コード例 #1
0
ファイル: ring_gds.py プロジェクト: tnakaicode/PlotGallery
def find_modes(filename, wvl=1.55, bw=0.05):
    # Read in the ring structure
    geometry = mp.get_GDSII_prisms(Si, filename, RING_LAYER, -100, 100)

    cell = mp.GDSII_vol(filename, SIMULATION_LAYER, zmin, zmax)

    src_vol0 = mp.GDSII_vol(filename, SOURCE0_LAYER, zmin, zmax)
    src_vol1 = mp.GDSII_vol(filename, SOURCE1_LAYER, zmin, zmax)

    mon_vol = mp.GDSII_vol(filename, MONITOR_LAYER, zmin, zmax)

    fcen = 1 / wvl
    df = bw * fcen

    src = [
        mp.Source(mp.GaussianSource(fcen, fwidth=df),
                  component=mp.Hz,
                  volume=src_vol0),
        mp.Source(mp.GaussianSource(fcen, fwidth=df),
                  component=mp.Hz,
                  volume=src_vol1,
                  amplitude=-1)
    ]

    sim = mp.Simulation(cell_size=cell.size,
                        geometry=geometry,
                        sources=src,
                        resolution=resolution,
                        boundary_layers=[mp.PML(dpml)],
                        default_material=SiO2)

    h = mp.Harminv(mp.Hz, mon_vol.center, fcen, df)

    sim.run(mp.after_sources(h), until_after_sources=100)

    plt.figure()
    sim.plot2D(fields=mp.Hz)
    plt.savefig('ring_resonator_Hz.png')

    wvl = np.array([1 / m.freq for m in h.modes])
    Q = np.array([m.Q for m in h.modes])

    sim.reset_meep()

    return wvl, Q
コード例 #2
0
# geometry = []
# geometry.append(mp.Cylinder(material=silicon, center=mp.Vector3(0,-1*ring_radius,0), radius=ring_radius + ring_width/2, height=0))
# geometry.append(mp.Cylinder(material=oxide, center=mp.Vector3(0,-1*ring_radius,0), radius=ring_radius - ring_width/2, height=0))
# geometry.append(mp.Block(material=oxide, center=mp.Vector3(-0.5*ring_radius,0,0), size=mp.Vector3(ring_radius,2*ring_radius,0)))
# geometry.append(mp.Block(material=oxide, center=mp.Vector3(ring_radius,-1.5*ring_radius,0), size=mp.Vector3(2*ring_radius,ring_radius,0)))

si_layer = mp.get_GDSII_prisms(silicon, gdsII_file, Si_LAYER, si_zmin, si_zmax)

# # Later objects get priority : fix
final_geometry = []
# for fix in geometry:
#     final_geometry.append(fix)
for fix in si_layer:
    final_geometry.append(fix)

cell = mp.GDSII_vol(gdsII_file, CELL_LAYER, cell_zmin, cell_zmax)
src_vol = mp.GDSII_vol(gdsII_file, SOURCE_LAYER, si_zmin, si_zmax)
p1 = mp.GDSII_vol(gdsII_file, 20, si_zmin, si_zmax)
p2 = mp.GDSII_vol(gdsII_file, 21, si_zmin, si_zmax)

sources = [
    mp.EigenModeSource(src=mp.GaussianSource(fcen, fwidth=df),
                       size=src_vol.size,
                       center=src_vol.center,
                       eig_band=1,
                       eig_parity=mp.EVEN_Y + mp.ODD_Z,
                       eig_match_freq=True)
]

# Display simulation object
sim = mp.Simulation(resolution=res,
コード例 #3
0
ファイル: coupler.py プロジェクト: mniehus/meep
def main(args):
    cell_zmax = 0.5 * cell_thickness if args.three_d else 0
    cell_zmin = -0.5 * cell_thickness if args.three_d else 0
    si_zmax = t_Si if args.three_d else 0

    # read cell size, volumes for source region and flux monitors,
    # and coupler geometry from GDSII file
    upper_branch = mp.get_GDSII_prisms(silicon, gdsII_file, UPPER_BRANCH_LAYER,
                                       si_zmin, si_zmax)
    lower_branch = mp.get_GDSII_prisms(silicon, gdsII_file, LOWER_BRANCH_LAYER,
                                       si_zmin, si_zmax)

    cell = mp.GDSII_vol(gdsII_file, CELL_LAYER, cell_zmin, cell_zmax)
    p1 = mp.GDSII_vol(gdsII_file, PORT1_LAYER, si_zmin, si_zmax)
    p2 = mp.GDSII_vol(gdsII_file, PORT2_LAYER, si_zmin, si_zmax)
    p3 = mp.GDSII_vol(gdsII_file, PORT3_LAYER, si_zmin, si_zmax)
    p4 = mp.GDSII_vol(gdsII_file, PORT4_LAYER, si_zmin, si_zmax)
    src_vol = mp.GDSII_vol(gdsII_file, SOURCE_LAYER, si_zmin, si_zmax)

    # displace upper and lower branches of coupler (as well as source and flux regions)
    if args.d != default_d:
        delta_y = 0.5 * (args.d - default_d)
        delta = mp.Vector3(y=delta_y)
        p1.center += delta
        p2.center -= delta
        p3.center += delta
        p4.center -= delta
        src_vol.center += delta
        cell.size += 2 * delta
        for np in range(len(lower_branch)):
            lower_branch[np].center -= delta
            for nv in range(len(lower_branch[np].vertices)):
                lower_branch[np].vertices[nv] -= delta
        for np in range(len(upper_branch)):
            upper_branch[np].center += delta
            for nv in range(len(upper_branch[np].vertices)):
                upper_branch[np].vertices[nv] += delta

    geometry = upper_branch + lower_branch

    if args.three_d:
        oxide_center = mp.Vector3(z=-0.5 * t_oxide)
        oxide_size = mp.Vector3(cell.size.x, cell.size.y, t_oxide)
        oxide_layer = [
            mp.Block(material=oxide, center=oxide_center, size=oxide_size)
        ]
        geometry = geometry + oxide_layer

    sources = [
        mp.EigenModeSource(
            src=mp.GaussianSource(fcen, fwidth=df),
            volume=src_vol,
            eig_band=1,
            eig_parity=mp.NO_PARITY if args.three_d else mp.EVEN_Y + mp.ODD_Z,
            eig_match_freq=True)
    ]

    sim = mp.Simulation(resolution=args.res,
                        cell_size=cell.size,
                        boundary_layers=[mp.PML(dpml)],
                        sources=sources,
                        geometry=geometry)

    mode1 = sim.add_mode_monitor(fcen, 0, 1, mp.ModeRegion(volume=p1))
    mode2 = sim.add_mode_monitor(fcen, 0, 1, mp.ModeRegion(volume=p2))
    mode3 = sim.add_mode_monitor(fcen, 0, 1, mp.ModeRegion(volume=p3))
    mode4 = sim.add_mode_monitor(fcen, 0, 1, mp.ModeRegion(volume=p4))

    sim.run(until_after_sources=100)

