim=(-0.15, 0.5))
コード例 #2
0
ファイル: PAP22-242.py プロジェクト: stephanlachnit/PAP
Vss = npfarray([0.3,1.0]) / 10
Vss_dsys = npfarray([5e-3,20e-3]) / 10
V_A1 = U_A1 / Vss[0]
V_A1_dsys = 1/Vss[0] * sqrt(U_A1_dsys**2 + (U_A1 * Vss_dsys[0] / Vss[0])**2)
V_A2 = U_A2 / Vss[0]
V_A2_dsys = 1/Vss[0] * sqrt(U_A2_dsys**2 + (U_A2 * Vss_dsys[0] / Vss[0])**2)
V_A3 = U_A3 / Vss[1]
V_A3_dsys = 1/Vss[1] * sqrt(U_A3_dsys**2 + (U_A3 * Vss_dsys[1] / Vss[1])**2)
V_A4 = U_A4 / Vss[1]
V_A4_dsys = 1/Vss[1] * sqrt(U_A4_dsys**2 + (U_A4 * Vss_dsys[1] / Vss[1])**2)
V_A5 = U_A5 / Vss[1]
V_A5_dsys = 1/Vss[1] * sqrt(U_A5_dsys**2 + (U_A5 * Vss_dsys[1] / Vss[1])**2)

pltext.initplot(num=1,title='Abbildung   : Frequenzgang des Verstärkers (Spannung)',xlabel='Frequenz in Hz',ylabel='Spannung in V',scale='loglog')
pltext.plotdata(f_1,U_A1,U_A1_dsys,f_1_dsys,label='680k',caps=False)
pltext.plotdata(f_1,U_A2,U_A2_dsys,f_1_dsys,label='274k',caps=False)
pltext.plotdata(f_1,U_A3,U_A3_dsys,f_1_dsys,label='48k7',caps=False)
pltext.plotdata(f_1,U_A4,U_A4_dsys,f_1_dsys,label='48k7 mit 560pF Parallelkapazität',caps=False)
pltext.plotdata(f_2,U_A5,U_A5_dsys,f_2_dsys,label='48k7 mit 47nF Eingangskapazität',caps=False)
pltext.set_layout(legend=True,xlim=(260,3.4e5),ylim=(3e-2,8))

pltext.initplot(num=2,title='Abbildung   : Frequenzgang des Verstärkers (Verstärkung)',xlabel='Frequenz in Hz',ylabel='Verstärkung',scale='loglog')
pltext.plotdata(f_1,V_A1,V_A1_dsys,f_1_dsys,label='680k',caps=False,connect=True)
pltext.plotdata(f_1,V_A2,V_A2_dsys,f_1_dsys,label='274k',caps=False,connect=True)
pltext.plotdata(f_1,V_A3,V_A3_dsys,f_1_dsys,label='48k7',caps=False,connect=True)
pltext.plotdata(f_1,V_A4,V_A4_dsys,f_1_dsys,label='48k7 mit 560pF Parallelkapazität',caps=False,connect=True)
pltext.plotdata(f_2,V_A5,V_A5_dsys,f_2_dsys,label='48k7 mit 47nF Eingangskapazität',caps=False,connect=True)
pltext.set_layout(legend=True,xlim=(260,3.4e5),ylim=(3e-1,3e2))

print()
コード例 #3
0
ファイル: PAP22-245.py プロジェクト: stephanlachnit/PAP
    return B * A_i * N_i * 2 * pi * 100 * cos(w * deg_to_rad)


w_array = nplinspace(-10, 100)
popt_3a, pcov_3a = curve_fit(fitfunc_3a, w_3a, Uind_3a, sigma=Uind_3a_dsys)

B_3a = popt_3a[0]
B_3a_dsys = sqrt(pcov_3a[0][0])

pltext.initplot(
    num=3,
    title='Abbildung   : Induktionsspannung als Funktion des Winkels',
    xlabel='Winkel in deg',
    ylabel='Induktionsspannung in V')
plt.plot(w_array, fitfunc_3a(w_array, *popt_3a), label=' Fit')
pltext.plotdata(w_3a, Uind_3a, Uind_3a_dsys, w_3a_dsys, label=' Measurements')
pltext.set_layout(legend=True, xlim=(-10, 100), ylim=(0, 0.8))

print('\nAufgabe 3a:\n')
print(val(B_3a, B_3a_dsys, 'B'))

