コード例 #1
0
ファイル: geom.py プロジェクト: woodlee123/meep-1
 def test_mv_mult(self):
     lattice = mp.Lattice(size=mp.Vector3(1, 7),
                          basis1=mp.Vector3(math.sqrt(3) / 2, 0.5),
                          basis2=mp.Vector3(math.sqrt(3) / 2, -0.5))
     res = lattice.basis * mp.Vector3(1)
     exp = mp.Vector3(0.8660254037844388, 0.5000000000000001)
     self.assertTrue(res.close(exp))
コード例 #2
0
ファイル: geom.py プロジェクト: woodlee123/meep-1
    def test_geometric_objects_lattice_duplicates(self):
        geometry_lattice = mp.Lattice(size=mp.Vector3(1, 7),
                                      basis1=mp.Vector3(math.sqrt(3) / 2, 0.5),
                                      basis2=mp.Vector3(
                                          math.sqrt(3) / 2, -0.5))
        eps = 12
        r = 0.2

        geometry = [mp.Cylinder(r, material=mp.Medium(epsilon=eps))]
        geometry = mp.geometric_objects_lattice_duplicates(
            geometry_lattice, geometry)

        med = mp.Medium(epsilon=12)

        expected = [
            mp.Cylinder(0.2, material=med, center=mp.Vector3(y=3.0)),
            mp.Cylinder(0.2, material=med, center=mp.Vector3(y=2.0)),
            mp.Cylinder(0.2, material=med, center=mp.Vector3(y=1.0)),
            mp.Cylinder(0.2, material=med, center=mp.Vector3(y=0.0)),
            mp.Cylinder(0.2, material=med, center=mp.Vector3(y=-1.0)),
            mp.Cylinder(0.2, material=med, center=mp.Vector3(y=-2.0)),
            mp.Cylinder(0.2, material=med, center=mp.Vector3(y=-3.0)),
        ]

        for exp, res in zip(expected, geometry):
            self.assertEqual(exp.center, res.center)
            self.assertEqual(exp.radius, res.radius)
コード例 #3
0
def get_freqs_interpolate(hx=0.24, hy=0.24, a=0.33, wy=0.7, h=0.22):
    '''
    Useless 
    '''

    import meep as mp
    from meep import mpb

    mode = "zEyO"
    resolution = 20  # pixels/a, taken from simpetus example

    a = round(a, 3)  # units of um
    h = round(h, 3)  # units of um
    w = round(wy, 3)  # units of um
    hx = round(hx, 3)
    hy = round(hy, 3)

    h = h / a  # units of "a"
    w = w / a  # units of "a"
    hx = hx / a  # units of "a"
    hy = hy / a  # units of "a"

    nSi = 3.45
    Si = mp.Medium(index=nSi)

    geometry_lattice = mp.Lattice(size=mp.Vector3(
        1, 4, 4))  # dimensions of lattice taken from simpetus example

    geometry = [
        mp.Block(center=mp.Vector3(),
                 size=mp.Vector3(mp.inf, w, h),
                 material=Si),
        mp.Ellipsoid(material=mp.air,
                     center=mp.Vector3(),
                     size=mp.Vector3(hx, hy, mp.inf))
    ]

    num_k = 20  # from simpetus example, no. of k_points to evaluate the eigen frequency at
    k_points = mp.interpolate(
        num_k,
        [mp.Vector3(0, 0, 0), mp.Vector3(0.5, 0, 0)])

    num_bands = 2  # from simpetus example

    ms = mpb.ModeSolver(geometry_lattice=geometry_lattice,
                        geometry=geometry,
                        k_points=k_points,
                        resolution=resolution,
                        num_bands=num_bands)

    if mode == "te":

        ms.run_te()  # running for all modes and extracting parities

    if mode == "zEyO":

        ms.run_yodd_zeven()

    return ms.freqs
コード例 #4
0
ファイル: geom.py プロジェクト: woodlee123/meep-1
 def test_rotate_reciprocal(self):
     axis = mp.Vector3(1)
     v = mp.Vector3(2, 2, 2)
     lattice = mp.Lattice(size=mp.Vector3(1, 1))
     res = v.rotate_reciprocal(axis, 3, lattice)
     self.assertTrue(
         res.close(mp.Vector3(2.0, -2.262225009320625,
                              -1.6977449770811563)))
コード例 #5
0
def get_freqs(hx=0.24, hy=0.24, a=0.33, w=0.7, h=0.22):
    '''
    Returns tuple of dielectric and air band edge frequencies for input parameters
    '''

    import meep as mp
    from meep import mpb

    res = 20
    mode = "zEyO"
    resolution = res  # pixels/a, taken from simpetus example

    a = round(a, 3)  # units of um
    h = round(h, 3)  # units of um
    w = round(w, 3)  # units of um
    hx = round(hx, 3)
    hy = round(hy, 3)

    h = h / a  # units of "a"
    w = w / a  # units of "a"
    hx = hx / a  # units of "a"
    hy = hy / a  # units of "a"

    nSi = 3.45
    Si = mp.Medium(index=nSi)

    geometry_lattice = mp.Lattice(size=mp.Vector3(
        1, 4, 4))  # dimensions of lattice taken from simpetus example

    geometry = [
        mp.Block(center=mp.Vector3(),
                 size=mp.Vector3(mp.inf, w, h),
                 material=Si),
        mp.Ellipsoid(material=mp.air,
                     center=mp.Vector3(),
                     size=mp.Vector3(hx, hy, mp.inf))
    ]

    k_points = [mp.Vector3(0.5, 0, 0)]
    num_bands = 2  # from simpetus example

    ms = mpb.ModeSolver(geometry_lattice=geometry_lattice,
                        geometry=geometry,
                        k_points=k_points,
                        resolution=resolution,
                        num_bands=num_bands)

    if mode == "te":

        ms.run_te()  # running for all modes and extracting parities

    if mode == "zEyO":

        ms.run_yodd_zeven()

    return ms.freqs
コード例 #6
0
ファイル: geom.py プロジェクト: woodlee123/meep-1
    def test_basis(self):
        lattice = mp.Lattice(size=mp.Vector3(1, 7),
                             basis1=mp.Vector3(math.sqrt(3) / 2, 0.5),
                             basis2=mp.Vector3(math.sqrt(3) / 2, -0.5))
        b = lattice.basis
        exp = mp.Matrix(mp.Vector3(0.8660254037844388, 0.5000000000000001),
                        mp.Vector3(0.8660254037844388, -0.5000000000000001),
                        mp.Vector3(z=1.0))

        for e, r in zip([exp.c1, exp.c2, exp.c3], [b.c1, b.c2, b.c3]):
            self.assertTrue(e.close(r))
コード例 #7
0
ファイル: mpb.py プロジェクト: fesc3555/meep
    def test_point_defect_state(self):

