def setUpClass(cls): metamap = MetaMap( metamap_path= "/home/share/programs/metamap/2016/public_mm/bin/metamap", cache_output=False) cls.pipeline = ClinicalPipeline( metamap) # Will fail as MetaMap isn't installed
def test_with_metamap(self): """ Constructs a model that memorizes an entity, predicts it on same file, writes to ann :return: """ train_loader = DataLoader(self.train_dir) test_loader = DataLoader(self.test_dir) metamap = MetaMap(metamap_path="/home/share/programs/metamap/2016/public_mm/bin/metamap", cache_output=False) train_loader.metamap(metamap) test_loader.metamap(metamap) pipeline = ClinicalPipeline(metamap, entities=['Strength']) learner = Learner(pipeline, train_loader) model = learner.train() predictor = Predictor(pipeline, test_loader, model=model) predictor.predict() with open(predictor.prediction_directory+"predict_test.ann") as f: self.assertEqual(f.read(), "T1 Strength 7 11 5 mg\n")
def test_with_metamap(self): loader = DataLoader(self.test_dir) metamap = MetaMap( metamap_path= "/home/share/programs/metamap/2016/public_mm/bin/metamap") loader.metamap(metamap) #pre-cache metamap files pipeline = ClinicalPipeline(metamap, entities=['Strength']) learner = Learner(pipeline, loader) model = learner.train() self.assertIsInstance(learner, Learner)
def test_fit_with_clinical_pipeline(self): """ Loads in training data and uses it to fit a model using the Clinical Pipeline :return: """ train_loader = DataLoader(self.train_dir) metamap = MetaMap( metamap_path= "/home/share/programs/metamap/2016/public_mm/bin/metamap", cache_output=False) train_loader.metamap(metamap) pipeline = ClinicalPipeline(metamap, entities=['Strength']) model = Model(pipeline) model.fit(train_loader) self.assertIsInstance(model, Model) self.assertIsNot(model.model, None)
def test_prediction_with_clinical_pipeline(self): """ Constructs a model that memorizes an entity, predicts it on same file, writes to ann :return: """ train_loader = DataLoader(self.train_dir) test_loader = DataLoader(self.test_dir) metamap = MetaMap( metamap_path= "/home/share/programs/metamap/2016/public_mm/bin/metamap", cache_output=False) train_loader.metamap(metamap) test_loader.metamap(metamap) pipeline = ClinicalPipeline(metamap, entities=['Strength']) model = Model(pipeline) model.fit(train_loader) model.predict(test_loader) with open(self.test_dir + "/predictions/" + "predict_test.ann") as f: self.assertEqual(f.read(), "T1 Strength 7 11 5 mg\n")
def setUpClass(cls): cls.pipeline = ClinicalPipeline( ) # Will fail as MetaMap isn't installed
def setUpClass(cls): cls.pipeline = ClinicalPipeline()