    # S parameters
    p1_coeff = sim.get_eigenmode_coefficients(
        mode1, [1],
        eig_parity=mp.NO_PARITY if args.three_d else mp.EVEN_Y +
        mp.ODD_Z).alpha[0, 0, 0]
    p2_coeff = sim.get_eigenmode_coefficients(
        mode2, [1],
        eig_parity=mp.NO_PARITY if args.three_d else mp.EVEN_Y +
        mp.ODD_Z).alpha[0, 0, 1]
    p3_coeff = sim.get_eigenmode_coefficients(
        mode3, [1],
        eig_parity=mp.NO_PARITY if args.three_d else mp.EVEN_Y +
        mp.ODD_Z).alpha[0, 0, 0]
    p4_coeff = sim.get_eigenmode_coefficients(
        mode4, [1],
        eig_parity=mp.NO_PARITY if args.three_d else mp.EVEN_Y +
        mp.ODD_Z).alpha[0, 0, 0]

    # transmittance
    p2_trans = abs(p2_coeff)**2 / abs(p1_coeff)**2
    p3_trans = abs(p3_coeff)**2 / abs(p1_coeff)**2
    p4_trans = abs(p4_coeff)**2 / abs(p1_coeff)**2

    print("trans:, {:.2f}, {:.6f}, {:.6f}, {:.6f}".format(
        args.d, p2_trans, p3_trans, p4_trans))
コード例 #4
0
def get_transmission_2ports(
    component: Component,
    extend_ports_length: Optional[float] = 4.0,
    layer_core: int = 1,
    layer_source: int = 110,
    layer_monitor1: int = 101,
    layer_monitor2: int = 102,
    layer_simulation_region: int = 2,
    res: int = 20,
    t_clad_bot: float = 1.0,
    t_core: float = 0.22,
    t_clad_top: float = 1.0,
    dpml: int = 1,
    clad_material: Medium = mp.Medium(epsilon=2.25),
    core_material: Medium = mp.Medium(epsilon=12),
    is_3d: bool = False,
    run: bool = True,
    wavelengths: ndarray = np.linspace(1.5, 1.6, 50),
    field_monitor_point: Tuple[int, int, int] = (0, 0, 0),
    dfcen: float = 0.2,
) -> Dict[str, Any]:
    """Returns dict with Sparameters for a 2port gf.component

    requires source and  port monitors in the GDS

    based on meep directional coupler example
    https://meep.readthedocs.io/en/latest/Python_Tutorials/GDSII_Import/

    https://support.lumerical.com/hc/en-us/articles/360042095873-Metamaterial-S-parameter-extraction

    Args:
        component: gf.Component
        extend_ports_function: function to extend the ports for a component to ensure it goes beyond the PML
        layer_core: GDS layer for the Component material
        layer_source: for the source monitor
        layer_monitor1: monitor layer for port 1
        layer_monitor2: monitor layer for port 2
        layer_simulation_region: for simulation region
        res: resolution (pixels/um) For example: (10: 100nm step size)
        t_clad_bot: thickness for cladding below core
        t_core: thickness of the core material
        t_clad_top: thickness for cladding above core
        dpml: PML thickness (um)
        clad_material: material for cladding
        core_material: material for core
        is_3d: if True runs in 3D
        run: if True runs simulation, False only build simulation
        wavelengths: iterable of wavelengths to simulate
        field_monitor_point: monitors the field and stops simulation after field decays by 1e-9
        dfcen: delta frequency

    Returns:
        Dict:
            sim: simulation object

    Make sure you visualize the simulation region with gf.before you simulate a component

    .. code::

        import gdsfactory as gf
        import gmeep as gm

        component = gf.components.bend_circular()
        margin = 2
        cm = gm.add_monitors(component)
        cm.show()

    """
    assert isinstance(
        component, Component
    ), f"component needs to be a Component, got Type {type(component)}"
    if extend_ports_length:
        component = gf.components.extension.extend_ports(
            component=component, length=extend_ports_length, centered=True
        )
    component.flatten()
    gdspath = component.write_gds()
    gdspath = str(gdspath)

    freqs = 1 / wavelengths
    fcen = np.mean(freqs)
    frequency_width = dfcen * fcen
    cell_thickness = dpml + t_clad_bot + t_core + t_clad_top + dpml

    cell_zmax = 0.5 * cell_thickness if is_3d else 0
    cell_zmin = -0.5 * cell_thickness if is_3d else 0

    core_zmax = 0.5 * t_core if is_3d else 10
    core_zmin = -0.5 * t_core if is_3d else -10

    geometry = mp.get_GDSII_prisms(
        core_material, gdspath, layer_core, core_zmin, core_zmax
    )
    cell = mp.GDSII_vol(gdspath, layer_core, cell_zmin, cell_zmax)
    sim_region = mp.GDSII_vol(gdspath, layer_simulation_region, cell_zmin, cell_zmax)

    cell.size = mp.Vector3(
        sim_region.size[0] + 2 * dpml, sim_region.size[1] + 2 * dpml, sim_region.size[2]
    )
    cell_size = cell.size

    zsim = t_core + t_clad_top + t_clad_bot + 2 * dpml
    m_zmin = -zsim / 2
    m_zmax = +zsim / 2
    src_vol = mp.GDSII_vol(gdspath, layer_source, m_zmin, m_zmax)

    sources = [
        mp.EigenModeSource(
            src=mp.GaussianSource(fcen, fwidth=frequency_width),
            size=src_vol.size,
            center=src_vol.center,
            eig_band=1,
            eig_parity=mp.NO_PARITY if is_3d else mp.EVEN_Y + mp.ODD_Z,
            eig_match_freq=True,
        )
    ]

