コード例 #1
0
    def __init__(self, in_channels_left, out_channels_left, in_channels_right, out_channels_right):
        super(ReductionCell1, self).__init__()
        self.conv_prev_1x1 = []
        self.conv_prev_1x1.append(M.ReLU())
        self.conv_prev_1x1.append(M.Conv2d(in_channels_left, out_channels_left, 1, stride=1, bias=False))
        self.conv_prev_1x1.append(M.BatchNorm2d(out_channels_left, eps=0.001, momentum=0.1, affine=True))
        self.conv_prev_1x1 = M.Sequential(*self.conv_prev_1x1)

        self.conv_1x1 = []
        self.conv_1x1.append(M.ReLU())
        self.conv_1x1.append(M.Conv2d(in_channels_right, out_channels_right, 1, stride=1, bias=False))
        self.conv_1x1.append(M.BatchNorm2d(out_channels_right, eps=0.001, momentum=0.1, affine=True))
        self.conv_1x1 = M.Sequential(*self.conv_1x1)

        self.comb_iter_0_left = BranchSeparables(out_channels_right, out_channels_right, 5, 2, 2, bias=False)
        self.comb_iter_0_right = BranchSeparables(out_channels_right, out_channels_right, 7, 2, 3, bias=False)

        self.comb_iter_1_left = M.MaxPool2d(3, stride=2, padding=1)
        self.comb_iter_1_right = BranchSeparables(out_channels_right, out_channels_right, 7, 2, 3, bias=False)

        self.comb_iter_2_left = M.AvgPool2d(3, stride=2, padding=1)
        self.comb_iter_2_right = BranchSeparables(out_channels_right, out_channels_right, 5, 2, 2, bias=False)

        self.comb_iter_3_right = M.AvgPool2d(3, stride=1, padding=1)

        self.comb_iter_4_left = BranchSeparables(out_channels_right, out_channels_right, 3, 1, 1, bias=False)
        self.comb_iter_4_right = M.MaxPool2d(3, stride=2, padding=1)
コード例 #2
0
ファイル: alexnet.py プロジェクト: jiaochenlu/Documentation
 def __init__(self, in_ch=3, num_classes=1000):
     '''
         The AlexNet.
         args:
             in_ch: int, the number of channels of inputs
             num_classes: int, the number of classes that need to predict
         reference:
             "One weird trick for parallelizing convolutional neural networks"<https://arxiv.org/abs/1404.5997>
     '''
     super(AlexNet, self).__init__()
     #the part to extract feature
     self.features = M.Sequential(
         M.Conv2d(in_ch, 64, kernel_size=11, stride=4, padding=11 // 4),
         M.ReLU(),
         M.MaxPool2d(kernel_size=3, stride=2),
         M.Conv2d(64, 192, kernel_size=5, padding=2),
         M.ReLU(),
         M.MaxPool2d(kernel_size=3, stride=2),
         M.Conv2d(192, 384, kernel_size=3, stride=1, padding=1),
         M.ReLU(),
         M.Conv2d(384, 256, kernel_size=3, stride=1, padding=1),
         M.ReLU(),
         M.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
         M.ReLU(),
         M.MaxPool2d(kernel_size=3, stride=2),
     )
     #global avg pooling
     self.avgpool = M.AdaptiveAvgPool2d((6, 6))
     #classify part
     self.classifier = M.Sequential(M.Dropout(),
                                    M.Linear(256 * 6 * 6, 4096), M.ReLU(),
                                    M.Dropout(), M.Linear(4096, 4096),
                                    M.ReLU(), M.Linear(4096, num_classes))
コード例 #3
0
 def __init__(self):
     super().__init__()
     self.conv0 = M.Conv2d(1, 20, kernel_size=5, bias=False)
     self.bn0 = M.BatchNorm2d(20)
     self.relu0 = M.ReLU()
     self.pool0 = M.MaxPool2d(2)
     self.conv1 = M.Conv2d(20, 20, kernel_size=5, bias=False)
     self.bn1 = M.BatchNorm2d(20)
     self.relu1 = M.ReLU()
     self.pool1 = M.MaxPool2d(2)
     self.fc0 = M.Linear(500, 64, bias=True)
     self.relu2 = M.ReLU()
     self.fc1 = M.Linear(64, 10, bias=True)
コード例 #4
0
 def __init__(self, in_cha):
     super(AlexNet, self).__init__()
     self.conv1 = M.conv_bn.ConvBnRelu2d(in_cha,
                                         24,
                                         kernel_size=11,
                                         stride=2,
                                         padding=5)
     self.pool1 = M.MaxPool2d(3, 2, 1)
     self.conv2 = M.conv_bn.ConvBnRelu2d(24, 48, 5, 1, 2)
     self.pool2 = M.MaxPool2d(3, 2, 1)
     self.conv3 = M.conv_bn.ConvBnRelu2d(48, 96, 3, 1, 1)
     self.conv4 = M.conv_bn.ConvBnRelu2d(96, 96, 3, 1, 1)
     self.conv5 = M.conv_bn.ConvBn2d(96, 48, 3, 1, 1)
コード例 #5
0
ファイル: siamfcpp.py プロジェクト: xxoox168/MgeEditing
    def __init__(self, in_cha, ch=48):
        super(AlexNet_stride8, self).__init__()
        assert ch % 2 == 0, "channel nums should % 2 = 0"

