コード例 #1
0
ファイル: map.py プロジェクト: Shamwayne/meerkat_api
    def get(self,
            variable_id,
            location=1,
            start_date=None,
            end_date=None,
            include_all_clinics=False):

        start_date, end_date = fix_dates(start_date, end_date)
        location = int(location)

        allowed_location = 1
        if g:
            allowed_location = g.allowed_location
        if not is_allowed_location(location, allowed_location):
            return {}
        vi = str(variable_id)
        results = db.session.query(
            func.sum(Data.variables[vi].astext.cast(Float)).label('value'),
            Data.geolocation, Data.clinic).filter(
                Data.variables.has_key(variable_id), Data.date >= start_date,
                Data.date < end_date,
                or_(loc == location
                    for loc in (Data.country, Data.region, Data.district,
                                Data.clinic))).group_by(
                                    "clinic", "geolocation")

        locations = get_locations(db.session)
        ret = {}
        for r in results.all():
            if r[1] is not None:
                geo = to_shape(r[1])
                if r[2]:
                    # Leaflet uses LatLng
                    ret[str(r[2])] = {
                        "value": r[0],
                        "geolocation": [geo.y, geo.x],
                        "clinic": locations[r[2]].name
                    }
                else:
                    if not include_all_clinics:
                        cords = [geo.y, geo.x]  # Leaflet uses LatLng
                        ret[str(cords)] = {
                            "value": r[0],
                            "geolocation": cords,
                            "clinic": "Outbreak Investigation"
                        }

        if include_all_clinics:
            results = db.session.query(model.Locations)
            for row in results.all():
                if is_allowed_location(row.id, location):
                    if row.case_report and row.point_location is not None and str(
                            row.id) not in ret.keys():
                        geo = to_shape(row.point_location)
                        ret[str(row.id)] = {
                            "value": 0,
                            "geolocation": [geo.y, geo.x],
                            "clinic": row.name
                        }
        return ret
コード例 #2
0
ファイル: map.py プロジェクト: Shamwayne/meerkat_api
    def get(self,
            category,
            location=1,
            start_date=None,
            end_date=None,
            include_all_clinics=False):

        start_date, end_date = fix_dates(start_date, end_date)
        location = int(location)

        allowed_location = 1
        if g:
            allowed_location = g.allowed_location
        if not is_allowed_location(location, allowed_location):
            return {}
        results = db.session.query(
            Data.categories[category], Data.geolocation, Data.clinic,
            Data.date).distinct(Data.clinic).filter(
                Data.categories.has_key(category), Data.date >= start_date,
                Data.date < end_date,
                or_(loc == location
                    for loc in (Data.country, Data.region, Data.district,
                                Data.clinic))).order_by(Data.clinic).order_by(
                                    Data.date.desc())

        locations = get_locations(db.session)
        ret = {}
        for r in results.all():
            print(r)
            if r[1] is not None:
                geo = to_shape(r[1])
                if r[2]:
                    # Leaflet uses LatLng
                    ret[str(r[2])] = {
                        "value": r[0],
                        "geolocation": [geo.y, geo.x],
                        "clinic": locations[r[2]].name
                    }
                else:
                    if not include_all_clinics:
                        cords = [geo.y, geo.x]  # Leaflet uses LatLng
                        ret[str(cords)] = {
                            "value": r[0],
                            "geolocation": cords,
                            "clinic": "Outbreak Investigation"
                        }

        if include_all_clinics:
            results = db.session.query(model.Locations)
            for row in results.all():
                if is_allowed_location(row.id, location):
                    if row.case_report and row.point_location is not None and str(
                            row.id) not in ret.keys():
                        geo = to_shape(row.point_location)
                        ret[str(row.id)] = {
                            "value": 0,
                            "geolocation": [geo.y, geo.x],
                            "clinic": row.name
                        }
        return ret
コード例 #3
0
    def get(self, location, start_date=None, end_date=None):

        start_date, end_date = fix_dates(start_date, end_date)
        self.locs = get_locations(db.session)
        clinics = get_children(parent=location, locations=self.locs, require_case_report=True)
        kit_contents = db.session.query(CalculationParameters.parameters) \
            .filter(CalculationParameters.name == 'medicine_kits') \
            .one()[0]
        barcode_category = 'barcode_prescription'
        conditions = [Data.categories.has_key(barcode_category), Data.clinic.in_(clinics)]

