# ----------------------------------------------------------------------------- # Apply RESS out, maps, _ = ress.RESS(data, sfreq=sfreq, peak_freq=target, return_maps=True) # Compute PSD nfft = 250 df = sfreq / nfft # frequency resolution bins, psd = ss.welch(out.squeeze(1), sfreq, window="hamming", nperseg=nfft, noverlap=125, axis=0) psd = psd.mean(axis=1, keepdims=True) # average over trials snr = snr_spectrum(psd, bins, skipbins=2, n_avg=2) f, ax = plt.subplots(1) ax.plot(bins, snr, 'o', label='SNR') ax.plot(bins[bins == target], snr[bins == target], 'ro', label='Target SNR') ax.axhline(1, ls=':', c='grey', zorder=0) ax.axvline(target, ls=':', c='grey', zorder=0) ax.set_ylabel('SNR (a.u.)') ax.set_xlabel('Frequency (Hz)') ax.set_xlim([0, 40]) ############################################################################### # Project components back into sensor space to see the effects of RESS on the # average SSVEP. proj = matmul3d(out, maps)
def test_ress(target, n_trials, show=False): """Test RESS.""" sfreq = 250 data, source = create_data(n_times=1000, n_trials=n_trials, freq=target, sfreq=sfreq, show=False) out = ress.RESS(data, sfreq=sfreq, peak_freq=target) nfft = 500 bins, psd = ss.welch(out.squeeze(1), sfreq, window="boxcar", nperseg=nfft, noverlap=0, axis=0, average='mean') # psd = np.abs(np.fft.fft(out, nfft, axis=0)) # psd = psd[0:psd.shape[0] // 2 + 1] # bins = np.linspace(0, sfreq // 2, psd.shape[0]) # print(psd.shape) # print(bins[:10]) psd = psd.mean(axis=-1, keepdims=True) # average over trials snr = snr_spectrum(psd + psd.max() / 20, bins, skipbins=1, n_avg=2) # snr = snr.mean(1) if show: f, ax = plt.subplots(2) ax[0].plot(bins, snr, ':o') ax[0].axhline(1, ls=':', c='grey', zorder=0) ax[0].axvline(target, ls=':', c='grey', zorder=0) ax[0].set_ylabel('SNR (a.u.)') ax[0].set_xlabel('Frequency (Hz)') ax[0].set_xlim([0, 40]) ax[0].set_ylim([0, 10]) ax[1].plot(bins, psd) ax[1].axvline(target, ls=':', c='grey', zorder=0) ax[1].set_ylabel('PSD') ax[1].set_xlabel('Frequency (Hz)') ax[1].set_xlim([0, 40]) # plt.show() assert snr[bins == target] > 10 assert (snr[(bins <= target - 2) | (bins >= target + 2)] < 2).all() # test multiple components out, maps = ress.RESS(data, sfreq=sfreq, peak_freq=target, n_keep=1, return_maps=True) _ = ress.RESS(data, sfreq=sfreq, peak_freq=target, n_keep=2) _ = ress.RESS(data, sfreq=sfreq, peak_freq=target, n_keep=-1) proj = matmul3d(out, maps.T) assert proj.shape == data.shape if show: f, ax = plt.subplots(data.shape[1], 2, sharey='col') for c in range(data.shape[1]): ax[c, 0].plot(data[:, c].mean(-1), lw=.5, label='data') ax[c, 1].plot(proj[:, c].mean(-1), lw=.5, label='projection') if c < data.shape[1]: ax[c, 0].set_xticks([]) ax[c, 1].set_xticks([]) ax[0, 0].set_title('Before') ax[0, 1].set_title('After') plt.legend() plt.show()
def test_ress(target, n_trials, peak_width, neig_width, neig_freq, show=False): """Test RESS.""" sfreq = 250 n_keep = 1 n_chans = 10 n_times = 1000 data, source = create_data(n_times=n_times, n_trials=n_trials, n_chans=n_chans, freq=target, sfreq=sfreq, show=False) out = ress.RESS(data, sfreq=sfreq, peak_freq=target, neig_freq=neig_freq, peak_width=peak_width, neig_width=neig_width, n_keep=n_keep) nfft = 500 bins, psd = ss.welch(out.squeeze(1), sfreq, window="boxcar", nperseg=nfft / (peak_width * 2), noverlap=0, axis=0, average='mean') # psd = np.abs(np.fft.fft(out, nfft, axis=0)) # psd = psd[0:psd.shape[0] // 2 + 1] # bins = np.linspace(0, sfreq // 2, psd.shape[0]) # print(psd.shape) # print(bins[:10]) psd = psd.mean(axis=-1, keepdims=True) # average over trials snr = snr_spectrum(psd + psd.max() / 20, bins, skipbins=1, n_avg=2) # snr = snr.mean(1) if show: f, ax = plt.subplots(2) ax[0].plot(bins, snr, ':o') ax[0].axhline(1, ls=':', c='grey', zorder=0) ax[0].axvline(target, ls=':', c='grey', zorder=0) ax[0].set_ylabel('SNR (a.u.)') ax[0].set_xlabel('Frequency (Hz)') ax[0].set_xlim([0, 40]) ax[0].set_ylim([0, 10]) ax[1].plot(bins, psd) ax[1].axvline(target, ls=':', c='grey', zorder=0) ax[1].set_ylabel('PSD') ax[1].set_xlabel('Frequency (Hz)') ax[1].set_xlim([0, 40]) # plt.show() assert snr[bins == target] > 10 assert (snr[(bins <= target - 2) | (bins >= target + 2)] < 2).all() # test multiple components out, fromress, toress = ress.RESS(data, sfreq=sfreq, peak_freq=target, neig_freq=neig_freq, peak_width=peak_width, neig_width=neig_width, n_keep=n_keep, return_maps=True) proj = matmul3d(out, fromress) assert proj.shape == (n_times, n_chans, n_trials) if show: f, ax = plt.subplots(data.shape[1], 2, sharey='col') for c in range(data.shape[1]): ax[c, 0].plot(data[:, c].mean(-1), lw=.5, label='data') ax[c, 1].plot(proj[:, c].mean(-1), lw=.5, label='projection') if c < data.shape[1]: ax[c, 0].set_xticks([]) ax[c, 1].set_xticks([]) ax[0, 0].set_title('Before') ax[0, 1].set_title('After') plt.legend() # 2 comps _ = ress.RESS(data, sfreq=sfreq, peak_freq=target, n_keep=2) # All comps out, fromress, toress = ress.RESS(data, sfreq=sfreq, peak_freq=target, n_keep=-1, return_maps=True) if show: # Inspect mixing/unmixing matrices combined_data = np.array([toress, fromress, pinv(toress)]) _max = np.amax(combined_data) f, ax = plt.subplots(3) ax[0].imshow(toress, label='toRESS') ax[0].set_title('toRESS') ax[1].imshow(fromress, label='fromRESS', vmin=-_max, vmax=_max) ax[1].set_title('fromRESS') ax[2].imshow(pinv(toress), vmin=-_max, vmax=_max) ax[2].set_title('toRESS$^{-1}$') plt.tight_layout() plt.show() print(np.sum(np.abs(pinv(toress) - fromress) >= .1))