        self.conv1 = M.conv_bn.ConvBnRelu2d(in_cha,
                                            ch // 2,
                                            kernel_size=11,
                                            stride=2,
                                            padding=5)
        self.pool1 = M.MaxPool2d(3, 2, 1)
        self.conv2 = M.conv_bn.ConvBnRelu2d(ch // 2, ch, 5, 1, 2)
        self.pool2 = M.MaxPool2d(3, 2, 1)
        self.conv3 = M.conv_bn.ConvBnRelu2d(ch, ch * 2, 3, 1, 1)
        self.conv4 = M.conv_bn.ConvBnRelu2d(ch * 2, ch * 2, 3, 1, 1)
        self.conv5 = M.conv_bn.ConvBn2d(ch * 2, ch, 3, 1, 1)
コード例 #6
0
 def __init__(self):
     super().__init__()
     self.classifier = None
     if dist.get_rank() == 0:
         self.features = M.Sequential(
             M.ConvBn2d(3, 64, 7, stride=2, padding=3, bias=False),
             M.MaxPool2d(kernel_size=3, stride=2, padding=1),
             BasicBlock(64, 64, 1),
             BasicBlock(64, 64, 1),
         )
     elif dist.get_rank() == 1:
         self.features = M.Sequential(
             BasicBlock(64, 128, 2),
             BasicBlock(128, 128, 1),
         )
     elif dist.get_rank() == 2:
         self.features = M.Sequential(
             BasicBlock(128, 256, 2),
             BasicBlock(256, 256, 1),
         )
     elif dist.get_rank() == 3:
         self.features = M.Sequential(
             BasicBlock(256, 512, 2),
             BasicBlock(512, 512, 1),
         )
         self.classifier = M.Linear(512, 1000)
コード例 #7
0
ファイル: network.py プロジェクト: TalentBoy2333/python_study
 def __init__(self):
     super().__init__()
     # 单信道图片, 两层  5x5 卷积 + ReLU + 池化
     self.conv1 = M.Conv2d(1, 6, 5)
     self.relu1 = M.ReLU()
     self.pool1 = M.MaxPool2d(2, 2)
     self.conv2 = M.Conv2d(6, 16, 5)
     self.relu2 = M.ReLU()
     self.pool2 = M.MaxPool2d(2, 2)
     # 两层全连接 + ReLU
     self.fc1 = M.Linear(16 * 5 * 5, 120)
     self.relu3 = M.ReLU()
     self.fc2 = M.Linear(120, 84)
     self.relu4 = M.ReLU()
     # 分类器
     self.classifier = M.Linear(84, 10)
コード例 #8
0
ファイル: omniglot.py プロジェクト: zhen8838/maml-megengine
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: int,
                 max_pool=True,
                 max_pool_factor=1.0):
        super(ConvBlock, self).__init__()
        stride = (int(2 * max_pool_factor), int(2 * max_pool_factor))
        if max_pool:
            self.max_pool = M.MaxPool2d(kernel_size=stride, stride=stride)
            stride = (1, 1)
        else:
            self.max_pool = lambda x: x
        self.normalize = M.BatchNorm2d(out_channels, affine=True)
        minit.uniform_(self.normalize.weight)
        self.relu = M.ReLU()

        self.conv = M.Conv2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=1,
            bias=True,
        )
        maml_init_(self.conv)
コード例 #9
0
ファイル: resnet50.py プロジェクト: zymale/CrowdDetection
    def __init__(self):
        super(ResNet50, self).__init__()
        self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=has_bias)
        self.bn1 = FrozenBatchNorm2d(64)
        self.maxpool = M.MaxPool2d(kernel_size=3, stride=2, padding=1)