    sim = mp.Simulation(
        resolution=res,
        cell_size=cell_size,
        boundary_layers=[mp.PML(dpml)],
        sources=sources,
        geometry=geometry,
        default_material=clad_material,
    )
    sim_settings = dict(
        resolution=res,
        cell_size=cell_size,
        fcen=fcen,
        field_monitor_point=field_monitor_point,
        layer_core=layer_core,
        t_clad_bot=t_clad_bot,
        t_core=t_core,
        t_clad_top=t_clad_top,
        is_3d=is_3d,
        dmp=dpml,
    )

    m1_vol = mp.GDSII_vol(gdspath, layer_monitor1, m_zmin, m_zmax)
    m2_vol = mp.GDSII_vol(gdspath, layer_monitor2, m_zmin, m_zmax)
    m1 = sim.add_mode_monitor(
        freqs,
        mp.ModeRegion(center=m1_vol.center, size=m1_vol.size),
    )
    m1.z = 0
    m2 = sim.add_mode_monitor(
        freqs,
        mp.ModeRegion(center=m2_vol.center, size=m2_vol.size),
    )
    m2.z = 0

    # if 0:
    #     ''' Useful for debugging.  '''
    #     sim.run(until=50)
    #     sim.plot2D(fields=mp.Ez)
    #     plt.show()
    #     quit()

    r = dict(sim=sim, cell_size=cell_size, sim_settings=sim_settings)

    if run:
        sim.run(
            until_after_sources=mp.stop_when_fields_decayed(
                dt=50, c=mp.Ez, pt=field_monitor_point, decay_by=1e-9
            )
        )

        # call this function every 50 time spes
        # look at simulation and measure component that we want to measure (Ez component)
        # when field_monitor_point decays below a certain 1e-9 field threshold

        # Calculate the mode overlaps
        m1_results = sim.get_eigenmode_coefficients(m1, [1]).alpha
        m2_results = sim.get_eigenmode_coefficients(m2, [1]).alpha

        # Parse out the overlaps
        a1 = m1_results[:, :, 0]  # forward wave
        b1 = m1_results[:, :, 1]  # backward wave
        a2 = m2_results[:, :, 0]  # forward wave
        # b2 = m2_results[:, :, 1]  # backward wave

        # Calculate the actual scattering parameters from the overlaps
        s11 = np.squeeze(b1 / a1)
        s12 = np.squeeze(a2 / a1)
        s22 = s11.copy()
        s21 = s12.copy()

        # s22 and s21 requires another simulation, with the source on the other port
        # Luckily, if the device is symmetric, we can assume that s22=s11 and s21=s12.

        # visualize results
        plt.figure()
        plt.plot(
            wavelengths,
            10 * np.log10(np.abs(s11) ** 2),
            "-o",
            label="Reflection",
        )
        plt.plot(
            wavelengths,
            10 * np.log10(np.abs(s12) ** 2),
            "-o",
            label="Transmission",
        )
        plt.ylabel("Power (dB)")
        plt.xlabel(r"Wavelength ($\mu$m)")
        plt.legend()
        plt.grid(True)

        r.update(dict(s11=s11, s12=s12, s21=s21, s22=s22, wavelengths=wavelengths))
        keys = [key for key in r.keys() if key.startswith("S")]
        s = {f"{key}a": list(np.unwrap(np.angle(r[key].flatten()))) for key in keys}
        s_mod = {f"{key}m": list(np.abs(r[key].flatten())) for key in keys}
        s.update(**s_mod)
        s = pd.DataFrame(s)
    return r
コード例 #5
0
def main(args):
    d = args.d

    cell_thickness = dpml + t_oxide + t_Si + t_air + dpml
    cell_zmax = 0.5 * cell_thickness if args.three_d else 0
    cell_zmin = -0.5 * cell_thickness if args.three_d else 0
    si_zmin = 0
    si_zmax = t_Si if args.three_d else 0

    # read cell size, volumes for source region and flux monitors,
    # and coupler geometry from GDSII file
    upper_branch = mp.get_GDSII_prisms(silicon, gdsII_file, UPPER_BRANCH_LAYER,
                                       si_zmin, si_zmax)
    lower_branch = mp.get_GDSII_prisms(silicon, gdsII_file, LOWER_BRANCH_LAYER,
                                       si_zmin, si_zmax)

    cell = mp.GDSII_vol(gdsII_file, CELL_LAYER, cell_zmin, cell_zmax)
    p1 = mp.GDSII_vol(gdsII_file, PORT1_LAYER, si_zmin, si_zmax)
    p2 = mp.GDSII_vol(gdsII_file, PORT2_LAYER, si_zmin, si_zmax)
    p3 = mp.GDSII_vol(gdsII_file, PORT3_LAYER, si_zmin, si_zmax)
    p4 = mp.GDSII_vol(gdsII_file, PORT4_LAYER, si_zmin, si_zmax)
    src_vol = mp.GDSII_vol(gdsII_file, SOURCE_LAYER, si_zmin, si_zmax)

    # displace upper and lower branches of coupler (as well as source and flux regions)
    if d != default_d:
        delta_y = 0.5 * (d - default_d)
        delta = mp.Vector3(y=delta_y)
        p1.center += delta
        p2.center -= delta
        p3.center += delta
        p4.center -= delta
        src_vol.center += delta
        cell.size += 2 * delta
        for np in range(len(lower_branch)):
            lower_branch[np].center -= delta
            for nv in range(len(lower_branch[np].vertices)):
                lower_branch[np].vertices[nv] -= delta
        for np in range(len(upper_branch)):
            upper_branch[np].center += delta
            for nv in range(len(upper_branch[np].vertices)):
                upper_branch[np].vertices[nv] += delta

    geometry = upper_branch + lower_branch

    if args.three_d:
        oxide_center = mp.Vector3(z=-0.5 * t_oxide)
        oxide_size = mp.Vector3(cell.size.x, cell.size.y, t_oxide)
        oxide_layer = [
            mp.Block(material=oxide, center=oxide_center, size=oxide_size)
        ]
        geometry = geometry + oxide_layer

    sources = [
        mp.EigenModeSource(
            src=mp.GaussianSource(fcen, fwidth=df),
            size=src_vol.size,
            center=src_vol.center,
            eig_band=1,
            eig_parity=mp.NO_PARITY if args.three_d else mp.ODD_Z,
            eig_match_freq=True)
    ]