        ms = self.init_solver()
        ms.geometry_lattice = mp.Lattice(size=mp.Vector3(5, 5))
        ms.geometry = [mp.Cylinder(0.2, material=mp.Medium(epsilon=12))]

        ms.geometry = mp.geometric_objects_lattice_duplicates(
            ms.geometry_lattice, ms.geometry)
        ms.geometry.append(mp.Cylinder(0.2, material=mp.air))

        ms.resolution = 16
        ms.k_points = [mp.Vector3(0.5, 0.5)]

        ms.num_bands = 50
        ms.run_tm()

        mpb.fix_efield_phase(ms, 25)
        mpb.output_efield_z(ms, 25)

        mpb.fix_dfield_phase(ms, 25)
        ms.get_dfield(25)
        ms.compute_field_energy()
        c = mp.Cylinder(1.0, material=mp.air)
        e = ms.compute_energy_in_objects([c])
        self.assertAlmostEqual(0.6227482574427817, e, places=3)

        ms.num_bands = 1
        ms.target_freq = (0.2812 + 0.4174) / 2
        ms.tolerance = 1e-8
        ms.run_tm()

        expected_brd = [
            ((0.37730041222979477, mp.Vector3(0.5, 0.5, 0.0)),
             (0.37730041222979477, mp.Vector3(0.5, 0.5, 0.0))),
        ]

        self.check_band_range_data(expected_brd, ms.band_range_data)

        old_geometry = ms.geometry  # save the 5x5 grid with a missing rod

        def rootfun(eps):
            ms.geometry = old_geometry + [
                mp.Cylinder(0.2, material=mp.Medium(epsilon=eps))
            ]
            ms.run_tm()
            return ms.get_freqs()[0] - 0.314159

        rooteps = ridder(rootfun, 1, 12)
        rootval = rootfun(rooteps)

        self.assertAlmostEqual(5.288830111797463, rooteps, places=3)
        self.assertAlmostEqual(9.300716530269426e-9, rootval, places=3)
コード例 #8
0
    def test_inverse(self):
        self.matrix_eq(self.identity, self.identity.inverse())

        lattice = mp.Lattice(size=mp.Vector3(1, 7),
                             basis1=mp.Vector3(math.sqrt(3) / 2, 0.5),
                             basis2=mp.Vector3(math.sqrt(3) / 2, -0.5))

        res = lattice.basis.inverse()
        exp = mp.Matrix(mp.Vector3(0.5773502691896256, 0.5773502691896256, -0.0),
                        mp.Vector3(0.9999999999999998, -0.9999999999999998, -0.0),
                        mp.Vector3(-0.0, -0.0, 1.0))

        self.matrix_close(exp, res)
コード例 #9
0
ファイル: sweep.py プロジェクト: sudhangv/simulation_cavity
def get_freqs(hx, hy, a, w):

    wz = 0.22
    res = 20
    mode = "zEyO"
    resolution = res  # pixels/a, taken from simpetus example

    #     a = round(a,3)        # units of um
    #     h = round(wz, 3)         # units of um
    #     w = round(wy, 3)         # units of um
    #     hx = round(hx, 3)
    #     hy = round(hy, 3)
    h = wz
    h = h / a  # units of "a"
    w = w / a  # units of "a"
    hx = hx / a  # units of "a"
    hy = hy / a  # units of "a"

    nSi = 3.45
    Si = mp.Medium(index=nSi)

    geometry_lattice = mp.Lattice(size=mp.Vector3(
        1, 4, 4))  # dimensions of lattice taken from simpetus example

    geometry = [
        mp.Block(center=mp.Vector3(),
                 size=mp.Vector3(mp.inf, w, h),
                 material=Si),
        mp.Ellipsoid(material=mp.air,
                     center=mp.Vector3(),
                     size=mp.Vector3(hx, hy, mp.inf))
    ]

    k_points = [mp.Vector3(0.5, 0, 0)]
    num_bands = 2  # from simpetus example

    ms = mpb.ModeSolver(geometry_lattice=geometry_lattice,
                        geometry=geometry,
                        k_points=k_points,
                        resolution=resolution,
                        num_bands=num_bands)

    if mode == "te":

        ms.run_te()  # running for all modes and extracting parities

    if mode == "zEyO":

        ms.run_yodd_zeven()

    return ms.freqs
コード例 #10
0
ファイル: mpb.py プロジェクト: fesc3555/meep
    def test_triangular_lattice(self):

        expected_brd = [
            ((0.0, mp.Vector3(0.0, 0.0,
                              0.0)), (0.2746902258623623,
                                      mp.Vector3(-0.3333333333333333,
                                                 0.3333333333333333, 0.0))),
            ((0.44533108084715683, mp.Vector3(0.0, 0.5, 0.0)),
             (0.5605181423162835, mp.Vector3(0.0, 0.0, 0.0))),
            ((0.4902389149027666,
              mp.Vector3(-0.3333333333333333, 0.3333333333333333,
                         0.0)), (0.5605607947797747, mp.Vector3(0.0, 0.0,
                                                                0.0))),
            ((0.5932960873585144, mp.Vector3(0.0, 0.0, 0.0)),
             (0.7907195974443698,
              mp.Vector3(-0.3333333333333333, 0.3333333333333333, 0.0))),
            ((0.790832076332758,
              mp.Vector3(-0.3333333333333333, 0.3333333333333333,
                         0.0)), (0.8374511167537562, mp.Vector3(0.0, 0.0,
                                                                0.0))),
            ((0.8375948528443267, mp.Vector3(0.0, 0.0, 0.0)),
             (0.867200926490345, mp.Vector3(-0.2, 0.39999999999999997, 0.0))),
            ((0.8691349955739203,
              mp.Vector3(-0.13333333333333336, 0.4333333333333333,
                         0.0)), (0.9941291022664892, mp.Vector3(0.0, 0.0,
                                                                0.0))),
            ((0.8992499095547049,
              mp.Vector3(-0.3333333333333333, 0.3333333333333333,
                         0.0)), (1.098318352915696, mp.Vector3(0.0, 0.0,
                                                               0.0))),
        ]

        ms = self.init_solver()
        ms.geometry_lattice = mp.Lattice(
            size=mp.Vector3(1, 1),
            basis1=mp.Vector3(math.sqrt(3) / 2, 0.5),
            basis2=mp.Vector3(math.sqrt(3) / 2, -0.5))

        k_points = [
            mp.Vector3(),
            mp.Vector3(y=0.5),
            mp.Vector3(-1 / 3, 1 / 3),
            mp.Vector3()
        ]

        ms.k_points = mp.interpolate(4, k_points)
        ms.run_tm()