        # Get first and last prescription for a clinic and medicine without time constraints
        first_last_prescr_query = db.session.query(Data.clinic,
                                                   Data.categories[barcode_category].astext,
                                                   func.count(Data.id),
                                                   func.min(Data.date),
                                                   func.max(Data.date))
        first_last_prescr_query = first_last_prescr_query.filter(*conditions)
        first_last_prescr_query = first_last_prescr_query.group_by(Data.clinic,
                                                                   Data.categories[barcode_category].astext)

        # Get first and last prescription for a clinic without time constraints
        clinic_info = db.session.query(Data.clinic,
                                       func.count(Data.id),
                                       func.min(Data.date),
                                       func.max(Data.date))
        clinic_info = clinic_info.filter(*conditions).group_by(Data.clinic)


        # Get number of prescriptions within time constraints
        date_conditions = [Data.date >= start_date, Data.date < end_date]
        prescription_in_date_range_query = db.session.query(Data.clinic,
                                                            Data.categories[barcode_category].astext,
                                                            func.count(Data.id))
        prescription_in_date_range_query = prescription_in_date_range_query.filter(*conditions)
        prescription_in_date_range_query = prescription_in_date_range_query.filter(*date_conditions)
        prescription_in_date_range_query = prescription_in_date_range_query.group_by(Data.clinic, Data.categories[barcode_category].astext)

        prescriptions = {
            'clinic_table': [],
            'medicine_table': [],
            'clinic_table_title': 'Prescribing clinics',
            'clinic_data': {}
        }

        # Restructure the DB return sets into a JSON
        for prescription in first_last_prescr_query.all():

            location_id = prescription[0]
            location_id_str = str(location_id)
            medicine_key = prescription[1]
            prescription_count = prescription[2]
            prescription_min_date = prescription[3]
            prescription_max_date = prescription[4]

            # if the medicine type is not configured to be reported, skip
            medicine_kit_details = kit_contents.get(medicine_key)
            if not medicine_kit_details:
                continue

            # get number of kits in the clinic
            kits_in_clinic = self._get_number_of_kits_in_clinic(location_id)

            # If clinic is not in JSON yet
            prescription_for_clinic = prescriptions['clinic_data'].setdefault(location_id_str, {})
            prescription_for_clinic[medicine_key] = {
                "min_date": prescription_min_date.strftime("%Y-%m-%d"),
                "max_date": prescription_max_date.strftime("%Y-%m-%d"),
                "total_prescriptions": prescription_count,
                "inventory":
                    (medicine_kit_details["total"] * kits_in_clinic
                     if medicine_kit_details["tablets_in_kit"] == ""
                     else int(medicine_kit_details["tablets_in_kit"]) * kits_in_clinic - prescription_count
                     ),
                "depletion":
                    (prescription_count / (float(medicine_kit_details["total"]) * kits_in_clinic)
                     if medicine_kit_details["tablets_in_kit"] == ""
                     else prescription_count / (float(medicine_kit_details["tablets_in_kit"]) * kits_in_clinic)
                     ),
                "stock":
                    (1 - prescription_count / (float(medicine_kit_details["total"]) * kits_in_clinic)
                     if medicine_kit_details["tablets_in_kit"] == ""
                     else 1 - prescription_count / (float(medicine_kit_details["tablets_in_kit"]) * kits_in_clinic)
                     ),
            }

        # Assign the number of prescriptions to data object
        for prescription in prescription_in_date_range_query.all():
            str_prescription_location = str(prescription[0])
            medicine_key = str(prescription[1])
            prescription_count = prescription[2]
            prescription_for_location = prescriptions['clinic_data'].setdefault(str_prescription_location, {})
            medicine = prescription_for_location.setdefault(medicine_key, {})
            medicine['prescriptions'] = prescription_count

        barcode_variables = get_variables(barcode_category)
        # create clinic table info
        for prescription in clinic_info.all():
            location_id = prescription[0]
            location_id_str = str(location_id)
            prescription_min_date = prescription[2]
            prescription_max_date = prescription[3]

            prescriptions_for_location = prescriptions['clinic_data'].setdefault(location_id_str, {})
            highest_depletion = find_highest_depletion(prescriptions_for_location)
            if highest_depletion:
                depletion_round_percent = round(highest_depletion['depletion'] * 100, 1)
                prescriptions['clinic_table'].append({
                    "clinic_id": location_id_str,
                    "clinic_name": self.locs[location_id].name,
                    "min_date": prescription_min_date.strftime("%Y-%m-%d"),
                    "max_date": prescription_max_date.strftime("%Y-%m-%d"),
                    "most_depleted_medicine": barcode_variables[highest_depletion['medicine']],
                    "depletion": highest_depletion['depletion'],
                    "str_depletion": str(depletion_round_percent) + '%'
                })

