コード例 #1
0
def medical_D(path_to_alarms_time):
    alarms = ['Yellow Alarm', 'Red Alarm']
    total_alarms = []
    sheets = []
    yellow_dataframe = pd.read_excel(path_to_alarms_time + 'Alarm_Time.xlsx',
                                     sheet_name=alarms[0])
    red_dataframe = pd.read_excel(path_to_alarms_time + 'Alarm_Time.xlsx',
                                  sheet_name=alarms[1])
    dataframe = pd.concat([yellow_dataframe, red_dataframe],
                          axis=0).sort_values(by='Row')
    dataframe = dataframe.reset_index(drop=True)
    unique_beds = dataframe['Bed Label'].unique().tolist()
    med_dataframe = md.AlarmDataFrame()
    med_dataframe.set_dataframe(dataframe)
    med_dataframe.analize(action_type=unique_beds, by_label=['Bed Label'])
    beds_dataframe = med_dataframe.get_dataframe()[1]
    unique_alarm_trigger = md.get_unique_alarms(dataframe, flag='P')
    for j in range(len(unique_alarm_trigger)):
        alarm_trigger_dataframe = []
        for k in range(0, len(beds_dataframe)):
            alarm_trigger_dataframe.append(
                md.alarm_deep_analysis(beds_dataframe[k],
                                       unique_alarm_trigger[j],
                                       bed_info=True,
                                       unique=True))
            if alarm_trigger_dataframe[len(alarm_trigger_dataframe) -
                                       1] is None:
                alarm_trigger_dataframe.pop()
        if alarm_trigger_dataframe:
            total_alarms.append(
                pd.concat(alarm_trigger_dataframe, axis=0, sort=True))
            colon = re.search(r':', unique_alarm_trigger[j])
            slash = re.search(r'/', unique_alarm_trigger[j])
            if not colon is None:
                sheets.append(unique_alarm_trigger[j].replace(':', '|'))
            elif not slash is None:
                sheets.append(unique_alarm_trigger[j].replace('/', '|'))
            else:
                sheets.append(unique_alarm_trigger[j])
            total_alarms[len(total_alarms) -
                         1] = total_alarms[len(total_alarms) -
                                           1].fillna(value=0)
    total_alarms = pd.concat(total_alarms, axis=0)
    total_alarms = total_alarms.fillna(value=0)
    md.save_excel(total_alarms, name='AlarmTriggers', sheet_name='Sheet1')
コード例 #2
0
def medical_C(path_to_alarms_time):
    alarms = ['Yellow Alarm', 'Red Alarm']
    physiological_dataframe = []
    sheets = []
    for alarm in alarms:
        dataframe = pd.read_excel(path_to_alarms_time + 'Alarm_Time.xlsx',
                                  sheet_name=alarm)
        sheets.append(alarm)
        physiological_dataframe.append(md.threshold_feature_include(dataframe))
        if alarm == 'Yellow Alarm':
            symbol = '✱'
            single = []
            double = []
            for j in range(len(dataframe)):
                f = re.search(r'^' + symbol * 2, dataframe['Action'][j])
                if not f is None:
                    double.append(j)
                else:
                    single.append(j)
            if len(single) == 0 or len(double) == 0:
                continue
            else:
                if len(single) > 0:
                    physiological_dataframe.append(
                        physiological_dataframe[len(physiological_dataframe) -
                                                1].iloc[single])
                    sheets.append('Single ' + symbol)
                if len(double) > 0:
                    physiological_dataframe.append(physiological_dataframe[
                        len(physiological_dataframe) -
                        2].iloc[double])  #changed 2 to 1
                    sheets.append('Double ' + symbol)
            unique_alarms = md.get_unique_alarms(dataframe, flag='P')
            physiological_dataframe.append(
                md.get_threshold_dataframe(dataframe, unique_alarms))
            sheets.append(alarm + ' Activity')
        else:
            unique_alarms = md.get_unique_alarms(dataframe, flag='P')
            physiological_dataframe.append(
                md.get_threshold_dataframe(dataframe, unique_alarms))
            sheets.append(alarm + ' Activity')
    md.save_excel(physiological_dataframe,
                  name='PhyAlarms_Threshold',
                  sheet_name=sheets)
コード例 #3
0
def medical_E(name, sheet_name='Sheet1'):
    med_dataframe = md.AlarmDataFrame(name + '.xlsx', sheet_name)
    unique_actions = med_dataframe.get_dataframe()[0]['Action_Type'].unique(