    sim = mp.Simulation(resolution=resolution,
                        cell_size=cell.size,
                        boundary_layers=[mp.PML(dpml)],
                        sources=sources,
                        geometry=geometry)

    p1_region = mp.FluxRegion(volume=p1)
    flux1 = sim.add_flux(fcen, 0, 1, p1_region)
    p2_region = mp.FluxRegion(volume=p2)
    flux2 = sim.add_flux(fcen, 0, 1, p2_region)
    p3_region = mp.FluxRegion(volume=p3)
    flux3 = sim.add_flux(fcen, 0, 1, p3_region)
    p4_region = mp.FluxRegion(volume=p4)
    flux4 = sim.add_flux(fcen, 0, 1, p4_region)

    sim.run(until_after_sources=mp.stop_when_fields_decayed(
        50, mp.Ez, p3.center, 1e-9))

    p1_flux = mp.get_fluxes(flux1)
    p2_flux = mp.get_fluxes(flux2)
    p3_flux = mp.get_fluxes(flux3)
    p4_flux = mp.get_fluxes(flux4)

    mp.master_printf("data:, {}, {}, {}, {}".format(d,
                                                    -p2_flux[0] / p1_flux[0],
                                                    p3_flux[0] / p1_flux[0],
                                                    p4_flux[0] / p1_flux[0]))
コード例 #6
0
def main(args):

    SIM_CELL = pya.LayerInfo(0, 0)
    Si = pya.LayerInfo(1, 0)
    MEEP_SOURCE = pya.LayerInfo(10, 0)
    MEEP_PORT1 = pya.LayerInfo(20, 0)
    MEEP_PORT2 = pya.LayerInfo(21, 0)
    MEEP_PORT3 = pya.LayerInfo(22, 0)
    MEEP_PORT4 = pya.LayerInfo(23, 0)


    # ## Simulation Parameters

    # In[3]:


    ring_radius = 8 # um
    ring_width = 0.5 # um
    pml_width = 1.0 # um
    gap = args.gap # um
    src_port_gap = 0.2 # um
    straight_wg_length = pml_width + 1 # um

    # Simulation resolution
    res = 100        # pixels/μm


    # ## Step 1. Drawing a waveguide coupler and saving into a temporary .gds file

    # In[4]:


    from zeropdk.layout import layout_arc, layout_waveguide, layout_path, layout_box
    from tempfile import NamedTemporaryFile
    from math import sqrt

    # Create a temporary filename
    temp_file = NamedTemporaryFile(delete=False, suffix='.gds')
    filename = temp_file.name
    # temp_file = None
    # filename = "test.gds"

    # Instantiate a layout and a top cell
    layout = pya.Layout()
    layout.dbu = 0.001
    TOP = layout.create_cell("TOP")

    sqrt2 = sqrt(2)

    # Unit vectors
    ex = pya.DVector(1, 0)
    ey = pya.DVector(0, 1)
    e45 = (ex + ey) / sqrt2
    e135 = (-ex + ey) / sqrt2

    # Draw circular bend
    layout_arc(TOP, Si, - ring_radius*ey, ring_radius, ring_width, 0, np.pi/2)

    # Extend the bend to avoid discontinuities
    layout_waveguide(TOP, Si, [0*ex, - straight_wg_length*ex], ring_width)
    layout_waveguide(TOP, Si, [-1*ring_radius*ey + ring_radius*ex, 
                               -straight_wg_length * ey - ring_radius*ey + ring_radius*ex], ring_width)

    # Add the ports as 0-width paths
    port_size = ring_width * 4.0


    # Draw add/drop waveguide

    coupling_point = (ring_radius + gap + ring_width) * e45 - ring_radius * ey
    add_drop_length = (ring_radius + gap + ring_width) * sqrt2
    layout_waveguide(TOP, Si, [coupling_point + (add_drop_length + 0.4) * e135,
                               coupling_point - (add_drop_length + 0.4) * e135],
                    ring_width)


    # Source at port 1
    layout_path(TOP, MEEP_SOURCE, [coupling_point - port_size/2*ex + (add_drop_length / 2 + src_port_gap) * e135, 
                                   coupling_point + port_size/2*ex + (add_drop_length / 2 + src_port_gap) * e135], 0)

    # Source at port 2 (alternative)
    # layout_path(TOP, MEEP_SOURCE, [-port_size/2*ey - src_port_gap*ex, port_size/2*ey - 0.2*ex], 0)

    # Port 1
    layout_path(TOP, MEEP_PORT1,   [coupling_point - port_size/2*ex + (add_drop_length / 2) * e135, 
                                    coupling_point + port_size/2*ex  + (add_drop_length / 2) * e135], 0)

    # Port 2
    layout_path(TOP, MEEP_PORT2,   [-port_size/2*ey, port_size/2*ey], 0)

    # Port 3
    layout_path(TOP, MEEP_PORT3,   [coupling_point - port_size/2*ey - (add_drop_length / 2) * e135, 
                                    coupling_point + port_size/2*ey - (add_drop_length / 2) * e135], 0)
    # Port 4
    layout_path(TOP, MEEP_PORT4,   [-1*ring_radius*ey + ring_radius*ex - port_size/2*ex, 
                                    -1*ring_radius*ey + ring_radius*ex + port_size/2*ex], 0)

    # Draw simulation region
    layout_box(TOP, SIM_CELL, 
               -1.0*ring_radius*ey - (pml_width + src_port_gap) * (ex + ey), # Bottom left point 
               coupling_point + (add_drop_length / 2 + src_port_gap) * e45 + pml_width * (ex + ey),  # Top right point
               ex)

    # Write to file
    layout.write(filename)
    print(f"Produced file {filename}.")


    # ## Step 2. Load gds file into meep
    # 
    # ### Visualization and simulation
    # 
    # If you choose a normal filename (not temporary), you can download the GDSII file from the cluster (see Files in MyAdroit dashboard) to see it with your local Klayout. Otherwise, let's get simulating:

    # In[5]:


    def round_vector(vector, decimal_places=3):
        x = round(vector.x, decimal_places)
        y = round(vector.y, decimal_places)
        z = round(vector.z, decimal_places)
        return mp.Vector3(x, y, z)