        # create medicine table info
        for clinic in prescriptions['clinic_data']:
            for medicine_key, medicine in prescriptions['clinic_data'][clinic].items():
                kit_details_for_medicine = kit_contents.get(medicine_key, {})
                if kit_details_for_medicine.get('tablets_in_kit', '') != '':
                    medicine_round_stock_percentage = round(medicine['stock'] * 100, 1)
                    prescriptions['medicine_table'].append({
                        "clinic_id": clinic,
                        "clinic_name": self.locs[int(clinic)].name,
                        "medicine_name": barcode_variables[medicine_key],
                        "min_date": medicine['min_date'],
                        "max_date": medicine['max_date'],
                        "stock": medicine['stock'],
                        "str_stock": str(medicine_round_stock_percentage) + '%',
                        "old_str_stock": (
                            "-"
                            if kit_contents[medicine_key]["tablets_in_kit"] == ""
                            else str(medicine_round_stock_percentage) + '%'
                        ),
                        "total_prescriptions": medicine['total_prescriptions']
                    })

        return prescriptions
コード例 #4
0
    def get(self,
            variable,
            group_by,
            start_date=None,
            end_date=None,
            only_loc=None,
            use_ids=None,
            date_variable=None,
            additional_variables=None,
            group_by_variables=None):

        variable = str(variable)
        if not only_loc:
            if "only_loc" in request.args:
                only_loc = request.args["only_loc"]
            else:
                only_loc = g.allowed_location
        if not is_allowed_location(only_loc, g.allowed_location):
            return {}

        start_date, end_date = fix_dates(start_date, end_date)
        if "use_ids" in request.args.keys() or use_ids:
            use_ids = True
        else:
            use_ids = False

        if date_variable:
            date_conditions = [
                func.to_date(Data.variables[date_variable].astext,
                             "YYYY-MM-DDTHH-MI-SS") >= start_date,
                func.to_date(Data.variables[date_variable].astext,
                             "YYYY-MM-DDTHH-MI-SS") < end_date
            ]
        else:
            date_conditions = [Data.date >= start_date, Data.date < end_date]

        if "location" in variable:
            location_id = variable.split(":")[1]
            conditions = date_conditions + [
                or_(loc == location_id
                    for loc in (Data.country, Data.zone, Data.region,
                                Data.district, Data.clinic))
            ]
        else:
            conditions = [Data.variables.has_key(variable)] + date_conditions
            if additional_variables:
                # add additional variable filters if there are and
                for i in additional_variables:
                    conditions.append(Data.variables.has_key(i))

            if only_loc:
                conditions += [
                    or_(loc == only_loc
                        for loc in (Data.country, Data.zone, Data.region,
                                    Data.district, Data.clinic))
                ]
        epi_year_start = meerkat_abacus.util.epi_week.epi_year_start_date(
            start_date)
        # Determine which columns we want to extract from the Data table
        columns_to_extract = [func.count(Data.id).label('value')]
        if date_variable:
            columns_to_extract.append(
                func.floor(
                    extract(
                        'days',
                        func.to_date(Data.variables[date_variable].astext,
                                     "YYYY-MM-DDTHH-MI-SS") - epi_year_start) /
                    7 + 1).label("week"))
        else:
            columns_to_extract.append(
                func.floor(
                    extract('days', Data.date - epi_year_start) / 7 +
                    1).label("week"))
        # We want to add the columns to extract based on the group_by value
        # in addition we create a names dict that translates ids to names

        if "locations" in group_by:
            # If we have locations in group_by we also specify the level at
            #  which we want to group the locations, clinic, district or region
            if ":" in group_by:
                level = group_by.split(":")[1]
            else:
                level = "clinic"

            locations = abacus_util.get_locations(db.session)
            ids = locations.keys()
            names = get_locations_by_level(level, only_loc)

            columns_to_extract += [getattr(Data, level, None)]
            group_by_query = level
        else:
            if not group_by_variables:
                names = get_variables(group_by)
            else:
                names = group_by_variables
            if len(names) == 0:
                return {}
            ids = names.keys()
            for i in ids:
                columns_to_extract.append(
                    Data.variables.has_key(str(i)).label("id" + str(i)))
            group_by_query = ",".join(["id" + str(i) for i in ids])
        if use_ids:
            names = {vid: vid for vid in names.keys()}
        start_epi_week = abacus_util.epi_week.epi_week_for_date(start_date)[1]
        end_epi_week = abacus_util.epi_week.epi_week_for_date(end_date)[1]