        self.check_band_range_data(expected_brd, ms.band_range_data)
コード例 #11
0
ファイル: post_processing.py プロジェクト: maxime-z/basic_sc
def example_case():
    num_bands = 3
    resolution = 32
    k_point = [
        mp.Vector3(),
        mp.Vector3(0.5),
        mp.Vector3(0.5, 0.5),
        mp.Vector3()
    ]
    k_points = mp.interpolate(40, k_point)

    geometry = [mp.Cylinder(0.2, material=mp.Medium(epsilon=12))]
    geometry_lattice = mp.Lattice(size=mp.Vector3(1, 1))
    ms = mpb.ModeSolver(num_bands=num_bands,
                        k_points=k_points,
                        geometry=geometry,
                        geometry_lattice=geometry_lattice,
                        resolution=resolution)
    ms.run_te()
    return ms
コード例 #12
0
ファイル: mpb.py プロジェクト: fesc3555/meep
    def init_solver(self, geom=True):
        num_bands = 8
        k_points = [
            mp.Vector3(),
            mp.Vector3(0.5),
            mp.Vector3(0.5, 0.5),
            mp.Vector3()
        ]

        geometry = [mp.Cylinder(0.2, material=mp.Medium(
            epsilon=12))] if geom else []
        k_points = mp.interpolate(4, k_points)
        geometry_lattice = mp.Lattice(size=mp.Vector3(1, 1))
        resolution = 32

        return mpb.ModeSolver(num_bands=num_bands,
                              k_points=k_points,
                              geometry=geometry,
                              geometry_lattice=geometry_lattice,
                              resolution=resolution,
                              filename_prefix=self.filename_prefix,
                              deterministic=True,
                              tolerance=1e-12)
コード例 #13
0
ファイル: MPB_test.py プロジェクト: d-a-v/drive-meep-mad
import re
import subprocess

## Parametres de maille
n_lo = 1
n_hi = 3.25
Nbands = 16
ra = 0.20
resolution = 64

## Definition discretisation traits horizontaux
nbr_points_x = 4
nbr_points_y = 4

## Repere direct carree 45
geometry_lattice = mp.Lattice()
geometry_lattice.basis_size = mp.Vector3(1, 1, 1)
geometry_lattice.size = mp.Vector3(1, 1, 0)
geometry_lattice.basis1 = mp.Vector3(math.sqrt(2) / 2, -math.sqrt(2) / 2)
geometry_lattice.basis2 = mp.Vector3(math.sqrt(2) / 2, +math.sqrt(2) / 2)

## Definition motif
default_material = mp.Medium(index=n_hi)
C_0 = [mp.Cylinder(ra, material=mp.Medium(index=n_lo))]

## Limites IBZ REPERE RECIPROQUE
k_point_gamma = mp.Vector3(0, 0)
k_point_M_rec = mp.Vector3(1 / 2, 1 / 2)
k_point_K_rec = mp.Vector3(1 / 2, 0)
k_point_K_cart = mp.Vector3(math.sqrt(2) / 2, 0)
k_point_M_cart = mp.Vector3(math.sqrt(2) / 4, math.sqrt(2) / 4)
コード例 #14
0
ファイル: parallel-wvgs-mpb.py プロジェクト: zzzzz9527/meep
# -*- coding: utf-8 -*-

import meep as mp
from meep import mpb
import numpy as np
import matplotlib.pyplot as plt

resolution = 128  # pixels/μm

Si = mp.Medium(index=3.45)

syz = 10
geometry_lattice = mp.Lattice(size=mp.Vector3(0,syz,syz))

k_points = [mp.Vector3(0.5)]

a = 1.0  # waveguide width

def parallel_waveguide(s,yodd):
    geometry = [mp.Block(center=mp.Vector3(0,-0.5*(s+a),0),
                         size=mp.Vector3(mp.inf,a,a),
                         material=Si),
                mp.Block(center=mp.Vector3(0,0.5*(s+a),0),
                         size=mp.Vector3(mp.inf,a,a),
                         material=Si)]

    ms = mpb.ModeSolver(resolution=resolution,
                        k_points=k_points,
                        geometry_lattice=geometry_lattice,
                        geometry=geometry,
                        num_bands=1,
コード例 #15
0
def get_mode_solver_rib(
    wg_width: float = 0.45,
    wg_thickness: float = 0.22,
    slab_thickness: int = 0.0,
    ncore: float = 3.47,
    nclad: float = 1.44,
    sy: float = 2.0,
    sz: float = 2.0,
    res: int = 32,
    nmodes: int = 4,
) -> mpb.ModeSolver:
    """Returns a mode_solver simulation.

    Args:
        wg_width: wg_width (um)
        wg_thickness: wg height (um)
        slab_thickness: thickness for the waveguide slab
        ncore: core material refractive index
        nclad: clad material refractive index
        sy: simulation region width (um)
        sz: simulation region height (um)
        res: resolution (pixels/um)
        nmodes: number of modes
    """
    material_core = mp.Medium(index=ncore)
    material_clad = mp.Medium(index=nclad)

    # Define the computational cell.  We'll make x the propagation direction.
    # the other cell sizes should be big enough so that the boundaries are
    # far away from the mode field.
    geometry_lattice = mp.Lattice(size=mp.Vector3(0, sy, sz))

    # define the 2d blocks for the strip and substrate
    geometry = [
        mp.Block(
            size=mp.Vector3(mp.inf, mp.inf, mp.inf),
            material=material_clad,
        ),
        # uncomment this for air cladded waveguides
        # mp.Block(
        #     size=mp.Vector3(mp.inf, mp.inf, 0.5 * (sz - wg_thickness)),
        #     center=mp.Vector3(z=0.25 * (sz + wg_thickness)),
        #     material=material_clad,
        # ),
        mp.Block(
            size=mp.Vector3(mp.inf, mp.inf, slab_thickness),
            material=material_core,
            center=mp.Vector3(z=-0.5 * slab_thickness),
        ),
        mp.Block(
            size=mp.Vector3(mp.inf, wg_width, wg_thickness),
            material=material_core,
            center=mp.Vector3(z=0),
        ),
    ]

    # The k (i.e. beta, i.e. propagation constant) points to look at, in
    # units of 2*pi/um.  We'll look at num_k points from k_min to k_max.
    num_k = 9
    k_min = 0.1
    k_max = 3.0
    k_points = mp.interpolate(num_k, [mp.Vector3(k_min), mp.Vector3(k_max)])