    # In[6]:


    gdsII_file = filename
    CELL_LAYER = 0
    SOURCE_LAYER = 10
    Si_LAYER = 1
    PORT1_LAYER = 20
    PORT2_LAYER = 21
    PORT3_LAYER = 22
    PORT4_LAYER = 23

    t_oxide = 1.0
    t_Si = 0.22
    t_SiO2 = 0.78

    oxide = mp.Medium(epsilon=2.25)
    silicon=mp.Medium(epsilon=12)

    lcen = 1.55
    fcen = 1/lcen
    df = 0.2*fcen
    nfreq = 25

    cell_zmax =  0
    cell_zmin =  0
    si_zmax = 10
    si_zmin = -10

    # read cell size, volumes for source region and flux monitors,
    # and coupler geometry from GDSII file
    # WARNING: Once the file is loaded, the prism contents is cached and cannot be reloaded.
    # SOLUTION: Use a different filename or restart the kernel

    si_layer = mp.get_GDSII_prisms(silicon, gdsII_file, Si_LAYER, si_zmin, si_zmax)

    cell = mp.GDSII_vol(gdsII_file, CELL_LAYER, cell_zmin, cell_zmax)
    src_vol = mp.GDSII_vol(gdsII_file, SOURCE_LAYER, si_zmin, si_zmax)
    p1 = mp.GDSII_vol(gdsII_file, PORT1_LAYER, si_zmin, si_zmax)
    p2 = mp.GDSII_vol(gdsII_file, PORT2_LAYER, si_zmin, si_zmax)
    p3 = mp.GDSII_vol(gdsII_file, PORT3_LAYER, si_zmin, si_zmax)
    p4 = mp.GDSII_vol(gdsII_file, PORT4_LAYER, si_zmin, si_zmax)


    sources = [mp.EigenModeSource(src=mp.GaussianSource(fcen,fwidth=df),
                                  size=round_vector(src_vol.size),
                                  center=round_vector(src_vol.center),
                                  direction=mp.NO_DIRECTION,
                                  eig_kpoint=mp.Vector3(1, -1, 0), # -45 degree angle
                                  eig_band=1,
                                  eig_parity=mp.NO_PARITY,
                                  eig_match_freq=True)]

    # Display simulation object
    sim = mp.Simulation(resolution=res,
                        default_material=oxide,
                        eps_averaging=False,
                        cell_size=cell.size,
                        geometry_center=round_vector(cell.center,2),
                        boundary_layers=[mp.PML(pml_width)],
                        sources=sources,
                        geometry=si_layer)

    # Delete file created in previous cell

    import os
    if temp_file:
        temp_file.close()
        os.unlink(filename)


    # ## Step 3. Setup simulation environment
    # 
    # This will load the python-defined parameters from the previous cell and instantiate a fast, C++ based, simulation environment using meep. It will also compute the eigenmode of the source, in preparation for the FDTD simulation.

    # In[7]:


    sim.reset_meep()

    # Could add monitors at many frequencies by looping over fcen
    # Means one FDTD for many results!
    mode1 = sim.add_mode_monitor(fcen, df, nfreq, mp.ModeRegion(volume=p1))
    mode2 = sim.add_mode_monitor(fcen, df, nfreq, mp.ModeRegion(volume=p2))
    mode3 = sim.add_mode_monitor(fcen, df, nfreq, mp.ModeRegion(volume=p3))
    mode4 = sim.add_mode_monitor(fcen, df, nfreq, mp.ModeRegion(volume=p4))

    # Let's store the frequencies that were generated by this mode monitor
    mode1_freqs = np.array(mp.get_eigenmode_freqs(mode1))
    mode2_freqs = np.array(mp.get_eigenmode_freqs(mode2))
    mode3_freqs = np.array(mp.get_eigenmode_freqs(mode3))
    mode4_freqs = np.array(mp.get_eigenmode_freqs(mode4))

    sim.init_sim()


    # ### Verify if there are numerical errors.
    # - You should see a clean black and white plot.
    # - If there are other weird structures, try increasing the resolution.

    # In[8]:


    eps_data = sim.get_array(center=cell.center, size=cell.size, component=mp.Dielectric)
    plt.figure(dpi=res)
    plt.imshow(eps_data.transpose(), interpolation='none', cmap='binary', origin='lower')
    plt.colorbar()
    plt.show()


    # ### Verify that the structure makes sense.
    # 
    # Things to check:
    # - Are the sources and ports outside the PML?
    # - Are dimensions correct?
    # - Is the simulation region unnecessarily large?

    # In[9]:


    # If there is a warning that reads "The specified user volume
    # is larger than the simulation domain and has been truncated",
    # It has to do with some numerical errors between python and meep.
    # Ignore.
    # sim.init_sim()

    f = plt.figure(dpi=100)
    sim.plot2D(ax=f.gca())
    plt.show()


    # Looks pretty good. Simulations at the high enough resolution required to avoid spurious reflections in the bend are very slow! This can be sped up quite a bit by running the code in parallel from the terminal. Later, we will put this notebook's code into a script and run it in parallel.

    # ## Step 4. Simulate FDTD and Animate results
    # 
    # More detailed meep documentation available [here](https://meep.readthedocs.io/en/latest/Python_Tutorials/Basics/#transmittance-spectrum-of-a-waveguide-bend).

    # In[10]:


    # Set to true to compute animation (may take a lot of memory)
    # Turn this off if you don't need to visualize.
    compute_animation = False


    # In[11]:


    # Setup and run the simulation

    # The following line defines a stopping condition depending on the square
    # of the amplitude of the Ez field at the port 2.
    print(f"Stop condition: decay to 0.1% of peak value in the last {2.0/df:.1f} time units.")
    stop_condition = mp.stop_when_fields_decayed(2.0/df,mp.Ez,p3.center,1e-3)
    if compute_animation:
        f = plt.figure(dpi=100)
        animate = mp.Animate2D(sim,mp.Ez,f=f,normalize=True)
        sim.run(mp.at_every(1,animate), until_after_sources=stop_condition)
        plt.close()
        animate.to_mp4(10, 'media/coupler1.mp4')
    else:
        sim.run(until_after_sources=stop_condition)


    # ### Visualize results
    # 
    # Things to check:
    # - Was the simulation time long enough for the pulse to travel through the output port in its entirety? Given the automatic stop condition, this should be the case.