    ).tolist()
    med_dataframe.analize(action_type=unique_actions, by_label=['Action_Type'])
    dataframe = med_dataframe.get_others()[0]
    unique_alarms = md.get_unique_alarms(dataframe, flag='N')
    alarm_list_counter = [0 for i in unique_alarms]
    dummy = ''
    for row in dataframe['Action']:
        i = 0
        found = False
        search = re.search(r'^.*?(?=\s*\d{1,4}/)|^.*?(?<=User Request)' \
                               + '|^.*?(?<=Limit)|^.*?(?=:)|^.*?(?=\s+set)|^.*?(?=\s+to)|^.*?(?=\s+from)|^.*', row)
        if not search is None:
            if search.group() == "12 Lead":
                dummy = search.group() + " printed"
            else:
                remove = re.search(
                    r'^.*?(?=Order)|(?:\s+[A-Z]{1,3}\d*\.{1}[A-Z]*\d+)',
                    search.group())
                if not remove is None:
                    dummy = search.group().replace(remove.group(), '')
                else:
                    search = re.search(
                        r'^.*?(?=\s+from)|^.*?(?=\s+for)|^.*?(?=\s+is)|^.*',
                        search.group())
                    dummy = search.group()
        for alarm in unique_alarms:
            if alarm == dummy:
                found = True
                break
            i += 1
        if found:
            alarm_list_counter[i] += 1
    alarm_dataframe = pd.concat([
        pd.DataFrame(unique_alarms, columns=['Alarms']),
        pd.DataFrame(alarm_list_counter, columns=['# of Ocurrences'])
    ],
                                axis=1)
    md.save_excel(alarm_dataframe,
                  name='OtherAlarms',
                  sheet_name='Other Activity')
コード例 #4
0
def medical_B(name, sheet_name='Sheet1'):
    alarm_type = [
        'Logged Inop', 'Yellow Inop', 'Red Inop', 'Yellow Alarm', 'Red Alarm'
    ]
    sheets = alarm_type[:]
    med_dataframe = md.AlarmDataFrame(data_path=name + '.xlsx',
                                      sheet_name=sheet_name)
    med_dataframe.analize(action_type=alarm_type, by_label=['Action_Type'])
    dataframes = med_dataframe.get_dataframe()[1]
    for i in range(len(dataframes) - 1, -1, -1):
        if dataframes[i].empty:
            del dataframes[i]
        else:
            unique_devices = dataframes[i]['Device Name'].unique().tolist()
            med_dataframe.set_dataframe(dataframes[i])
            med_dataframe.analize(action_type=unique_devices,
                                  by_label=['Device Name'])
            dataframes[i] = md.time_feature_include(
                med_dataframe.get_dataframe()[1])
    med_dataframe.set_dataframe(pd.concat([i for i in dataframes], axis=0))
    med_dataframe.analize(action_type=alarm_type, by_label=['Action_Type'])
    single, double = med_dataframe.get_alarm_priority()
    if len(single) > 1:
        sheets.append('Single ✱')
        sheets.append('Single !')
    else:
        symbol = re.search(r'\!', single[0]['Action'][0])
        if not symbol is None:
            sheets.append('Single !')
        else:
            sheets.append('Single ✱')
    if len(double) > 1:
        sheets.append('Double ✱')
        sheets.append('Double !')
    else:
        symbol = re.search(r'\!', double[0]['Action'][0])
        if not symbol is None:
            sheets.append('Double !')
        else:
            sheets.append('Double ✱')
    i = 0
    dataframes = []
    for frame in med_dataframe.get_dataframe()[1] + single + double:
        if not frame.empty:
            dataframes.append(frame)
        else:
            del sheets[i]
        i += 1
    md.save_excel(dataframe=dataframes, name='Alarm_Time', sheet_name=sheets)
    #-----------------------------------------------------------------------------------
    # Part B: InopAlarms_Time.xlsx
    inop = []
    physiological = []
    for frame in med_dataframe.get_dataframe()[1]:
        if not frame.empty:
            if 'Inop' in frame['Action_Type'][0]:
                inop.append(frame)
            else:
                physiological.append(frame)
    dataframes = []
    sheets = []
    for frame in inop:
        unique_devices = frame['Device Name'].unique().tolist()
        sheets.append(frame['Action_Type'][0])
        if 'Yellow' in frame['Action_Type'][0]:
            P = True
        else:
            P = False
        dataframes.append(
            md.get_alarms_per_device(frame,
                                     list_of_devices=unique_devices,
                                     priority_dataframe=P,
                                     priority_symbol='!'))