    # Increase this to see more modes.  (The guided ones are the ones below the
    # light line, i.e. those with frequencies < kmag / 1.45, where kmag
    # is the corresponding column in the output if you grep for "freqs:".)
    # use this prefix for output files

    filename_prefix = tmp / f"rib_{wg_width}_{wg_thickness}_{slab_thickness}"

    mode_solver = mpb.ModeSolver(
        geometry_lattice=geometry_lattice,
        geometry=geometry,
        k_points=k_points,
        resolution=res,
        num_bands=nmodes,
        filename_prefix=str(filename_prefix),
    )
    mode_solver.nmodes = nmodes
    return mode_solver
コード例 #16
0
def main(args):
    """
    Args:
       * **res** (int): Resolution of the simulation [pixels/um] (default=10)
       * **wavelength** (float): Wavelength in microns (default=1.55)
       * **sx** (float): Size of the simulation region in the x-direction (default=4.0)
       * **sy** (float): Size of the simulation region in the y-direction (default=4.0)
       * **plot_mode_number** (int): Which mode to plot (only plots one mode at a time).  Must be a number equal to or less than num_mode (default=1)
       * **polarization** (string): If true, outputs the fields at the relevant waveguide cross-sections (top-down and side-view)
       * **epsilon_file** (string): Filename with the dielectric "block" objects (default=None)
       * **output_directory** (string): If true, outputs the fields at the relevant waveguide cross-sections (top-down and side-view)
       * **save_mode_data** (boolean): Save the mode image and data to a separate file (default=None)
       * **suppress_window** (boolean): Suppress the matplotlib window (default=False)
    """
    #Boolean inputs
    save_mode_data = args.save_mode_data
    suppress_window = args.suppress_window

    #String inputs
    polarization = args.polarization
    epsilon_file = args.epsilon_file
    output_directory = args.output_directory
    if not os.path.exists(output_directory):
        os.makedirs(output_directory)

    #Int inputs
    res = args.res
    #    num_modes = args.num_modes
    plot_mode_number = args.plot_mode_number

    #Float inputs
    wavelength = args.wavelength
    sx = args.sx
    sy = args.sy

    geometry_lattice = mp.Lattice(size=mp.Vector3(0, sy, sx))

    with h5py.File(epsilon_file, 'r') as hf:
        data = np.array([
            np.array(hf.get("CX")),
            np.array(hf.get("CY")),
            np.array(hf.get("width_list")),
            np.array(hf.get("height_list")),
            np.array(hf.get("eps_list"))
        ])
    geometry = []
    for i in range(len(data[0])):
        geometry.append(
            mp.Block(size=mp.Vector3(mp.inf, data[3][i], data[2][i]),
                     center=mp.Vector3(0, data[1][i], data[0][i]),
                     material=mp.Medium(epsilon=data[4][i])))

    ms = mpb.ModeSolver(geometry_lattice=geometry_lattice,
                        geometry=geometry,
                        resolution=res,
                        default_material=mp.Medium(epsilon=1.0),
                        num_bands=plot_mode_number)
    freq = 1 / wavelength
    kdir = mp.Vector3(1, 0, 0)
    tol = 1e-6
    kmag_guess = freq * 2.02
    kmag_min = freq * 0.01
    kmag_max = freq * 10.0

    if polarization == "TE":
        parity = mp.ODD_Z
    elif polarization == "TM":
        parity = mp.EVEN_Z
    elif polarization == "None":
        parity = mp.NO_PARITY

    k = ms.find_k(parity, freq, plot_mode_number, plot_mode_number, kdir, tol,
                  kmag_guess, kmag_min, kmag_max)
    vg = ms.compute_group_velocities()
    print('k=' + str(k))
    print('v_g=' + str(vg))

    k = k[0]
    vg = vg[0][0]
    """ Plot modes """
    eps = ms.get_epsilon()
    ms.get_dfield(plot_mode_number)
    E = ms.get_efield(plot_mode_number)
    Eabs = np.sqrt(
        np.multiply(E[:, :, 0, 2], E[:, :, 0, 2]) +
        np.multiply(E[:, :, 0, 1], E[:, :, 0, 1]) +
        np.multiply(E[:, :, 0, 0], E[:, :, 0, 0]))
    H = ms.get_hfield(plot_mode_number)
    Habs = np.sqrt(
        np.multiply(H[:, :, 0, 2], H[:, :, 0, 2]) +
        np.multiply(H[:, :, 0, 1], H[:, :, 0, 1]) +
        np.multiply(H[:, :, 0, 0], H[:, :, 0, 0]))

    plt_extent = [-sy / 2.0, +sy / 2.0, -sx / 2.0, +sx / 2.0]

    cmap_fields = 'hot_r'
    cmap_geom = 'viridis'

    if not suppress_window:
        """
        First plot electric field
        """
        plt.figure(figsize=(14, 8))

        plt.subplot(2, 3, 1)
        plt.imshow(abs(E[:, :, 0, 2]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|E_x|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 2)
        plt.imshow(abs(E[:, :, 0, 1]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|E_y|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 3)
        plt.imshow(abs(E[:, :, 0, 0]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|E_z|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 4)
        plt.imshow(abs(Eabs),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|E|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 5)
        plt.imshow(eps,
                   cmap=cmap_geom,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide dielectric")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.tight_layout()
        plt.show()
        """
        Then plot magnetic field
        """
        plt.figure(figsize=(14, 8))

        plt.subplot(2, 3, 1)
        plt.imshow(abs(H[:, :, 0, 2]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|H_x|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 2)
        plt.imshow(abs(H[:, :, 0, 1]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|H_y|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 3)
        plt.imshow(abs(H[:, :, 0, 0]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|H_z|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 4)
        plt.imshow(abs(Habs),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|H|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 5)
        plt.imshow(eps,
                   cmap=cmap_geom,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide dielectric")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.tight_layout()
        plt.show()

    if save_mode_data:
        """
        First plot electric field
        """
        plt.figure(figsize=(14, 8))

        plt.subplot(2, 3, 1)
        plt.imshow(abs(E[:, :, 0, 2]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|E_x|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 2)
        plt.imshow(abs(E[:, :, 0, 1]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|E_y|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 3)
        plt.imshow(abs(E[:, :, 0, 0]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|E_z|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 4)
        plt.imshow(abs(Eabs),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|E|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 5)
        plt.imshow(eps,
                   cmap=cmap_geom,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide dielectric")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.tight_layout()
        if polarization == "TE":
            savetxt = '%s/TE_mode%d_Efield.png' % (output_directory,
                                                   plot_mode_number)
        elif polarization == "TM":
            savetxt = '%s/TM_mode%d_Efield.png' % (output_directory,
                                                   plot_mode_number)
        elif polarization == "None":
            savetxt = '%s/mode%d_Efield.png' % (output_directory,
                                                plot_mode_number)
        plt.savefig(savetxt)
        """
        Then plot magnetic field
        """
        plt.figure(figsize=(14, 8))

        plt.subplot(2, 3, 1)
        plt.imshow(abs(H[:, :, 0, 2]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|H_x|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 2)
        plt.imshow(abs(H[:, :, 0, 1]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|H_y|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 3)
        plt.imshow(abs(H[:, :, 0, 0]),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|H_z|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 4)
        plt.imshow(abs(Habs),
                   cmap=cmap_fields,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide mode $|H|$")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.subplot(2, 3, 5)
        plt.imshow(eps,
                   cmap=cmap_geom,
                   origin='lower',
                   aspect='auto',
                   extent=plt_extent)
        plt.title("Waveguide dielectric")
        plt.ylabel("y-axis")
        plt.xlabel("x-axis")
        plt.colorbar()