    # In[12]:


    from IPython.display import Video, display
    if compute_animation:
        display(Video('media/coupler1.mp4'))

    # ## Step 5. Compute S parameters of the coupler

    # In[13]:


    # Every mode monitor measures the power flowing through it in either the forward or backward direction

    # This time, the monitor is at an oblique angle to the waveguide. This is because meep
    # can only compute fluxes in either the x, y, or z planes. In order to correctly measure
    # the flux, we need to provide a k-vector at an angle. 
    # So we compute a unit vector at a -45 angle like so:
    kpoint135 = mp.Vector3(x=1).rotate(mp.Vector3(z=1), np.radians(-45))

    # In this simulation, the ports 1 and 3 are on an angled waveguide, and
    # 2 and 4 are perpendicular to the waveguide.
    eig_mode1 = sim.get_eigenmode_coefficients(mode1, [1], eig_parity=mp.NO_PARITY, 
                                               direction=mp.NO_DIRECTION, kpoint_func=lambda f,n: kpoint135)

    eig_mode2 = sim.get_eigenmode_coefficients(mode2, [1], eig_parity=mp.NO_PARITY)

    eig_mode3 = sim.get_eigenmode_coefficients(mode3, [1], eig_parity=mp.NO_PARITY, 
                                               direction=mp.NO_DIRECTION, kpoint_func=lambda f,n: kpoint135)

    eig_mode4 = sim.get_eigenmode_coefficients(mode4, [1], eig_parity=mp.NO_PARITY)

    # We proceed like last time.

    # First, we need to figure out which direction the "dominant planewave" k-vector is
    # We can pick the first frequency (0) for that, assuming that for all simulated frequencies,
    # The dominant k-vector will point in the same direction.
    k1 = eig_mode1.kdom[0]
    k2 = eig_mode2.kdom[0]
    k3 = eig_mode3.kdom[0]
    k4 = eig_mode4.kdom[0]

    # eig_mode.alpha[0,0,0] corresponds to the forward direction, whereas
    # eig_mode.alpha[0,0,1] corresponds to the backward direction

    # For port 1, we are interested in the -y direction, so if k1.y is positive, select 1, otherwise 0
    idx = (k1.y > 0) * 1
    p1_thru_coeff = eig_mode1.alpha[0,:,idx]
    p1_reflected_coeff = eig_mode1.alpha[0,:,1-idx]

    # For port 3, we are interestred in the +x direction
    idx = (k3.x < 0) * 1
    p3_thru_coeff = eig_mode3.alpha[0,:,idx]
    p3_reflected_coeff = eig_mode3.alpha[0,:,1-idx]

    # For port 2, we are interested in the -x direction
    idx = (k2.x > 0) * 1
    p2_thru_coeff = eig_mode2.alpha[0,:,idx]
    p2_reflected_coeff = eig_mode2.alpha[0,:,1-idx]

    # For port 4, we are interested in the -y direction
    idx = (k4.y > 0) * 1
    p4_thru_coeff = eig_mode4.alpha[0,:,idx]
    p4_reflected_coeff = eig_mode4.alpha[0,:,1-idx]


    # transmittance
    S41 = p4_thru_coeff/p1_thru_coeff
    S31 = p3_thru_coeff/p1_thru_coeff
    S21 = p2_thru_coeff/p1_thru_coeff
    S11 = p1_reflected_coeff/p1_thru_coeff

    print("----------------------------------")
    print(f"Parameters: radius={ring_radius:.1f}")
    print(f"Frequencies: {mode1_freqs}")


    # In[20]:


    #Write to csv file
    import csv
    with open(f'sparams1.gap{gap:.2f}um.csv', mode='w') as sparams_file:
        sparam_writer = csv.writer(sparams_file, delimiter=',')
        sparam_writer.writerow(['f(Hz)',
                                'real(S11)','imag(S11)',
                                'real(S21)','imag(S21)',
                                'real(S31)','imag(S31)',
                                'real(S41)','imag(S41)'
                               ])
        for i in range(len(mode1_freqs)):
            sparam_writer.writerow([mode1_freqs[i] * 3e14,
                                    np.real(S11[i]),np.imag(S11[i]),
                                    np.real(S21[i]),np.imag(S21[i]),
                                    np.real(S31[i]),np.imag(S31[i]),
                                    np.real(S41[i]),np.imag(S41[i])
                                   ])
コード例 #7
0
ファイル: coupler.py プロジェクト: tnakaicode/PlotGallery
lcen = 1.55
fcen = 1/lcen
df = 0.2*fcen

cell_zmax = 0.5*cell_thickness if three_d else 0
cell_zmin = -0.5*cell_thickness if three_d else 0
si_zmax = 0.5*t_Si if three_d else 10
si_zmin = -0.5*t_Si if three_d else -10

# read cell size, volumes for source region and flux monitors,
# and coupler geometry from GDSII file
upper_branch = mp.get_GDSII_prisms(silicon, gdsII_file, UPPER_BRANCH_LAYER, si_zmin, si_zmax)
lower_branch = mp.get_GDSII_prisms(silicon, gdsII_file, LOWER_BRANCH_LAYER, si_zmin, si_zmax)

cell = mp.GDSII_vol(gdsII_file, CELL_LAYER, cell_zmin, cell_zmax)
p1 = mp.GDSII_vol(gdsII_file, PORT1_LAYER, si_zmin, si_zmax)
p2 = mp.GDSII_vol(gdsII_file, PORT2_LAYER, si_zmin, si_zmax)
p3 = mp.GDSII_vol(gdsII_file, PORT3_LAYER, si_zmin, si_zmax)
p4 = mp.GDSII_vol(gdsII_file, PORT4_LAYER, si_zmin, si_zmax)
src_vol = mp.GDSII_vol(gdsII_file, SOURCE_LAYER, si_zmin, si_zmax)

# displace upper and lower branches of coupler (as well as source and flux regions)
if d != default_d:
    delta_y = 0.5*(d-default_d)
    delta = mp.Vector3(y=delta_y)
    p1.center += delta
    p2.center -= delta
    p3.center += delta
    p4.center -= delta
    src_vol.center += delta
コード例 #8
0
def main(args):

    SIM_CELL = pya.LayerInfo(0, 0)
    Si = pya.LayerInfo(1, 0)
    MEEP_SOURCE1 = pya.LayerInfo(10, 0)
    MEEP_PORT1 = pya.LayerInfo(20, 0)
    MEEP_PORT2 = pya.LayerInfo(21, 0)