        # How we deal with start and end dates in different years
        if start_date.year != end_date.year:
            end_epi_week += 53 * (end_date.year - start_date.year)

        # DB Query
        results = db.session.query(*tuple(columns_to_extract)).filter(
            *conditions).group_by("week," + group_by_query)
        # Assemble return dict
        ret = {}
        for n in names.values():
            ret[n] = {
                "total": 0,
                "weeks":
                {i: 0
                 for i in range(start_epi_week, end_epi_week + 1)}
            }

        for r in results:
            # r = (number, week, other_columns_to_extract
            if "locations" in group_by:
                # r[2] = location
                if r[2]:
                    ret[names[r[2]]]["total"] += r[0]
                    ret[names[r[2]]]["weeks"][int(r[1])] = int(r[0])
            else:
                # r[2:] are the ids that the record has
                for i, i_d in enumerate(ids):
                    if r[i + 2]:
                        ret[names[i_d]]["total"] += r[0]
                        ret[names[i_d]]["weeks"][int(r[1])] = int(r[0])
        return ret
コード例 #5
0
    def get(self,
            group_by1,
            group_by2,
            start_date=None,
            end_date=None,
            only_loc=None):

        if not only_loc:
            if "only_loc" in request.args:
                only_loc = request.args["only_loc"]
            else:
                only_loc = g.allowed_location
        if not is_allowed_location(only_loc, g.allowed_location):
            return {}
        start_date, end_date = fix_dates(start_date, end_date)
        use_ids = False
        if "use_ids" in request.args.keys():
            use_ids = True

        # Assemble conditions and columns to query
        conditions = []
        if only_loc:
            conditions += [
                or_(loc == only_loc
                    for loc in (Data.country, Data.zone, Data.region,
                                Data.district, Data.clinic))
            ]

        columns_to_query = [
            Data.categories[group_by1].astext,
            Data.categories[group_by2].astext
        ]
        if "locations" in group_by1:
            if ":" in group_by1:
                level = group_by1.split(":")[-1]
            else:
                level = "clinic"
            names1 = get_locations_by_level(level, only_loc)
            ids1 = list(names1.keys())
            columns_to_query += [getattr(Data, level)]
            names2 = get_variables(group_by2)
            ids2 = names2.keys()
            conditions += [or_(Data.variables.has_key(str(i)) for i in ids2)]

        elif "locations" in group_by2:
            if ":" in group_by2:
                level = group_by2.split(":")[-1]
            else:
                level = "clinic"
            names2 = get_locations_by_level(level, only_loc)
            ids2 = list(names2.keys())
            columns_to_query += [getattr(Data, level)]
            names1 = get_variables(group_by1)
            ids1 = names1.keys()
            conditions += [or_(Data.variables.has_key(str(i)) for i in ids1)]

        else:
            names1 = get_variables(group_by1)
            ids1 = names1.keys()
            conditions += [or_(Data.variables.has_key(str(i)) for i in ids1)]
            names2 = get_variables(group_by2)
            ids2 = names2.keys()
            conditions += [or_(Data.variables.has_key(str(i)) for i in ids2)]

        if use_ids:
            names1 = {vid: vid for vid in names1.keys()}
            names2 = {vid: vid for vid in names2.keys()}
        conditions += [Data.date >= start_date, Data.date < end_date]

        # DB query
        conn = db.engine.connect()

        query = db.session.query(*tuple(columns_to_query)).filter(*conditions)
        res = conn.execute(query.statement).fetchall()

        ret = {}
        # Assemble return dict
        # while True:
        #     chunk = res.fetchmany(500)
        #     if not chunk:
        #         break
        for row in res:
            i1 = row[0]
            i2 = row[1]
            if "locations" in group_by1:
                i1 = row[2]
            if "locations" in group_by2:
                i2 = row[2]
            if i1 and i2:
                ret.setdefault(names1[i1], {}).setdefault(names2[i2], 0)
                ret[names1[i1]][names2[i2]] += 1
        # We also add rows and columns with zeros
        for n1 in names1.values():
            for n2 in names2.values():
                if n1 in ret:
                    if n2 not in ret[n1]:
                        ret[n1][n2] = 0
                else:
                    ret.setdefault(n1, {})
                    ret[n1][n2] = 0
        return ret