# Aufgabe 3b
f_3b = npfarray([
    20.3, 40.4, 60.2, 80.1, 100.2, 120.0, 142.3, 165.0, 180.3, 200.5, 404.5,
    595.5, 802.5, 1006, 1206, 1404, 1603, 1784, 2025
])
f_3b_dsys = npfarray([
    0.1, 0.1, 0.2, 0.1, 0.3, 0.2, 0.2, 0.3, 0.3, 0.2, 0.3, 0.4, 1.5, 2, 2, 2,
    3, 4, 3
])
Vss_ind_3b = npfarray([
コード例 #4
0
ファイル: PAP22-241.py プロジェクト: stephanlachnit/PAP
fgr_fgang = npfarray([3.16, 3.58]) * 1e3
fgr_fgang_dsys = npfarray([0.15, 0.15]) * 1e3
fgr_fgang_mv = mv(fgr_fgang)
fgr_fgang_mv_dtot = dtot_mv(fgr_fgang, fgr_fgang_dsys)
fgr_calc = 1 / (2 * pi * R_A3 * C_A3)
fgr_calc_dsys = 1 / (2 * pi * R_A3 * C_A3) * sqrt((R_A3_dsys / R_A3)**2 +
                                                  (C_A3_dsys / C_A3)**2)

f_array = linspace(1e3, 10e3, 1000)

pltext.initplot(num=1,
                title='Abbildung   : Phase in Abhängigkeit der Frequenz',
                xlabel='Frequenz in Hz',
                ylabel='Phase in rad',
                scale='loglin')
pltext.plotdata(f_A3, Phi, Phi_dsys, label='gemessene Phase')
plt.plot([1e3, 10e3], [pi / 4, pi / 4], label='45°')
plt.plot(f_array, phase_b(f_array), label='berechnet')
plt.plot(f_array, phase_b_dys(f_array), label='berechnet, Fehler')
plt.legend()

print()
print('Aufgabe 3:\n')
print(
    tbl([['Messgröße', 'bei 45° Phase', 'Frequenzgang', 'berechnet'],
         lst([fgr_phase, fgr_fgang_mv, fgr_calc],
             [fgr_phase_dsys, fgr_fgang_mv_dtot, fgr_calc_dsys],
             'f_gr in Hz')]))
print(
    sig('Phase/Fgang', fgr_phase, fgr_phase_dsys, fgr_fgang_mv,
        fgr_fgang_mv_dtot))
コード例 #5
0
slope_dtot = sqrt(pcov[0][0])
yitc_dtot = sqrt(pcov[1][1])

vert_D = slope / 4.
vert_D_dtot = slope_dtot / 4.
vert_kB = 6. * pi * nu * r_k * vert_D / T_mv
vert_kB_dtot = 6. * pi / T_mv * sqrt((nu_dsys * r_k * vert_D)**2 +
                                     (nu * r_k_dsys * vert_D)**2 +
                                     (nu * r_k * vert_D_dtot)**2 +
                                     (nu * r_k * vert_D * T_dtot / T_mv)**2)

pltext.initplot(num=3,
                title='Kumulative Verteilung der Verschiebungsquadrate',
                xlabel='Zeit in s',
                ylabel='Summe $r_i^2$ in μm')
pltext.plotdata(t[:-1], r_kum)
plt.plot(t[:-1], lin(t[:-1], slope, yitc), label='Ausgleichsgerade')
plt.plot(t[:-1],
         lin(t[:-1], slope - slope_dtot, yitc + yitc_dtot),
         label='Fehlergerade')
plt.xlim(0.0, 177.0)
plt.ylim(-0.04e-10, 2.20e-10)
plt.legend(loc='upper left')
plt.savefig('fig3.pdf', format='pdf')