        block_counts = [3, 4, 6, 3]
        bottleneck_channels_list = [64, 128, 256, 512]
        out_channels_list = [256, 512, 1024, 2048]
        stride_list = [1, 2, 2, 2]
        in_channels = 64
        self.layer1 = self._make_layer(block_counts[0], 64,
            bottleneck_channels_list[0], out_channels_list[0], stride_list[0])
        self.layer2 = self._make_layer(block_counts[1], out_channels_list[0],
            bottleneck_channels_list[1], out_channels_list[1], stride_list[1])
        self.layer3 = self._make_layer(block_counts[2], out_channels_list[1],
            bottleneck_channels_list[2], out_channels_list[2], stride_list[2])
        self.layer4 = self._make_layer(block_counts[3], out_channels_list[2],
            bottleneck_channels_list[3], out_channels_list[3], stride_list[3])
        
        for l in self.modules():
            if isinstance(l, M.Conv2d):
                M.init.msra_normal_(l.weight, mode="fan_in")
                if has_bias:
                    M.init.fill_(l.bias, 0)
コード例 #10
0
    def __init__(self,
                 num_classes=1000,
                 aux_logits=True,
                 transform_input=False,
                 inception_blocks=None):
        super(Inception3, self).__init__()
        if inception_blocks is None:
            inception_blocks = [
                BasicConv2d, InceptionA, InceptionB, InceptionC, InceptionD,
                InceptionE, InceptionAux
            ]

        assert len(inception_blocks) == 7
        conv_block = inception_blocks[0]
        inception_a = inception_blocks[1]
        inception_b = inception_blocks[2]
        inception_c = inception_blocks[3]
        inception_d = inception_blocks[4]
        inception_e = inception_blocks[5]
        inception_aux = inception_blocks[6]

        self.aux_logits = aux_logits
        self.transform_input = transform_input
        self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
        self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
        self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
        self.maxpool1 = M.MaxPool2d(kernel_size=3, stride=2)
        self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
        self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
        self.maxpool2 = M.MaxPool2d(kernel_size=3, stride=2)
        self.Mixed_5b = inception_a(192, pool_features=32)
        self.Mixed_5c = inception_a(256, pool_features=64)
        self.Mixed_5d = inception_a(288, pool_features=64)
        self.Mixed_6a = inception_b(288)
        self.Mixed_6b = inception_c(768, channels_7x7=128)
        self.Mixed_6c = inception_c(768, channels_7x7=160)
        self.Mixed_6d = inception_c(768, channels_7x7=160)
        self.Mixed_6e = inception_c(768, channels_7x7=192)
        if aux_logits:
            self.AuxLogits = inception_aux(768, num_classes)
        self.Mixed_7a = inception_d(768)
        self.Mixed_7b = inception_e(1280)
        self.Mixed_7c = inception_e(2048)
        self.avgpool = M.AvgPool2d(8)
        self.dropout = M.Dropout()
        self.fc = M.Linear(2048, num_classes)
コード例 #11
0
    def __init__(self, in_channels, conv_block=None):
        super(InceptionB, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)

        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)

        self.maxpool = M.MaxPool2d(3, 2)
コード例 #12
0
    def __init__(self,
                 channels,
                 residuals,
                 init_block_kernel_size,
                 init_block_channels,
                 maxpool_pad,
                 in_channels=3,
                 in_size=(224, 224),
                 num_classes=1000):
        super(SqueezeNet, self).__init__()
        self.in_size = in_size
        self.num_classes = num_classes

        self.feature = []
        init_block = SqueezeInitBlock(in_channels=in_channels,
                                      out_channels=init_block_channels,
                                      kernel_size=init_block_kernel_size)
        self.feature.append(init_block)
        in_channels = init_block_channels

        for i, channels_per_stage in enumerate(channels):
            stage = []

            pool = M.MaxPool2d(kernel_size=3, stride=2, padding=maxpool_pad[i])
            stage.append(pool)

            for j, out_channels in enumerate(channels_per_stage):
                expand_channels = out_channels // 2
                squeeze_channels = out_channels // 8
                unit = FireUnit(in_channels=in_channels,
                                squeeze_channels=squeeze_channels,
                                expand1x1_channels=expand_channels,
                                expand3x3_channels=expand_channels,
                                residual=((residuals is not None)
                                          and (residuals[i][j] == 1)))
                stage.append(unit)
                in_channels = out_channels
            self.feature += stage
        self.feature.append(M.Dropout(drop_prob=0.5))
        self.feature = M.Sequential(*self.feature)