        plt.tight_layout()
        if polarization == "TE":
            savetxt = '%s/TE_mode%d_Hfield.png' % (output_directory,
                                                   plot_mode_number)
        elif polarization == "TM":
            savetxt = '%s/TM_mode%d_Hfield.png' % (output_directory,
                                                   plot_mode_number)
        elif polarization == "None":
            savetxt = '%s/mode%d_Hfield.png' % (output_directory,
                                                plot_mode_number)
        plt.savefig(savetxt)
        """
        Save the mode data to a .txt file
        """
        if polarization == "TE":
            datafilename = '%s/TE_mode%d_data.txt' % (output_directory,
                                                      plot_mode_number)
        elif polarization == "TM":
            datafilename = '%s/TM_mode%d_data.txt' % (output_directory,
                                                      plot_mode_number)
        elif polarization == "None":
            datafilename = '%s/mode%d_data.txt' % (output_directory,
                                                   plot_mode_number)
        f = open(datafilename, 'w')
        f.write(
            '#################################################################\n'
        )
        f.write('Mode %d with %s polarization \n' %
                (plot_mode_number, polarization))
        f.write(
            '#################################################################\n'
        )
        f.write('\n')
        f.write('k \t\t %0.6f \n' % (k))
        f.write('n_eff \t\t %0.6f \n' % (wavelength * k))
        f.write('vg \t\t %0.6f \n' % (vg))
        f.write('ng \t\t %0.6f \n' % (1 / vg))
コード例 #17
0
ファイル: geom.py プロジェクト: woodlee123/meep-1
 def test_cartesian_to_lattice(self):
     lattice = mp.Lattice(size=mp.Vector3(1, 7),
                          basis1=mp.Vector3(math.sqrt(3) / 2, 0.5),
                          basis2=mp.Vector3(math.sqrt(3) / 2, -0.5))
     res = mp.cartesian_to_lattice(lattice.basis * mp.Vector3(1), lattice)
     self.assertEqual(res, mp.Vector3(1))
コード例 #18
0
# The index will vary sinusoidally between index-min and index-max:
index_min = 1
index_max = 3


# Define a function of position p (in the lattice basis) that returns
# the material at that position.  In this case, we use the function:
#        index-min + 0.5 * (index-max - index-min)
#                        * (1 + cos(2*pi*x))
# This is periodic, and also has inversion symmetry.
def eps_func(p):
    return mp.Medium(index=index_min + 0.5 * (index_max - index_min) *
                     (1 + math.cos(2 * math.pi * p.x)))


geometry_lattice = mp.Lattice(size=mp.Vector3(1))  # 1d cell

# We'll just make it the default material, so that it goes everywhere.
default_material = eps_func

k_points = mp.interpolate(9, [mp.Vector3(), mp.Vector3(x=0.5)])

resolution = 32
num_bands = 8

ms = mpb.ModeSolver(num_bands=num_bands,
                    k_points=k_points,
                    geometry_lattice=geometry_lattice,
                    resolution=resolution,
                    default_material=default_material)
コード例 #19
0
             height=mp.inf,
             material=mp.Medium(epsilon=(0.001 * int(sys.argv[5]))**2))
]

# mp.Cylinder(radius = 0.001*int(sys.argv[2]), center = mp.Vector3(   0,   0), material=mp.Medium(epsilon=(0.001*int(sys.argv[4]))**2))

# geometry = [mp.Cylinder(, center = mp.Vector3( 1/3, 1/3), material=mp.Medium(epsilon=1)),
# 			mp.Cylinder(radius = 0.001*int(sys.argv[1]), center = mp.Vector3( 1/3,   0), material=mp.Medium(epsilon=1)),
#             mp.Cylinder(radius = 0.001*int(sys.argv[1]), center = mp.Vector3(   0,-1/3), material=mp.Medium(epsilon=1)),
#             mp.Cylinder(radius = 0.001*int(sys.argv[1]), center = mp.Vector3(-1/3,-1/3), material=mp.Medium(epsilon=1)),
#             mp.Cylinder(radius = 0.001*int(sys.argv[1]), center = mp.Vector3(-1/3,   0), material=mp.Medium(epsilon=1)),
#             mp.Cylinder(radius = 0.001*int(sys.argv[1]), center = mp.Vector3(   0, 1/3), material=mp.Medium(epsilon=1)),
#             mp.Cylinder(radius = 0.001*int(sys.argv[2]), center = mp.Vector3(   0,   0), material=mp.Medium(epsilon=(0.001*int(sys.argv[4]))**2))]

geometry_lattice = mp.Lattice(size=mp.Vector3(1, 1),
                              basis1=mp.Vector3(0.5, 3**0.5 / 2),
                              basis2=mp.Vector3(0.5, -3**0.5 / 2))

ms = mpb.ModeSolver(num_bands=num_bands,
                    k_points=k_points,
                    geometry_lattice=geometry_lattice,
                    geometry=geometry,
                    resolution=resolution,
                    default_material=mp.Medium(epsilon=(0.001 *
                                                        int(sys.argv[3]))**2))

ms.run_te()

md = mpb.MPBData(rectify=True, periods=2, resolution=128)
eps = ms.get_epsilon()
converted_eps = md.convert(eps)
コード例 #20
0
    mp.Vector3(0.5, 0, 0),
    mp.Vector3(0.5, 0.1, 0.0),
    mp.Vector3(0.5, 0.2, 0.0),
    mp.Vector3(0.5, 0.3, 0.0),
    mp.Vector3(0.5, 0.4, 0.0),
    mp.Vector3(0.5, 0.5, 0),
    mp.Vector3(0.4, 0.4, 0.0),
    mp.Vector3(0.3, 0.3, 0.0),
    mp.Vector3(0.2, 0.2, 0.0),
    mp.Vector3(0.1, 0.1, 0.0),
    mp.Vector3(0, 0, 0)
]

geometry = [mp.Cylinder(0.2, material=mp.Medium(epsilon=12))]

geometry_lattice = mp.Lattice(size=mp.Vector3(1, 1))

resolution = 32

ms = mpb.ModeSolver(num_bands=num_bands,
                    k_points=k_points,
                    geometry=geometry,
                    geometry_lattice=geometry_lattice,
                    resolution=resolution)

#import sys
#sys.exit(0)