    # ## Simulation Parameters

    # In[3]:

    ring_radius = args.radius  # um
    ring_width = 0.5  # um
    pml_width = 1.0  # um
    straight_wg_length = pml_width + 0.2  # um

    # Simulation resolution
    res = 100  # pixels/μm

    # ## Step 1. Drawing a bent waveguide and saving into a temporary .gds file

    # In[4]:

    from zeropdk.layout import layout_arc, layout_waveguide, layout_path, layout_box
    from tempfile import NamedTemporaryFile

    # Create a temporary filename
    temp_file = NamedTemporaryFile(delete=False, suffix='.gds')
    filename = temp_file.name

    # Instantiate a layout and a top cell
    layout = pya.Layout()
    layout.dbu = 0.001
    TOP = layout.create_cell("TOP")

    # Unit vectors
    ex = pya.DVector(1, 0)
    ey = pya.DVector(0, 1)

    # Draw circular bend
    layout_arc(TOP, Si, -ring_radius * ey, ring_radius, ring_width, 0,
               np.pi / 2)

    # Extend the bend to avoid discontinuities
    layout_waveguide(TOP, Si, [0 * ex, -straight_wg_length * ex], ring_width)
    layout_waveguide(TOP, Si, [
        -1 * ring_radius * ey + ring_radius * ex,
        -straight_wg_length * ey - ring_radius * ey + ring_radius * ex
    ], ring_width)

    # Add the ports as 0-width paths
    port_size = ring_width * 4.0

    # Source port
    layout_path(
        TOP, MEEP_SOURCE1,
        [-port_size / 2 * ey - 0.2 * ex, port_size / 2 * ey - 0.2 * ex], 0)
    # Input port (immediately at the start of the bend)
    layout_path(TOP, MEEP_PORT1, [-port_size / 2 * ey, port_size / 2 * ey], 0)
    # Output port (immediately at the end of the bend)
    layout_path(TOP, MEEP_PORT2, [
        -1 * ring_radius * ey + ring_radius * ex - port_size / 2 * ex,
        -1 * ring_radius * ey + ring_radius * ex + port_size / 2 * ex
    ], 0)

    # Draw simulation region
    layout_box(
        TOP,
        SIM_CELL,
        -1.0 * ring_radius * ey - straight_wg_length *
        (ex + ey),  # Bottom left point 
        1.0 * ring_radius * ex + (straight_wg_length + port_size / 2) *
        (ex + ey),  # Top right point
        ex)

    # Write to file
    layout.write(filename)
    print(f"Produced file {filename}.")

    # ## Step 2. Load gds file into meep
    #
    # ### Visualization and simulation
    #
    # If you choose a normal filename (not temporary), you can download the GDSII file from the cluster (see Files in MyAdroit dashboard) to see it with your local Klayout. Otherwise, let's get simulating:

    # In[5]:

    gdsII_file = filename
    CELL_LAYER = 0
    SOURCE_LAYER = 10
    Si_LAYER = 1
    PORT1_LAYER = 20
    PORT2_LAYER = 21

    t_oxide = 1.0
    t_Si = 0.22
    t_SiO2 = 0.78

    oxide = mp.Medium(epsilon=2.25)
    silicon = mp.Medium(epsilon=12)

    lcen = 1.55
    fcen = 1 / lcen
    df = 0.2 * fcen
    nfreq = 25

    cell_zmax = 0
    cell_zmin = 0
    si_zmax = 10
    si_zmin = -10

    # read cell size, volumes for source region and flux monitors,
    # and coupler geometry from GDSII file
    # WARNING: Once the file is loaded, the prism contents is cached and cannot be reloaded.
    # SOLUTION: Use a different filename or restart the kernel

    si_layer = mp.get_GDSII_prisms(silicon, gdsII_file, Si_LAYER, si_zmin,
                                   si_zmax)

    cell = mp.GDSII_vol(gdsII_file, CELL_LAYER, cell_zmin, cell_zmax)
    src_vol = mp.GDSII_vol(gdsII_file, SOURCE_LAYER, si_zmin, si_zmax)
    p1 = mp.GDSII_vol(gdsII_file, PORT1_LAYER, si_zmin, si_zmax)
    p2 = mp.GDSII_vol(gdsII_file, PORT2_LAYER, si_zmin, si_zmax)

    sources = [
        mp.EigenModeSource(src=mp.GaussianSource(fcen, fwidth=df),
                           size=src_vol.size,
                           center=src_vol.center,
                           eig_band=1,
                           eig_parity=mp.NO_PARITY,
                           eig_match_freq=True)
    ]

    # Display simulation object
    sim = mp.Simulation(resolution=res,
                        default_material=oxide,
                        eps_averaging=False,
                        cell_size=cell.size,
                        boundary_layers=[mp.PML(pml_width)],
                        sources=sources,
                        geometry=si_layer,
                        geometry_center=cell.center)

    # Delete file created in previous cell

    import os
    temp_file.close()
    os.unlink(filename)

    # ## Step 3. Setup simulation environment
    #
    # This will load the python-defined parameters from the previous cell and instantiate a fast, C++ based, simulation environment using meep. It will also compute the eigenmode of the source, in preparation for the FDTD simulation.

    # In[6]:

    sim.reset_meep()

    # Could add monitors at many frequencies by looping over fcen
    # Means one FDTD for many results!
    mode1 = sim.add_mode_monitor(fcen, df, nfreq, mp.ModeRegion(volume=p1))
    mode2 = sim.add_mode_monitor(fcen, df, nfreq, mp.ModeRegion(volume=p2))

    # Let's store the frequencies that were generated by this mode monitor
    mode1_freqs = np.array(mp.get_eigenmode_freqs(mode1))
    mode2_freqs = np.array(mp.get_eigenmode_freqs(mode2))

    sim.init_sim()

    # ### Verify that the structure makes sense.
    #
    # Things to check:
    # - Are the sources and ports outside the PML?
    # - Are dimensions correct?
    # - Is the simulation region unnecessarily large?

    # In[7]:

    # If there is a warning that reads "The specified user volume
    # is larger than the simulation domain and has been truncated",
    # It has to do with some numerical errors between python and meep.
    # Ignore.

    # f = plt.figure(dpi=100)
    # sim.plot2D(ax=f.gca())
    # plt.show()

    # Looks pretty good. Simulations at the high enough resolution required to avoid spurious reflections in the bend are very slow! This can be sped up quite a bit by running the code in parallel from the terminal. Later, we will put this notebook's code into a script and run it in parallel.