        self.output = []
        final_conv = M.Conv2d(in_channels=in_channels,
                              out_channels=num_classes,
                              kernel_size=1)
        self.output.append(final_conv)
        final_activ = M.ReLU()
        self.output.append(final_activ)
        final_pool = M.AvgPool2d(kernel_size=13, stride=1)
        self.output.append(final_pool)
        self.output = M.Sequential(*self.output)
コード例 #13
0
    def __init__(self, stem_filters, num_filters=42):
        super(CellStem0, self).__init__()
        self.num_filters = num_filters
        self.stem_filters = stem_filters
        self.conv_1x1 = []
        self.conv_1x1.append(M.ReLU())
        self.conv_1x1.append(M.Conv2d(self.stem_filters, self.num_filters, 1, stride=1, bias=False))
        self.conv_1x1.append(M.BatchNorm2d(self.num_filters, eps=0.001, momentum=0.1, affine=True))
        self.conv_1x1 = M.Sequential(*self.conv_1x1)

        self.comb_iter_0_left = BranchSeparables(self.num_filters, self.num_filters, 5, 2, 2)
        self.comb_iter_0_right = BranchSeparablesStem(self.stem_filters, self.num_filters, 7, 2, 3, bias=False)

        self.comb_iter_1_left = M.MaxPool2d(3, stride=2, padding=1)
        self.comb_iter_1_right = BranchSeparablesStem(self.stem_filters, self.num_filters, 7, 2, 3, bias=False)

        self.comb_iter_2_left = M.AvgPool2d(3, stride=2, padding=1)
        self.comb_iter_2_right = BranchSeparablesStem(self.stem_filters, self.num_filters, 5, 2, 2, bias=False)

        self.comb_iter_3_right = M.AvgPool2d(3, stride=1, padding=1)

        self.comb_iter_4_left = BranchSeparables(self.num_filters, self.num_filters, 3, 1, 1, bias=False)
        self.comb_iter_4_right = M.MaxPool2d(3, stride=2, padding=1)
コード例 #14
0
 def __init__(self, input_size=112):
     assert input_size == 112, f"expected input_size == 112, got {input_size}"
     super().__init__()
     self.input_size = input_size
     self.stem = M.Sequential(
         M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
         M.BatchNorm2d(8),
         M.ReLU(),
         M.MaxPool2d(kernel_size=2, stride=2),
         BasicBlock(8, 16),
         BasicBlock(16, 32, stride=2),
         BasicBlock(32, 64, stride=2),
     )
     self.fc = M.Linear(64, 9)
コード例 #15
0
    def __init__(self, stem_filters, num_filters):
        super(CellStem1, self).__init__()
        self.num_filters = num_filters
        self.stem_filters = stem_filters
        self.conv_1x1 = []
        self.conv_1x1.append(M.ReLU())
        self.conv_1x1.append(M.Conv2d(2*self.num_filters, self.num_filters, 1, stride=1, bias=False))
        self.conv_1x1.append(M.BatchNorm2d(self.num_filters, eps=0.001, momentum=0.1, affine=True))
        self.conv_1x1 = M.Sequential(*self.conv_1x1)

        self.relu = M.ReLU()
        self.path_1 = []
        self.path_1.append(M.AvgPool2d(1, stride=2))
        self.path_1.append(M.Conv2d(self.stem_filters, self.num_filters//2, 1, stride=1, bias=False))
        self.path_1 = M.Sequential(*self.path_1)

        self.path_2 = []
        # self.path_2.add_module('pad', M.ZeroPad2d((0, 1, 0, 1)))
        self.path_2.append(M.AvgPool2d(1, stride=2))
        self.path_2.append(M.Conv2d(self.stem_filters, self.num_filters//2, 1, stride=1, bias=False))
        self.path_2 = M.Sequential(*self.path_2)

        self.final_path_bn = M.BatchNorm2d(self.num_filters, eps=0.001, momentum=0.1, affine=True)

        self.comb_iter_0_left = BranchSeparables(self.num_filters, self.num_filters, 5, 2, 2, bias=False)
        self.comb_iter_0_right = BranchSeparables(self.num_filters, self.num_filters, 7, 2, 3, bias=False)

        self.comb_iter_1_left = M.MaxPool2d(3, stride=2, padding=1)
        self.comb_iter_1_right = BranchSeparables(self.num_filters, self.num_filters, 7, 2, 3, bias=False)

        self.comb_iter_2_left = M.AvgPool2d(3, stride=2, padding=1)
        self.comb_iter_2_right = BranchSeparables(self.num_filters, self.num_filters, 5, 2, 2, bias=False)

        self.comb_iter_3_right = M.AvgPool2d(3, stride=1, padding=1)

        self.comb_iter_4_left = BranchSeparables(self.num_filters, self.num_filters, 3, 1, 1, bias=False)
        self.comb_iter_4_right = M.MaxPool2d(3, stride=2, padding=1)
コード例 #16
0
ファイル: googlenet.py プロジェクト: jiaochenlu/Documentation
    def __init__(self,
                 num_classes=1000,
                 aux_logits=True,
                 transform_input=False,
                 init_weights=True):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits
        self.transform_input = transform_input