#print_heading("Square lattice of rods: TE bands")
ms.run_te()
コード例 #21
0
    def __init__(self,
                 resolution=10,
                 is_negative_epsilon_ok=False,
                 eigensolver_flops=0,
                 eigensolver_flags=68,
                 use_simple_preconditioner=False,
                 force_mu=False,
                 mu_input_file='',
                 epsilon_input_file='',
                 mesh_size=3,
                 target_freq=0.0,
                 tolerance=1.0e-7,
                 num_bands=1,
                 k_points=[],
                 ensure_periodicity=True,
                 geometry=[],
                 geometry_lattice=mp.Lattice(),
                 geometry_center=mp.Vector3(0, 0, 0),
                 default_material=mp.Medium(epsilon=1),
                 dimensions=3,
                 random_fields=False,
                 filename_prefix='',
                 deterministic=False,
                 verbose=False,
                 optimize_grid_size=True,
                 eigensolver_nwork=3,
                 eigensolver_block_size=-11):

        self.mode_solver = None
        self.resolution = resolution
        self.eigensolver_flags = eigensolver_flags
        self.k_points = k_points
        self.geometry = geometry
        self.geometry_lattice = geometry_lattice
        self.geometry_center = mp.Vector3(*geometry_center)
        self.default_material = default_material
        self.random_fields = random_fields
        self.filename_prefix = filename_prefix
        self.optimize_grid_size = optimize_grid_size
        self.parity = ''
        self.iterations = 0
        self.all_freqs = None
        self.freqs = []
        self.band_range_data = []
        self.total_run_time = 0
        self.current_k = mp.Vector3()
        self.k_split_num = 1
        self.k_split_index = 0
        self.eigensolver_iters = []

        grid_size = self._adjust_grid_size()

        if type(self.default_material) is not mp.Medium and callable(
                self.default_material):
            init_do_averaging(self.default_material)
            self.default_material.eps = False

        self.mode_solver = mode_solver(
            num_bands,
            self.resolution,
            self.geometry_lattice,
            tolerance,
            mesh_size,
            self.default_material,
            deterministic,
            target_freq,
            dimensions,
            verbose,
            ensure_periodicity,
            eigensolver_flops,
            is_negative_epsilon_ok,
            epsilon_input_file,
            mu_input_file,
            force_mu,
            use_simple_preconditioner,
            grid_size,
            eigensolver_nwork,
            eigensolver_block_size,
        )
コード例 #22
0
hu = min(hu, (H - h) / 2)
hl = min(hl, (H - h) / 2)

n_m = max(n_x, n_y, n_z)
n_c = max(n_l, n_u)

fcen = 1 / wavelength
df = 0.05

default_material = mp.Medium(epsilon=1)
upper_material = mp.Medium(epsilon=n_u**2)
core_material = mp.Medium(epsilon_diag=mp.Vector3(n_x**2, n_y**2, n_z**2))
lower_material = mp.Medium(epsilon=n_l**2)

geometry_lattice = mp.Lattice(size=mp.Vector3(0, monitorheight, 0))

# bandNum = 4

# geometry = [mp.Block(mp.Vector3(mp.inf, h, mp.inf), center=mp.Vector3(0,0,0), material=core_material),
# 			mp.Block(mp.Vector3(mp.inf, h, mp.inf), center=mp.Vector3(0,0,0), material=core_material),
# 			mp.Block(mp.Vector3(mp.inf, h, mp.inf), center=mp.Vector3(0,0,0), material=core_material),
# 			mp.Block(mp.Vector3(mp.inf, h, mp.inf), center=mp.Vector3(0,0,0), material=core_material)]

geometrympb = [
    mp.Block(mp.Vector3(mp.inf, monitorheight, mp.inf),
             center=mp.Vector3(0, 0),
             material=default_material),
    mp.Block(mp.Vector3(mp.inf, hu + h / 2, mp.inf),
             center=mp.Vector3(0, (hu + h / 2) / 2),
             material=upper_material),
コード例 #23
0
eps0Si = 7.98737492
epsLorentzSi = 3.68799143
omega0Si = 3.93282466e15
epsSi = lambda lam: eps0Si + epsLorentzSi * omega0Si**2 / (omega0Si**2 - (
    2 * np.pi * c * 1e6 / lam)**2)

# Silicon Dioxide dispersion relation
eps0SiO2 = 2.119881
epsLorentzSiO2 = 49.43721
omega0SiO2 = 3.309238e13
epsSiO2 = lambda lam: eps0SiO2 + epsLorentzSiO2 * omega0SiO2**2 / (
    omega0SiO2**2 - (2 * np.pi * c * 1e6 / lam)**2)

sc_y = 2  # supercell width (um)
sc_z = 2  # supercell height (um)
geometry_lattice = mp.Lattice(size=mp.Vector3(0, sc_y, sc_z))
resolution = 32  # pixels/um

ms = mpb.ModeSolver(geometry_lattice=geometry_lattice,
                    resolution=resolution,
                    ensure_periodicity=False)

# ------------------------------------------------------------------------------ #
# Loop through experiment
# ------------------------------------------------------------------------------ #

# get current frequency and wavelength
currentLambda = 1.55
omegaIn = 1 / currentLambda

# Update material parameters
コード例 #24
0
ファイル: mpb_tutorial.py プロジェクト: davito0203/MEEP
# Our First Band Structure

print_heading("Square lattice of rods in air")

num_bands = 8
k_points = [
    mp.Vector3(),  # Gamma
    mp.Vector3(0.5),  # X
    mp.Vector3(0.5, 0.5),  # M
    mp.Vector3()
]  # Gamma

k_points = mp.interpolate(4, k_points)
geometry = [mp.Cylinder(0.2, material=mp.Medium(epsilon=12))]
geometry_lattice = mp.Lattice(size=mp.Vector3(1, 1))
resolution = 32

ms = mpb.ModeSolver(num_bands=num_bands,
                    k_points=k_points,
                    geometry=geometry,
                    geometry_lattice=geometry_lattice,
                    resolution=resolution)

print_heading("Square lattice of rods: TE bands")
ms.run_te()

print_heading("Square lattice of rods: TM bands")
ms.run_tm()

print_heading("Square lattice of rods: TM, w/efield")
コード例 #25
0
    def __init__(self,
                 resolution=10,
                 is_negative_epsilon_ok=False,
                 eigensolver_flops=0,
                 is_eigensolver_davidson=False,
                 eigensolver_nwork=3,
                 eigensolver_block_size=-11,
                 eigensolver_flags=68,
                 is_simple_preconditioner=False,
                 is_deterministic=False,
                 force_mu=False,
                 mu_input_file='',
                 epsilon_input_file='',
                 mesh_size=3,
                 target_freq=0.0,
                 tolerance=1.0e-7,
                 num_bands=1,
                 k_points=[],
                 ensure_periodicity=True,
                 geometry=[],
                 geometry_lattice=mp.Lattice(),
                 geometry_center=mp.Vector3(0, 0, 0),
                 default_material=mp.Medium(epsilon=1),
                 dimensions=3,
                 random_fields=False,
                 filename_prefix='',
                 deterministic=False,
                 verbose=False):

