コード例 #1
0
def train():
    # args = brats2019_arguments()

    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    (
        training_generator,
        val_generator,
        full_volume,
        affine,
    ) = medical_loaders.generate_datasets(args)
    model, optimizer = medzoo.create_model(args)
    val_criterion = DiceLoss(classes=11, skip_index_after=args.classes)

    # criterion = DiceLoss(classes=3, skip_index_after=args.classes)
    # criterion = DiceLoss(classes=args.classes)
    criterion = torch.nn.CrossEntropyLoss()

    if args.cuda:
        model = model.cuda()
        print("Model transferred in GPU.....")

    trainer = train_module.Trainer(
        args,
        model,
        criterion,
        optimizer,
        val_criterion=val_criterion,
        train_data_loader=training_generator,
        valid_data_loader=val_generator,
        lr_scheduler=None,
    )
    print("START TRAINING...")
    trainer.training()
コード例 #2
0
def main():
    args = get_arguments()

    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)
    criterion = DiceLoss(classes=args.classes)

    if args.cuda:
        model = model.cuda()
        print("Model transferred in GPU.....")

    trainer = train.Trainer(args,
                            model,
                            criterion,
                            optimizer,
                            train_data_loader=training_generator,
                            valid_data_loader=val_generator,
                            lr_scheduler=None)
    print("START TRAINING...")
    trainer.training()

    visualize_3D_no_overlap_new(args, full_volume, affine, model, 10, args.dim)
コード例 #3
0
def main():
    args = get_arguments()
    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(args,
                                                                                               path='.././datasets')
    model, optimizer = medzoo.create_model(args)
    criterion = DiceLoss(classes=args.classes)

    if args.cuda:
        model = model.cuda()

    trainer = train.Trainer(args, model, criterion, optimizer, train_data_loader=training_generator,
                            valid_data_loader=val_generator)
    trainer.training()
コード例 #4
0
def main():
    args = get_arguments()
    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)
    criterion = DiceLoss(
        classes=args.classes
    )  # ,skip_index_after=2,weight=torch.tensor([0.00001,1,1,1]).cuda())

    if args.cuda:
        model = model.cuda()
        print("Model transferred in GPU.....")

    trainer = train.Trainer(args,
                            model,
                            criterion,
                            optimizer,
                            train_data_loader=training_generator,
                            valid_data_loader=val_generator)
    print("START TRAINING...")
    trainer.training()