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = M.MaxPool2d(3, stride=2, padding=1)  #向上取整
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = M.MaxPool2d(3, stride=2, padding=1)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = M.MaxPool2d(3, stride=2, padding=1)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = M.MaxPool2d(2, stride=2, padding=0)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        if aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        # TODO
        self.avgpool = M.AvgPool2d(7)
        self.dropout = M.Dropout(0.2)
        self.fc = M.Linear(1024, num_classes)
コード例 #17
0
ファイル: googlenet.py プロジェクト: jiaochenlu/Documentation
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5,
                 pool_proj):
        super(Inception, self).__init__()
        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = M.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1))

        self.branch3 = M.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1))

        self.branch4 = M.Sequential(
            M.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1))
コード例 #18
0
    def __init__(self, in_ch, out_ch):
        super(Unet, self).__init__()

        self.conv1 = DoubleConv(in_ch, 32)
        self.conv2 = DoubleConv(32, 64)
        self.conv3 = DoubleConv(64, 128)
        self.conv4 = DoubleConv(128, 256)
        self.conv5 = DoubleConv(256, 512)

        self.pool = M.MaxPool2d(2)
        self.dropout = M.Dropout(0.3)

        self.conv6 = DoubleConv(768, 256)
        self.conv7 = DoubleConv(384, 128)
        self.conv8 = DoubleConv(192, 64)
        self.conv9 = DoubleConv(96, 32)
        self.conv10 = M.Conv2d(32, out_ch, 1)
コード例 #19
0
    def __init__(self,
                 growth_rate=32,
                 block_config=(6, 12, 24, 16),
                 num_init_features=64,
                 bn_size=4,
                 drop_rate=0,
                 num_classes=1000):

        super(DenseNet, self).__init__()

        features = []
        # First convolution
        features.append(
            M.Conv2d(3,
                     num_init_features,
                     kernel_size=7,
                     stride=2,
                     padding=3,
                     bias=False))
        features.append(M.BatchNorm2d(num_init_features))
        features.append(M.ReLU())
        features.append(M.MaxPool2d(kernel_size=3, stride=2, padding=1))

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers=num_layers,
                                num_input_features=num_features,
                                bn_size=bn_size,
                                growth_rate=growth_rate,
                                drop_rate=drop_rate)
            features.append(block)
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config) - 1:
                trans = _Transition(num_input_features=num_features,
                                    num_output_features=num_features // 2)
                features.append(trans)
                num_features = num_features // 2

        # Final batch norm
        features.append(M.BatchNorm2d(num_features))
        self.features = M.Sequential(*features)

        # Linear layer
        self.classifier = M.Linear(num_features, num_classes)
コード例 #20
0
    def __init__(self, in_channels, conv_block=None):
        super(InceptionD, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)

        self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch7x7x3_2 = conv_block(192,
                                        192,
                                        kernel_size=(1, 7),
                                        padding=(0, 3))
        self.branch7x7x3_3 = conv_block(192,
                                        192,
                                        kernel_size=(7, 1),
                                        padding=(3, 0))
        self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)

        self.maxpool = M.MaxPool2d(3, 2)
コード例 #21
0
 def _make_layers(self, in_channels, cfg, batch_norm=False):
     '''
         Make the layer from the config.
         Args:
             in_channels(int): the number of channels of first conv layer.
             cfg(list):  the config of the layers.
             batch_norm(bool): If true use the batch normalization after the conv2d layer
     '''
     layers = []
     in_ch = in_channels
     for v in cfg:
         if v == "M":
             layers.append(M.MaxPool2d(kernel_size=2, stride=2))
         else:
             conv2d = M.Conv2d(in_ch, v, kernel_size=3, stride=1, padding=1)
             if batch_norm:
                 layers += [conv2d, M.BatchNorm2d(v), M.ReLU()]
             else:
                 layers += [conv2d, M.ReLU()]
             in_ch = v
     return M.Sequential(*layers)
コード例 #22
0
 def __init__(self,
              in_channels,
              out_channels,
              kernel_sizes=(5, 9, 13),
              activation="silu"):
     super().__init__()
     hidden_channels = in_channels // 2
     self.conv1 = BaseConv(in_channels,
                           hidden_channels,
                           1,
                           stride=1,
                           act=activation)
     self.m = [
         M.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2)
         for ks in kernel_sizes
     ]
     conv2_channels = hidden_channels * (len(kernel_sizes) + 1)
     self.conv2 = BaseConv(conv2_channels,
                           out_channels,
                           1,
                           stride=1,
                           act=activation)
コード例 #23
0
    def __init__(self, input_size=224, num_classes=1000, model_size="1.5x"):
        super(ShuffleNetV2, self).__init__()