        self.resolution = resolution
        self.is_negative_epsilon_ok = is_negative_epsilon_ok
        self.eigensolver_flops = eigensolver_flops
        self.is_eigensolver_davidson = is_eigensolver_davidson
        self.eigensolver_nwork = eigensolver_nwork
        self.eigensolver_block_size = eigensolver_block_size
        self.eigensolver_flags = eigensolver_flags
        self.is_simple_preconditioner = is_simple_preconditioner
        self.is_deterministic = is_deterministic
        self.force_mu = force_mu
        self.mu_input_file = mu_input_file
        self.epsilon_input_file = epsilon_input_file
        self.mesh_size = mesh_size
        self.target_freq = target_freq
        self.tolerance = tolerance
        self.num_bands = num_bands
        self.k_points = k_points
        self.ensure_periodicity = ensure_periodicity
        self.geometry = geometry
        self.geometry_lattice = geometry_lattice
        self.geometry_center = geometry_center
        self.default_material = default_material
        self.dimensions = dimensions
        self.random_fields = random_fields
        self.filename_prefix = filename_prefix
        self.deterministic = deterministic
        self.verbose = verbose
        self.parity = ''
        self.iterations = 0
        self.all_freqs = None
        self.freqs = []
        self.band_range_data = []
        self.eigensolver_flops = 0
        self.total_run_time = 0
        self.current_k = mp.Vector3()
        self.k_split_num = 1
        self.k_split_index = 0
        self.eigensolver_iters = []
        self.mode_solver = None
コード例 #26
0
def get_freqs(hx,
              hy,
              a,
              w,
              h=0.22,
              substrate=False,
              output_epsilon=False,
              mode="zEyO",
              num_bands=2):

    # h = 0.23    # for manually setting waveguide height
    res = 20
    #mode = "zEyO"
    resolution = res  # pixels/a, taken from simpetus example

    print(" h = " + str(h) + ", SUBSTRATE = " + str(substrate) + ", mode = " +
          str(mode))

    a = round(a, 3)  # units of um
    h = round(h, 3)  # units of um
    w = round(w, 3)  # units of um
    hx = round(hx, 3)
    hy = round(hy, 3)

    h = h / a  # units of "a"
    w = w / a  # units of "a"
    hx = hx / a  # units of "a"
    hy = hy / a  # units of "a"

    cell_x = 1
    cell_y = 4
    cell_z = 4

    nSi = 3.45
    Si = mp.Medium(index=nSi)

    geometry_lattice = mp.Lattice(size=mp.Vector3(
        cell_x, cell_y,
        cell_z))  # dimensions of lattice taken from simpetus example

    geometry = [
        mp.Block(center=mp.Vector3(),
                 size=mp.Vector3(mp.inf, w, h),
                 material=Si),
        mp.Ellipsoid(material=mp.air,
                     center=mp.Vector3(),
                     size=mp.Vector3(hx, hy, mp.inf))
    ]

    if substrate:
        geometry = add_substrate(geom=geometry,
                                 waveguide_height=h,
                                 substrate_height=cell_z / 2 -
                                 h / 2)  # substrate height normalized with a

    k_points = [mp.Vector3(0.5, 0, 0)]

    num_bands = num_bands

    ms = mpb.ModeSolver(geometry_lattice=geometry_lattice,
                        geometry=geometry,
                        k_points=k_points,
                        resolution=resolution,
                        num_bands=num_bands)

    if mode == "te":

        ms.run_te()  # running for all modes and extracting parities

    if mode == "zEyO":

        ms.run_yodd_zeven()

    if mode == "yO":

        ms.run_yodd()

    if mode == "yE":

        ms.run_yeven()

#     if output_epsilon:
#         visualise_geometry(ms = ms, x = None , y = None, z = (4 * res)/ 2, value = None)
    if output_epsilon:
        return ms.get_epsilon()


#         with h5py.File('epsilon.hdf5', 'w') as f:
#             arr = ms.get_epsilon
#             dset = f.create_dataset("epsilon", data = arr)

    return ms.freqs
コード例 #27
0
import math
import meep as mp
from meep import mpb

# Dielectric spheres in a diamond (fcc) lattice.  This file is used in
# the "Data Analysis Tutorial" section of the MPB manual.

sqrt_half = math.sqrt(0.5)
sqrt_third = math.sqrt(1.0 / 3.0)
geometry_lattice = mp.Lattice(basis_size=mp.Vector3(sqrt_third, sqrt_third,
                                                    sqrt_third),
                              basis1=mp.Vector3(-1, 1, 1),
                              basis2=mp.Vector3(1, -1, 1),
                              basis3=mp.Vector3(1, 1, -1))

# Corners of the irreducible Brillouin zone for the "I" lattice,
# in order that matches Maldovan2002 Fig 10
vlist = [
    mp.Vector3(0, 0, 0.5),  # N
    mp.Vector3(0.25, 0.25, 0.25),  # P
    mp.Vector3(0, 0, 0),  # Gamma
    mp.Vector3(0, 0, 0.5),  # N
    mp.Vector3(0.5, -0.5, 0.5),  # H
    mp.Vector3(0.25, 0.25, 0.25)  # P
]

k_points = mp.interpolate(4, vlist)

# define a couple of parameters (which we can set from the command_line)
#eps = 20.00  # the dielectric constant of the spheres
#r = 0.25  # the radius of the spheres
コード例 #28
0
dFolder = '/Users/mvchalupnik/Desktop/mympbplots/'
dLoc = dFolder + paramstring
if not os.path.exists(dFolder):
    os.makedirs(dFolder)

w = w_actual/a_actual
a = 1
hx = hx_actual/a_actual
hy = hy_actual/a_actual
h = w/2/np.tan(theta*np.pi/180)


####################################################################

#sets size of lattice to be 3D; 1by1by1
geometry_lattice = mp.Lattice(size=mp.Vector3(a, w*3, h*3))

#https://meep.readthedocs.io/en/latest/Python_User_Interface/#prism
beam = mp.Prism([mp.Vector3(0,-w/2, h/2), mp.Vector3(0,w/2, h/2), mp.Vector3(0,0, -h/2)], a, axis=mp.Vector3(1,0,0), 
    center=None, material=mp.Medium(epsilon=n**2))
#Diamond: n = 2.4063; n^2 = ep_r


hole = mp.Ellipsoid(size=[hx, hy, mp.inf], material=mp.Medium(epsilon=1))

geometry = [beam, hole]

#Symmetry points
k_points = [
    mp.Vector3(0,0,0),               # Gamma
    mp.Vector3(0.5,0,0),          # X (normalized to a?)
コード例 #29
0
import math
import meep as mp
from meep import mpb