    # ## Step 4. Simulate FDTD and Animate results
    #
    # More detailed meep documentation available [here](https://meep.readthedocs.io/en/latest/Python_Tutorials/Basics/#transmittance-spectrum-of-a-waveguide-bend).

    # In[8]:

    # Set to true to compute animation (may take a lot of memory)
    compute_animation = False

    # In[9]:

    # Setup and run the simulation

    # The following line defines a stopping condition depending on the square
    # of the amplitude of the Ez field at the port 2.
    print(
        f"Stop condition: decay to 0.1% of peak value in the last {2.0/df:.1f} time units."
    )
    stop_condition = mp.stop_when_fields_decayed(2.0 / df, mp.Ez, p2.center,
                                                 1e-3)
    if compute_animation:
        f = plt.figure(dpi=100)
        animate = mp.Animate2D(sim, mp.Ez, f=f, normalize=True)
        sim.run(mp.at_every(1, animate), until_after_sources=stop_condition)
        plt.close()
        # Save video as mp4
        animate.to_mp4(10, 'media/bend.mp4')
    else:
        sim.run(until_after_sources=stop_condition)

    # ### Visualize results
    #
    # Things to check:
    # - Was the simulation time long enough for the pulse to travel through port2 in its entirety? Given the automatic stop condition, this should be the case.

    # In[10]:

    from IPython.display import Video, display
    # display(Video('media/bend.mp4'))

    # ## Step 5. Compute loss and reflection of the bend

    # In[11]:

    # Every mode monitor measures the power flowing through it in either the forward or backward direction
    eig_mode1 = sim.get_eigenmode_coefficients(mode1, [1],
                                               eig_parity=mp.NO_PARITY)
    eig_mode2 = sim.get_eigenmode_coefficients(mode2, [1],
                                               eig_parity=mp.NO_PARITY)

    # First, we need to figure out which direction the "dominant planewave" k-vector is
    # We can pick the first frequency (0) for that, assuming that for all simulated frequencies,
    # The dominant k-vector will point in the same direction.
    k1 = eig_mode1.kdom[0]
    k2 = eig_mode2.kdom[0]

    # eig_mode.alpha[0,0,0] corresponds to the forward direction, whereas
    # eig_mode.alpha[0,0,1] corresponds to the backward direction

    # For port 1, we are interested in the +x direction, so if k1.x is positive, select 0, otherwise 1
    idx = (k1.x < 0) * 1
    p1_thru_coeff = eig_mode1.alpha[0, :, idx]
    p1_reflected_coeff = eig_mode1.alpha[0, :, 1 - idx]

    # For port 2, we are interestred in the -y direction
    idx = (k2.y > 0) * 1
    p2_thru_coeff = eig_mode2.alpha[0, :, idx]
    p2_reflected_coeff = eig_mode2.alpha[0, :, 1 - idx]

    # transmittance
    p2_trans = abs(p2_thru_coeff / p1_thru_coeff)**2
    p2_reflected = abs(p1_reflected_coeff / p1_thru_coeff)**2

    print("----------------------------------")
    print(f"Parameters: radius={ring_radius:.1f}")
    print(f"Frequencies: {mode1_freqs}")
    print(f"Transmitted fraction: {p2_trans}")
    print(f"Reflected fraction: {p2_reflected}")

    # In[1]:

    S21 = p2_thru_coeff / p1_thru_coeff
    S11 = p1_reflected_coeff / p1_thru_coeff

    S21_mag = np.abs(S21)
    S21_phase = np.unwrap(np.angle(S21))
    S11_mag = np.abs(S11)
    S11_phase = np.unwrap(np.angle(S11))

    # In[13]:

    #     # Plot S21
    #     f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(5, 8))
    #     ax1.plot(1/mode1_freqs, 10 * np.log10(S21_mag), '.-')
    #     ax1.set_title("S21")
    #     ax1.set_xlabel(r"$\lambda$ (um)")
    #     ax1.set_ylabel("Magnitude (dB)")
    #     ax1.set_ylim(None, 0)
    #     ax1.grid()

    #     ax2.plot(1/mode1_freqs, S21_phase, '.-')
    #     ax2.set_xlabel(r"$\lambda$ (um)")
    #     ax2.set_ylabel("Phase (rad)")
    #     ax2.grid()
    #     plt.tight_layout()

    #     # In[14]:

    #     # Plot S11
    #     f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(5, 8))
    #     ax1.plot(1/mode1_freqs, 10 * np.log10(S11_mag), '.-')
    #     ax1.set_title("S11")
    #     ax1.set_xlabel(r"$\lambda$ (um)")
    #     ax1.set_ylabel("Magnitude (dB)")
    #     ax1.set_ylim(None, 0)
    #     ax1.grid()

    #     ax2.plot(1/mode1_freqs, S11_phase, '.-')
    #     ax2.set_xlabel(r"$\lambda$ (um)")
    #     ax2.set_ylabel("Phase (rad)")
    #     ax2.grid()
    #     plt.tight_layout()

    # # Milestones
    #
    # Goal: Compute the transmission profile for bend radii between 1.5um and 10um.
    #
    # - Q: Is the reflection significant for any radius? What explain the loss?
    # - Q: What is the formula total size of the simulation region? How many pixels are there?
    # - Q: If each pixel can host 3-dimensional E-field and H-field vectors with 64bit complex float stored in each dimension, how many megabytes of data needs to be stored at each time step? Is it feasible to save all this information throughout the FDTD simulation?
    # - Bonus: Collect the simulation runtime for each radius. How does it change with different radii?
    # - Bonus: At what resolution does the accuracy of the simulation start degrading? In other words, if halving the resolution only results in a 1% relative difference in the most important target metric, it is still a good resolution.

    # In[2]:

    #Write to csv file
    import csv
    with open(f'sparams.r{ring_radius:.1f}um.csv', mode='w') as sparams_file:
        sparam_writer = csv.writer(sparams_file, delimiter=',')
        sparam_writer.writerow(
            ['f(Hz)', 'real(S11)', 'imag(S11)', 'real(S21)', 'imag(S21)'])
        for i in range(len(mode1_freqs)):
            sparam_writer.writerow([
                mode1_freqs[i] * 3e14,
                np.real(S11[i]),
                np.imag(S11[i]),
                np.real(S21[i]),
                np.imag(S21[i])
            ])