        self.stage_repeats = [4, 8, 4]
        self.model_size = model_size
        if model_size == "0.5x":
            self.stage_out_channels = [-1, 24, 48, 96, 192, 1024]
        elif model_size == "1.0x":
            self.stage_out_channels = [-1, 24, 116, 232, 464, 1024]
        elif model_size == "1.5x":
            self.stage_out_channels = [-1, 24, 176, 352, 704, 1024]
        elif model_size == "2.0x":
            self.stage_out_channels = [-1, 24, 244, 488, 976, 2048]
        else:
            raise NotImplementedError

        # building first layer
        input_channel = self.stage_out_channels[1]
        self.first_conv = M.Sequential(
            M.Conv2d(3, input_channel, 3, 2, 1, bias=False),
            M.BatchNorm2d(input_channel),
            FReLU(input_channel),
        )

        self.maxpool = M.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.features = []
        for idxstage in range(len(self.stage_repeats)):
            numrepeat = self.stage_repeats[idxstage]
            output_channel = self.stage_out_channels[idxstage + 2]

            for i in range(numrepeat):
                if i == 0:
                    self.features.append(
                        ShuffleV2Block(
                            input_channel,
                            output_channel,
                            mid_channels=output_channel // 2,
                            ksize=3,
                            stride=2,
                        ))
                else:
                    self.features.append(
                        ShuffleV2Block(
                            input_channel // 2,
                            output_channel,
                            mid_channels=output_channel // 2,
                            ksize=3,
                            stride=1,
                        ))

                input_channel = output_channel

        self.features = M.Sequential(*self.features)

        self.conv_last = M.Sequential(
            M.Conv2d(input_channel,
                     self.stage_out_channels[-1],
                     1,
                     1,
                     0,
                     bias=False),
            M.BatchNorm2d(self.stage_out_channels[-1]),
            FReLU(self.stage_out_channels[-1]),
        )
        self.globalpool = M.AvgPool2d(7)
        if self.model_size == "2.0x":
            self.dropout = M.Dropout(0.2)
        self.classifier = M.Sequential(
            M.Linear(self.stage_out_channels[-1], num_classes, bias=False))
        self._initialize_weights()
コード例 #24
0
 def __init__(self, in_feature="p5"):
     super().__init__()
     self.num_levels = 1
     self.in_feature = in_feature
     self.pool = M.MaxPool2d(kernel_size=1, stride=2, padding=0)
コード例 #25
0
    def __init__(
        self,
        block,
        layers=[2, 2, 2, 2],
        num_classes=1000,
        zero_init_residual=False,
        groups=1,
        width_per_group=64,
        replace_stride_with_dilation=None,
        norm=M.BatchNorm2d,
    ):
        super().__init__()
        self.in_channels = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(
                                 replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = M.Conv2d(3,
                              self.in_channels,
                              kernel_size=7,
                              stride=2,
                              padding=3,
                              bias=False)
        self.bn1 = norm(self.in_channels)
        self.maxpool = M.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1_0 = BasicBlock(
            self.in_channels,
            64,
            stride=1,
            groups=self.groups,
            base_width=self.base_width,
            dilation=self.dilation,
            norm=M.BatchNorm2d,
        )
        self.layer1_1 = BasicBlock(
            self.in_channels,
            64,
            stride=1,
            groups=self.groups,
            base_width=self.base_width,
            dilation=self.dilation,
            norm=M.BatchNorm2d,
        )
        self.layer2_0 = BasicBlock(64, 128, stride=2)
        self.layer2_1 = BasicBlock(128, 128)
        self.layer3_0 = BasicBlock(128, 256, stride=2)
        self.layer3_1 = BasicBlock(256, 256)
        self.layer4_0 = BasicBlock(256, 512, stride=2)
        self.layer4_1 = BasicBlock(512, 512)