        sheets.append(sheets[len(sheets) - 1] + 'Activity')
        unique_alarms = md.get_unique_alarms(frame, flag='I')
        dataframes.append(md.get_timing_dataframe(frame, unique_alarms))
    md.save_excel(dataframe=dataframes,
                  name='Inop_Alarms_Time',
                  sheet_name=sheets)
    #------------------------------------------------------------------------------------
    # Part B: PhyAlarms_Time.xlsx
    dataframes = []
    sheets = []
    for frame in physiological:
        unique_devices = frame['Device Name'].unique().tolist()
        sheets.append(frame['Action_Type'][0])
        if 'Yellow' in frame['Action_Type'][0]:
            P = True
        else:
            P = False
        dataframes.append(
            md.get_alarms_per_device(frame,
                                     list_of_devices=unique_devices,
                                     priority_dataframe=P,
                                     priority_symbol='✱'))
        sheets.append(sheets[len(sheets) - 1] + 'Activity')
        unique_alarms = md.get_unique_alarms(frame, flag='P')
        dataframes.append(md.get_timing_dataframe(frame, unique_alarms))
    md.save_excel(dataframe=dataframes,
                  name='Phy_Alarms_Time',
                  sheet_name=sheets)
コード例 #5
0
def medical_A(name, sheet_name='Sheet1'):
    alarm_type = [
        'Logged Inop', 'Yellow Inop', 'Red Inop', 'Yellow Alarm', 'Red Alarm'
    ]
    sheets = alarm_type[:]
    med_dataframe = md.AlarmDataFrame(data_path=name + '.xlsx',
                                      sheet_name=sheet_name)
    med_dataframe.analize(action_type=alarm_type, by_label=['Action_Type'])
    single, double = med_dataframe.get_alarm_priority()
    if len(single) > 1:
        sheets.append('Single ✱')
        sheets.append('Single !')
    else:
        symbol = re.search(r'\!', single[0]['Action'][0])
        if not symbol is None:
            sheets.append('Single !')
        else:
            sheets.append('Single ✱')
    if len(double) > 1:
        sheets.append('Double ✱')
        sheets.append('Double !')
    else:
        symbol = re.search(r'\!', double[0]['Action'][0])
        if not symbol is None:
            sheets.append('Double !')
        else:
            sheets.append('Double ✱')
    i = 0
    dataframes = []
    for frame in med_dataframe.get_dataframe()[1] + single + double:
        if not frame.empty:
            dataframes.append(frame)
        else:
            del sheets[i]
        i += 1
    md.save_excel(dataframe=dataframes, name='Alarm_Types', sheet_name=sheets)
    #-----------------------------------------------------------------------------------
    # Part A: InopAlarms.xlsx
    inop = []
    physiological = []
    for frame in med_dataframe.get_dataframe()[1]:
        if not frame.empty:
            if 'Inop' in frame['Action_Type'][0]:
                inop.append(frame)
            else:
                physiological.append(frame)
    dataframes = []
    sheets = []
    for frame in inop:
        unique_devices = frame['Device Name'].unique().tolist()
        sheets.append(frame['Action_Type'][0])
        if 'Yellow' in frame['Action_Type'][0]:
            P = True
        else:
            P = False
        dataframes.append(
            md.get_alarms_per_device(frame,
                                     list_of_devices=unique_devices,
                                     priority_dataframe=P,
                                     priority_symbol='!'))
    md.save_excel(dataframe=dataframes, name='Inop_Alarms', sheet_name=sheets)
    #------------------------------------------------------------------------------------
    # Part A: PhyAlarms.xlsx
    dataframes = []
    sheets = []
    for frame in physiological:
        unique_devices = frame['Device Name'].unique().tolist()
        sheets.append(frame['Action_Type'][0])
        if 'Yellow' in frame['Action_Type'][0]:
            P = True
        else:
            P = False
        dataframes.append(
            md.get_alarms_per_device(frame,
                                     list_of_devices=unique_devices,
                                     priority_dataframe=P,
                                     priority_symbol='✱'))
    md.save_excel(dataframe=dataframes, name='Phy_Alarms', sheet_name=sheets)