print()
print('Kumulative Verteilung:')
print(val('Steigung', slope, slope_dtot))
print(val('Diffusionskonstante D', vert_D, vert_D_dtot))
print(val('Bolatzmannkonstante k', vert_kB, vert_kB_dtot))
コード例 #6
0
ファイル: PAP22-252.py プロジェクト: stephanlachnit/PAP
chi2_pf = chi2stat.chi2(N_ag, N_ag_err, fitfunc_pf(t, *p_opt_pf))
chi2_red_pf = chi2stat.chi2_red(chi2_pf, len(N_ag), ddof=4)
prob_pf = chi2stat.fit_prob(chi2_pf, len(N_ag), ddof=4)

chi2_mf = chi2stat.chi2(N_ag, N_ag_err, fitfunc_mf(t, *p_opt_mf))
chi2_red_mf = chi2stat.chi2_red(chi2_mf, len(N_ag), ddof=4)
prob_mf = chi2stat.fit_prob(chi2_mf, len(N_ag), ddof=4)

t_array = nplinspace(0, 400)
pltext.initplot(num=1,
                title='Abbildung   : Zerfall von Silber',
                xlabel='Zeit in s',
                ylabel='# Zerfälle (mit Untergrund)',
                scale='linlog')
pltext.plotdata(t, N_ag, N_ag_err, label='Messwerte')
plt.plot(t_array, fitfunc(t_array, *p_opt), label='Fit')
plt.plot(t_array, fitfunc_pf(t_array, *p_opt_pf), label='Fit + Fehler Ug')
plt.plot(t_array, fitfunc_mf(t_array, *p_opt_mf), label='Fit - Fehler Ug')
pltext.set_layout(xlim=(0, 4e2), ylim=(2e1, 4e2))

print('\nSilber:\n')
print(val(unterg_ag_mv, unterg_ag_mv_dsto, name='Untergrund'))
print()
print(
    tbl([['', 'A1', 'l1', 'A2', 'l2'],
         [
             'Fitwerte',
             val(p_opt[0], p_err[0]),
             val(p_opt[1], p_err[1]),
             val(p_opt[2], p_err[2]),
コード例 #7
0
ファイル: PAP22-255.py プロジェクト: stephanlachnit/PAP
# measure version 1.9.2s
from measure import plt, pltext, linreg, sqrt, val, sin, cos, h as h_lit, NA as NA_lit, c, e, deg_to_rad, rad_to_deg, dev, arcsin, spcurvefit, exp, pi, nplinspace, ln, tbl, lst, npfarray, mv, dtot_mv, loadtxt

# Aufgabe 1a
alpha, rate = loadtxt('data/255_1a.txt', unpack=True)
rate_err = sqrt(rate)

pltext.initplot(num=1,
                title='Abbildung   : Zählrate als Funktion des Winkels (LiF)',
                xlabel='Winkel in deg',
                ylabel='Zählrate in 1/s')
pltext.plotdata(alpha, rate, rate_err, label='Messwerte', connect=True)
pltext.set_layout(xlim=(2, 22.5), ylim=(-0.1e3, 1.6e3))

pltext.initplot(num=2,
                title='Abbildung   : Zählrate als Funktion des Winkels (LiF)',
                xlabel='Winkel in deg',
                ylabel='Zählrate in 1/s')
pltext.plotdata(alpha, rate, rate_err, label='Messwerte')
[slope, slope_err, yitc, yitc_err] = linreg(alpha[12:18],
                                            rate[12:18],
                                            rate_err[12:18],
                                            plot=True,
                                            prange=(4, 7))
pltext.set_layout(xlim=(4, 7), ylim=(-100, 400))

a1_uncorr = -yitc / slope * deg_to_rad
a1_uncorr_err = 1 / slope * sqrt(yitc_err**2 +
                                 (yitc / slope * slope_err)**2) * deg_to_rad