        self.layer1 = self._make_layer(block, 64, layers[0], norm=norm)
        self.layer2 = self._make_layer(block,
                                       128,
                                       2,
                                       stride=2,
                                       dilate=replace_stride_with_dilation[0],
                                       norm=norm)
        self.layer3 = self._make_layer(block,
                                       256,
                                       2,
                                       stride=2,
                                       dilate=replace_stride_with_dilation[1],
                                       norm=norm)
        self.layer4 = self._make_layer(block,
                                       512,
                                       2,
                                       stride=2,
                                       dilate=replace_stride_with_dilation[2],
                                       norm=norm)
        self.fc = M.Linear(512, num_classes)

        for m in self.modules():
            if isinstance(m, M.Conv2d):
                M.init.msra_normal_(m.weight,
                                    mode="fan_out",
                                    nonlinearity="relu")
                if m.bias is not None:
                    fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
                    bound = 1 / math.sqrt(fan_in)
                    M.init.uniform_(m.bias, -bound, bound)
            elif isinstance(m, M.BatchNorm2d):
                M.init.ones_(m.weight)
                M.init.zeros_(m.bias)
            elif isinstance(m, M.Linear):
                M.init.msra_uniform_(m.weight, a=math.sqrt(5))
                if m.bias is not None:
                    fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
                    bound = 1 / math.sqrt(fan_in)
                    M.init.uniform_(m.bias, -bound, bound)
        if zero_init_residual:
            for m in self.modules():
                M.init.zeros_(m.bn2.weight)
コード例 #26
0
    def __init__(self,
                 block,
                 blocks,
                 in_ch=3,
                 num_classes=1000,
                 first_stride=2,
                 light_head=False,
                 zero_init_residual=False,
                 groups=1,
                 width_per_group=64,
                 strides=[1, 2, 2, 2],
                 dilations=[1, 1, 1, 1],
                 multi_grids=[1, 1, 1],
                 norm_layer=None,
                 se_module=None,
                 reduction=16,
                 radix=0,
                 avd=False,
                 avd_first=False,
                 avg_layer=False,
                 avg_down=False,
                 stem_width=64):
        '''
            Modified resnet according to https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
            Implementate  ResNet and the variation of ResNet.
            Args:
                in_ch: int, the number of channels of the input
                block: BasicBlock or Bottleneck.The block of the resnet

                num_classes: int, the number of classes to predict
                first_stride: int, the stride of the first conv layer
                light_head: boolean, whether use conv3x3 replace the conv7x7 in first conv layer
                zero_init_residual: whether initilize the residule block's batchnorm with zero
                groups: int, the number of groups for the conv in net
                width_per_group: int, the width of the conv layers
                strides: list, the list of the strides for the each stage
                dilations: list, the dilations of each block
                multi_grids: list, implementation of the multi grid layer in deeplabv3
                norm_layer: megengine.module.Module, the normalization layer, default is batch normalization
                se_module: SEModule, the Squeeze Excitation Module
                radix: int, the radix index from ResNest
                reduction: int, the reduction rate
                avd: bool, whether use the avd layer
                avd_first: bool, whether use the avd layer before bottleblock's conv2
                stem_width: int, the channels of the conv3x3 when use 3 conv3x3 replace conv7x7
            References:
                "Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>
                "Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>
                https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
                deeplab v3: https://arxiv.org/pdf/1706.05587.pdf
                deeplab v3+: https://arxiv.org/pdf/1802.02611.pdf
                "Squeeze-and-Excitation Networks"<https://arxiv.org/abs/1709.01507>
                "ResNeSt: Split-Attention Networks"<https://arxiv.org/pdf/2004.08955.pdf>
        '''
        super(ResNet, self).__init__()

        if len(dilations) != 4:
            raise ValueError(
                "The length of dilations must be 4, but got {}".format(
                    len(dilations)))

        if len(strides) != 4:
            raise ValueError(
                "The length of dilations must be 4, but got {}".format(
                    len(strides)))

        if len(multi_grids) > blocks[-1]:
            multi_grids = multi_grids[:blocks[-1]]
        elif len(multi_grids) < blocks[-1]:
            raise ValueError(
                "The length of multi_grids must greater than or equal the number of blocks for last stage , but got {}/{}"
                .format(len(multi_grids), blocks[-1]))