# A line_defect waveguide in a 2d triangular lattice of dielectric
# rods (c.f. tri_rods.ctl), formed by a row of missing rods along the
# "x" direction.  (Here, "x" and "y" refer to the first and second
# basis directions.)  This structure supports a single guided band
# within the band gap, much like the analogous waveguide in a square
# lattice of rods (see "Photonic Crystals" by Joannopoulos et al.).

supercell_y = 7  # the (odd) number of lateral supercell periods

geometry_lattice = mp.Lattice(size=mp.Vector3(1, supercell_y),
                              basis1=mp.Vector3(math.sqrt(3) / 2, 0.5),
                              basis2=mp.Vector3(math.sqrt(3) / 2, -0.5))

eps = 12  # the dielectric constant of the rods
r = 0.2  # the rod radius in the bulk crystal

geometry = [mp.Cylinder(r, material=mp.Medium(epsilon=eps))]

# duplicate the bulk crystal rods over the supercell:
geometry = mp.geometric_objects_lattice_duplicates(geometry_lattice, geometry)

# add a rod of air, to erase a row of rods and form a waveguide:
geometry += [mp.Cylinder(r, material=mp.air)]

Gamma = mp.Vector3()
K_prime = mp.lattice_to_reciprocal(mp.Vector3(0.5),
コード例 #30
0
def get_mode_solver_coupler(
    wg_width: float = 0.5,
    gap: float = 0.2,
    wg_widths: Optional[Floats] = None,
    gaps: Optional[Floats] = None,
    wg_thickness: float = 0.22,
    slab_thickness: float = 0.0,
    ncore: float = 3.47,
    nclad: float = 1.44,
    nslab: Optional[float] = None,
    ymargin: float = 2.0,
    sz: float = 2.0,
    resolution: int = 32,
    nmodes: int = 4,
    sidewall_angles: Union[Tuple[float, ...], float] = None,
    # sidewall_taper: int = 1,
) -> mpb.ModeSolver:
    """Returns a mode_solver simulation.

    Args:
        wg_width: wg_width (um)
        gap:
        wg_widths: list or tuple of waveguide widths.
        gaps: list or tuple of waveguide gaps.
        wg_thickness: wg height (um)
        slab_thickness: thickness for the waveguide slab
        ncore: core material refractive index
        nclad: clad material refractive index
        nslab: Optional slab material refractive index. Defaults to ncore.
        ymargin: margin in y.
        sz: simulation region thickness (um)
        resolution: resolution (pixels/um)
        nmodes: number of modes
        sidewall_angles: waveguide sidewall angle (radians),
            tapers from wg_width at top of slab, upwards, to top of waveguide

    ::

          _____________________________________________________
          |
          |
          |         widths[0]                 widths[1]
          |     <---------->     gaps[0]    <---------->
          |      ___________ <------------->  ___________     _
          |     |           |               |           |     |
        sz|_____|           |_______________|           |_____|
          |                                                   | wg_thickness
          |slab_thickness                                     |
          |___________________________________________________|
          |
          |<--->                                         <--->
          |ymargin                                       ymargin
          |____________________________________________________
          <--------------------------------------------------->
                                   sy



    """
    wg_widths = wg_widths or (wg_width, wg_width)
    gaps = gaps or (gap, )
    material_core = mp.Medium(index=ncore)
    material_clad = mp.Medium(index=nclad)
    material_slab = mp.Medium(index=nslab or ncore)

    # Define the computational cell.  We'll make x the propagation direction.
    # the other cell sizes should be big enough so that the boundaries are
    # far away from the mode field.

    sy = np.sum(wg_widths) + np.sum(gaps) + 2 * ymargin
    geometry_lattice = mp.Lattice(size=mp.Vector3(0, sy, sz))

    geometry = []

    y = -sy / 2 + ymargin

    gaps = list(gaps) + [0]
    for i, wg_width in enumerate(wg_widths):
        if sidewall_angles:
            geometry.append(
                mp.Prism(
                    vertices=[
                        mp.Vector3(y=y, z=slab_thickness),
                        mp.Vector3(y=y + wg_width, z=slab_thickness),
                        mp.Vector3(x=1, y=y + wg_width, z=slab_thickness),
                        mp.Vector3(x=1, y=y, z=slab_thickness),
                    ],
                    height=wg_thickness - slab_thickness,
                    center=mp.Vector3(
                        y=y + wg_width / 2,
                        z=slab_thickness + (wg_thickness - slab_thickness) / 2,
                    ),
                    # If only 1 angle is specified, use it for all waveguides
                    sidewall_angle=sidewall_angles if len(
                        np.unique(sidewall_angles)) == 1 else
                    sidewall_angles[i],
                    # axis=mp.Vector3(z=sidewall_taper),
                    material=material_core,
                ))
        else:
            geometry.append(
                mp.Block(
                    size=mp.Vector3(mp.inf, wg_width, wg_thickness),
                    material=material_core,
                    center=mp.Vector3(y=y + wg_width / 2, z=wg_thickness / 2),
                ))

        y += gaps[i] + wg_width

    # define the 2D blocks for the strip and substrate
    geometry += [
        mp.Block(
            size=mp.Vector3(mp.inf, mp.inf, slab_thickness),
            material=material_slab,
            center=mp.Vector3(z=slab_thickness / 2),
        ),
    ]

    # The k (i.e. beta, i.e. propagation constant) points to look at, in
    # units of 2*pi/um.  We'll look at num_k points from k_min to k_max.
    num_k = 9
    k_min = 0.1
    k_max = 3.0
    k_points = mp.interpolate(num_k, [mp.Vector3(k_min), mp.Vector3(k_max)])

    # Increase this to see more modes.  (The guided ones are the ones below the
    # light line, i.e. those with frequencies < kmag / 1.45, where kmag
    # is the corresponding column in the output if you grep for "freqs:".)
    # use this prefix for output files

    wg_widths_str = "_".join([str(i) for i in wg_widths])
    gaps_str = "_".join([str(i) for i in gaps])
    filename_prefix = (
        tmp /
        f"coupler_{wg_widths_str}_{gaps_str}_{wg_thickness}_{slab_thickness}")

    mode_solver = mpb.ModeSolver(
        geometry_lattice=geometry_lattice,
        geometry=geometry,
        k_points=k_points,
        resolution=resolution,
        num_bands=nmodes,
        filename_prefix=str(filename_prefix),
        default_material=material_clad,
    )
    mode_solver.nmodes = nmodes
    mode_solver.info = dict(
        wg_widths=wg_widths,
        gaps=gaps,
        wg_thickness=wg_thickness,
        slab_thickness=slab_thickness,
        ncore=ncore,
        nclad=nclad,
        sy=sy,
        sz=sz,
        resolution=resolution,
        nmodes=nmodes,
    )
    return mode_solver