Ug = mv(rate[0:12])
コード例 #8
0
ファイル: PAP21-233s.py プロジェクト: stephanlachnit/PAP
# Einzelspaltbreite
lage_es_hmax = 499.79
lage_es_min = (npfarray([529.91, 561.26, 590.92, 623.13, 653.63]) -
               lage_es_hmax) * mpp
lage_es_max = (lage_es_hmax -
               npfarray([456.82, 424.68, 394.69, 363.78, 333.80])) * mpp
lage_es_d = npfarray([3, 3, 3, 3, 3]) * mpp
n_es = npfarray([1, 2, 3, 4, 5])

pltext.initplot(num=1,
                title='Position Extrema am Einzelspalt',
                xlabel='Ordnung',
                ylabel='Abstand')
[es_sl, es_dsl, es_itc, es_ditc] = linreg(n_es, lage_es_min, dy=lage_es_d)
plt.plot([0, 6], [es_itc, es_itc + 6 * es_sl])
pltext.plotdata(n_es, lage_es_min, dy=lage_es_d, label='Minima')
pltext.plotdata((lage_es_max - es_itc) / es_sl,
                lage_es_max,
                dx=lage_es_max / es_sl + n_es * (es_dsl / es_sl - 1) -
                (es_itc + es_ditc) / es_sl,
                label='Maxima')
plt.xlim((0.8, 6))
plt.ylim((0.0, 0.0014))
plt.legend(loc=2)

es_breite = schirmabstand * laser / es_sl
es_breite_err = schirmabstand * laser * es_dsl / es_sl**2
print()
print(val('ES Breite', es_breite, es_breite_err))

# Doppelspaltabstand
コード例 #9
0
ファイル: PAP22-256.py プロジェクト: stephanlachnit/PAP
p0 = npfarray([sqrt_Er_lit, sig12_lit])

print()
print(val('Literaturwert sqrt(Er)', sqrt_Er_lit))

# K_alpha
K_alpha = npfarray([6.42, 17.47, 8.08, 4.49, 21.90, 15.79, 8.68, 7.51])
Delta_K_alpha = npfarray([0.16, 0.17, 0.15, 0.16, 0.20, 0.17, 0.16, 0.15])
sqrt_K_alpha = sqrt(K_alpha)
Delta_sqrt_K_alpha = 1 / 2 * 1 / sqrt(K_alpha) * Delta_K_alpha

pltext.initplot(num=1,
                title=r'$\sqrt{E_\alpha}$ als Funktion von $Z$',
                xlabel=r'$Z$',
                ylabel=r'$\sqrt{E_\alpha}$ in $\sqrt{keV}$')
pltext.plotdata(x=Z, y=sqrt_K_alpha, dy=Delta_sqrt_K_alpha)

n1 = 1
n2 = 2


def fit_func_alpha(x, sqrt_Er, sig12):
    return sqrt_Er * (x - sig12) * sqrt(1 / n1**2 - 1 / n2**2)


popt, pcov = curve_fit(fit_func_alpha,
                       Z,
                       sqrt_K_alpha,
                       sigma=Delta_sqrt_K_alpha,
                       p0=p0)
コード例 #10
0
ファイル: PAP21-222s.py プロジェクト: stephanlachnit/PAP
Q_V_pv = Qel - Qab - wk_Wpv_mv
Q_V_pv_dtot = sqrt(Qel_dtot**2 + Qab_dtot**2 + wk_Wpv_dsto**2)
Q_V_D = Qel - Qab - W_D
Q_V_D_dtot = sqrt(Qel_dtot**2 + Qab_dtot**2 + W_D_dsys**2)

P_V_pv = Q_V_pv * wk_f_mv
P_V_pv_dtot = sqrt((Q_V_pv_dtot * wk_f_mv)**2 + (Q_V_pv * wk_f_dsto)**2)
P_V_D = Q_V_D * wk_f_mv
P_V_D_dtot = sqrt((Q_V_D_dtot * wk_f_mv)**2 + (Q_V_D * wk_f_dsto)**2)

wk_n_th = wk_Wpv_mv / Qel
wk_n_th_dtot = 1 / Qel * sqrt(wk_Wpv_dsto**2 + (wk_Wpv_mv * Qel_dtot / Qel)**2)
wk_n_eff = W_D / Qel
wk_n_eff_dsys = 1 / Qel * sqrt(W_D_dsys**2 + (W_D * Qel_dtot / Qel)**2)