        if norm_layer is None:
            norm_layer = M.BatchNorm2d

        self.base_width = width_per_group
        self.multi_grids = multi_grids
        self.inplanes = 64
        self.groups = groups
        self.norm_layer = norm_layer
        self.avg_layer = avg_layer
        self.avg_down = avg_down

        if light_head:
            self.conv1 = M.Sequential(
                conv3x3(in_ch, stem_width, stride=first_stride),
                norm_layer(stem_width),
                M.ReLU(),
                conv3x3(stem_width, stem_width, stride=1),
                norm_layer(stem_width),
                M.ReLU(),
                conv3x3(stem_width, self.inplanes, stride=1),
            )
        else:
            self.conv1 = M.Conv2d(in_ch,
                                  self.inplanes,
                                  kernel_size=7,
                                  stride=first_stride,
                                  padding=3,
                                  bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = M.ReLU()
        self.maxpool = M.MaxPool2d(kernel_size=3, stride=2, padding=1)

        #4 stage
        self.layer1 = self._make_layer(block,
                                       64,
                                       blocks[0],
                                       stride=strides[0],
                                       dilation=dilations[0],
                                       se_module=se_module,
                                       reduction=reduction,
                                       radix=radix,
                                       avd=avd,
                                       avd_first=avd_first)
        self.layer2 = self._make_layer(block,
                                       128,
                                       blocks[1],
                                       stride=strides[1],
                                       dilation=dilations[1],
                                       se_module=se_module,
                                       reduction=reduction,
                                       radix=radix,
                                       avd=avd,
                                       avd_first=avd_first)
        self.layer3 = self._make_layer(block,
                                       256,
                                       blocks[2],
                                       stride=strides[2],
                                       dilation=dilations[2],
                                       se_module=se_module,
                                       reduction=reduction,
                                       radix=radix,
                                       avd=avd,
                                       avd_first=avd_first)
        self.layer4 = self._make_grid_layer(block,
                                            512,
                                            blocks[3],
                                            stride=strides[3],
                                            dilation=dilations[3],
                                            se_module=se_module,
                                            reduction=reduction,
                                            radix=radix,
                                            avd=avd,
                                            avd_first=avd_first)

        #classification part
        self.avgpool = M.AdaptiveAvgPool2d(1)
        self.fc = M.Linear(self.inplanes, num_classes)

        for m in self.modules():
            if isinstance(m, M.Conv2d):
                M.init.msra_normal_(m.weight,
                                    mode="fan_out",
                                    nonlinearity="relu")
            elif isinstance(m, M.BatchNorm2d):
                M.init.fill_(m.weight, 1)
                M.init.zeros_(m.bias)
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    M.init.zeros_(m.bn3.weight)
                elif isinstance(m, BasicBlock):
                    M.init.zeros_(m.bn2.weight)
コード例 #27
0
    def __init__(
        self,
        layers,
        num_classes=10,
        zero_init_residual=False,
        groups=1,
        width_per_group=64,
        replace_stride_with_dilation=None,
        norm=M.BatchNorm2d,
    ):
        block = Bottleneck
        super(ResNet_MNIST, self).__init__()
        self.in_channels = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(
                                 replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = M.Conv2d(
            #3, self.in_channels, kernel_size=7, stride=2, padding=3, bias=False
            1,
            self.in_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            bias=False)
        self.bn1 = norm(self.in_channels)
        self.maxpool = M.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], norm=norm)
        self.layer2 = self._make_layer(
            block,
            128,
            layers[1],
            stride=2,
            dilate=replace_stride_with_dilation[0],
            norm=norm,
        )
        #self.fc = M.Linear(512 * block.expansion, num_classes)
        self.fc = M.Linear(512, num_classes)

        for m in self.modules():
            if isinstance(m, M.Conv2d):
                M.init.msra_normal_(m.weight,
                                    mode="fan_out",
                                    nonlinearity="relu")
                if m.bias is not None:
                    fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
                    bound = 1 / math.sqrt(fan_in)
                    M.init.uniform_(m.bias, -bound, bound)
            elif isinstance(m, M.BatchNorm2d):
                M.init.ones_(m.weight)
                M.init.zeros_(m.bias)
            elif isinstance(m, M.Linear):
                M.init.msra_uniform_(m.weight, a=math.sqrt(5))
                if m.bias is not None:
                    fan_in, _ = M.init.calculate_fan_in_and_fan_out(m.weight)
                    bound = 1 / math.sqrt(fan_in)
                    M.init.uniform_(m.bias, -bound, bound)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    M.init.zeros_(m.bn3.weight)
                elif isinstance(m, BasicBlock):
                    M.init.zeros_(m.bn2.weight)