def model_provider(): """Build the model.""" args = get_args() print_rank_0('building classification model for {} ...'.format( args.task)) return Classification(num_classes=num_classes, num_tokentypes=2)
def model_provider(pre_process=True, post_process=True): """Build the model.""" args = get_args() print_rank_0('building classification model for {} ...'.format( args.task)) model = Classification(num_classes=num_classes, num_tokentypes=2, pre_process=pre_process, post_process=post_process) return model
def model_provider(): """Build the model.""" args = get_args() print_rank_0('building classification model for {} ...'.format( args.task)) if mpu.get_pipeline_model_parallel_world_size() > 1: # Determine model based on position of stage in pipeline. if mpu.is_pipeline_first_stage(): model = ClassificationFirstStage(num_classes=num_classes, num_tokentypes=2) elif mpu.is_pipeline_last_stage(): model = ClassificationLastStage(num_classes=num_classes, num_tokentypes=2) else: model = ClassificationIntermediateStage( num_classes=num_classes, num_tokentypes=2) else: model = Classification(num_classes=num_classes, num_tokentypes=2) return model
def model_provider(): return Classification(num_classes=num_classes, num_tokentypes=2)