print()
print(tbl([['Qel']+lst(Qel,Qel_dtot),['Qab']+lst(Qab,Qab_dtot),['Wpv']+lst(wk_Wpv_mv,wk_Wpv_dsto),['W_D']+lst(W_D,W_D_dsys)]))
print(tbl([['Pel']+lst(Pel,Pel_dtot),['Pab']+lst(Pab,Pab_dtot),['Ppv']+lst(Ppv,Ppv_dsto),['P_D']+lst(P_D,P_D_dtot)]))
print(tbl([['Q_V (Wpv)']+lst(Q_V_pv,Q_V_pv_dtot),['Q_V (W_D)']+lst(Q_V_D,Q_V_D_dtot),['P_V (Wpv)']+lst(P_V_pv,P_V_pv_dtot),['P_V (W_D)']+lst(P_V_D,P_V_D_dtot)]))
print(tbl([['f']+lst(wk_f_mv,wk_f_dsto),['F']+lst(wk_F,wk_F_dsys),['n_th']+lst(wk_n_th,wk_n_th_dtot),['n_eff']+lst(wk_n_eff,wk_n_eff_dsys)]))

pltext.initplot(title='Wirkungsgrade in Abhängigkeit von der Frequenz', xlabel='Frequenz f / Hz', ylabel='Wirkungsgrad')
pltext.plotdata(wk_f_mv, wk_n_th, wk_n_th_dtot, wk_f_dsto, label=r'$n_{th}$', connect=True)
pltext.plotdata(wk_f_mv, wk_n_eff, wk_n_eff_dsys, wk_f_dsto, label=r'$n_{eff}$', connect=True)
plt.xlim(3.75,5.875)
plt.ylim(0.0,0.1)
plt.legend(loc='upper left')
plt.savefig('fig0.pdf', format='pdf')
plt.show()
コード例 #11
0
ファイル: PAP22-251.py プロジェクト: stephanlachnit/PAP
# measure version 1.8.12s
from measure import plt, pltext, npfarray, linreg, sqrt, val, dev, exp, pi, spcurvefit, nplinspace, tbl
from numpy import loadtxt
from scipy.special import gamma

# Aufgabe 2
U = npfarray([420, 445, 470, 495, 520, 545, 570])
N = npfarray([1887, 2330, 2337, 2359, 2407, 2374, 2310])
N_dsto = sqrt(N)

pltext.initplot(num=1,
                title='Abbildung   : Zählrohrcharakteristik',
                xlabel='Spannung in V',
                ylabel='Ereignisse')
pltext.plotdata(U, N, N_dsto, label='Messwerte')
[slope, dslope] = linreg(U[1:],
                         N[1:],
                         N_dsto[1:],
                         plot=True,
                         prange=(410, 580))[0:2]
pltext.set_layout(xlim=(410, 580), ylim=(1800, 2500))

U0 = 510

print('\nAufgabe 2\n')
print(val(slope, dslope, name='Steigung'))

# Aufgabe 3
U = [510, 610]
N1min = npfarray([9838, 9871])
N1min_dsto = sqrt(N1min)
コード例 #12
0
ファイル: PAP22-243.py プロジェクト: stephanlachnit/PAP
f, U_aus = np.loadtxt('./data/243.txt',
                      skiprows=1,
                      usecols=(0, 1),
                      unpack=True)

D = 1e-3
U_ein = 0.2
g = U_aus / (U_ein * D)

pltext.initplot(num=1,
                title='Abbildung   : Frequenzgang (Messwerte)',
                xlabel='Frequenz in Hz',
                ylabel='g(f)',
                scale='loglog')
pltext.plotdata(f, g)
pltext.set_layout(xlim=(1e2, 1e6), ylim=(3e0, 2e3))


def fitfunc(f, V, W1, W2, n1, n2):
    return V / (np.sqrt(1 + 1 /
                        (f / W1)**(2 * n1)) * np.sqrt(1 + (f / W2)**(2 * n2)))


V = 1000
W1 = 1000
W2 = 50000
n1 = 5
n2 = 5
p0 = (V, W1, W2, n1, n2)