コード例 #1
0
ファイル: test_rng.py プロジェクト: mozre/MegEngine
def test_PoissonRNG():
    m1 = RNG(seed=111, device="xpu0")
    m2 = RNG(seed=111, device="xpu1")
    m3 = RNG(seed=222, device="xpu0")
    lam = Tensor([[2, 3, 4], [9, 10, 11]], dtype=np.float32)
    out1 = m1.poisson(lam.to("xpu0"), size=(100, ))
    out2 = m2.poisson(lam.to("xpu1"), size=(100, ))
    out3 = m3.poisson(lam.to("xpu0"), size=(100, ))

    np.testing.assert_allclose(out1.numpy(), out2.numpy(), atol=1e-6)
    assert out1.device == "xpu0" and out2.device == "xpu1"
    assert not (out1.numpy() == out3.numpy()).all()

    out = m1.poisson(lam.to("xpu0"), size=(20, 30))
    out_shp = out.shape
    expected_shape = (20, 30) + lam._tuple_shape
    if isinstance(out_shp, tuple):
        assert out_shp == expected_shape
    else:
        assert all(out.shape.numpy() == np.array(expected_shape))
    lam = lam.numpy()

    assert (np.abs(out.mean(axis=(0, 1)).numpy() - lam) /
            np.sqrt(lam)).mean() < 0.1
    assert np.abs(np.std(out.numpy(), axis=(0, 1)) - np.sqrt(lam)).mean() < 0.1
コード例 #2
0
ファイル: test_rng.py プロジェクト: mozre/MegEngine
def test_ShuffleRNG():
    g = []

    def cb(grad):
        g.append(grad)

    n, m = 6, 3
    arr = np.arange(n * m)
    out0 = Tensor(arr, dtype="float32")
    with Grad() as grad:
        grad.wrt(out0, callback=cb)
        random.shuffle(out0)
        grad(out0, F.ones_like(out0))
    m1 = RNG(seed=111, device="xpu0")
    m2 = RNG(seed=111, device="xpu1")
    m3 = RNG(seed=222, device="xpu0")
    out1 = Tensor(arr, dtype="float32", device="xpu0")
    out2 = Tensor(arr, dtype="float32", device="xpu1")
    out3 = Tensor(arr, dtype="float32", device="xpu0")
    m1.shuffle(out1)
    m2.shuffle(out2)
    m3.shuffle(out3)

    np.testing.assert_allclose(out1.numpy(), out2.numpy(), atol=1e-6)
    assert out1.device == "xpu0" and out2.device == "xpu1"
    assert not (out1.numpy() == out3.numpy()).all()

    out = Tensor(arr, dtype="float32").reshape(n, m)
    m1.shuffle(out)

    out_shp = out.shape
    if isinstance(out_shp, tuple):
        assert out_shp == (n, m)
    else:
        assert all(out.shape.numpy() == np.array([n, m]))
コード例 #3
0
ファイル: test_rng.py プロジェクト: mozre/MegEngine
def test_PermutationRNG(symbolic):
    m1 = RNG(seed=111, device="xpu0")
    m2 = RNG(seed=111, device="xpu1")
    m3 = RNG(seed=222, device="xpu0")
    out1 = m1.permutation(1000)
    out1_ = m1.uniform(size=(1000, ))
    out2 = m2.permutation(1000)
    out3 = m3.permutation(1000)

    np.testing.assert_allclose(out1.numpy(), out2.numpy(), atol=1e-6)
    assert out1.device == "xpu0" and out2.device == "xpu1"
    assert not (out1.numpy() == out3.numpy()).all()
    assert not (out1.numpy() == out1_.numpy()).all()

    out = m1.permutation(1000)
    out_shp = out.shape
    if isinstance(out_shp, tuple):
        assert out_shp == (1000, )
    else:
        assert all(out.shape.numpy() == np.array([1000]))

    def sum_result(res, fun):
        return sum(
            [1 if i == v else 0 for i, v in enumerate(fun(res.numpy()))])

    assert sum_result(out, lambda x: x) < 500
    assert sum_result(out, np.sort) == 1000

    def func():
        out = m1.permutation(Tensor(7))
        out_shp = out.shape
        if isinstance(out_shp, tuple):
            assert out_shp == (1, )
        else:
            assert all(out.shape.numpy() == np.array([1]))
        n, m = 6, 3
        out = m1.permutation(
            Tensor(np.arange(n * m), dtype="float32").reshape(n, m))
        out_shp = out.shape
        if isinstance(out_shp, tuple):
            assert out_shp == (n, m)
        else:
            assert all(out.shape.numpy() == np.array([n, m]))

    func = trace(symbolic=symbolic)(func)
    func()
コード例 #4
0
ファイル: test_rng.py プロジェクト: mozre/MegEngine
def test_BetaRNG():
    m1 = RNG(seed=111, device="xpu0")
    m2 = RNG(seed=111, device="xpu1")
    m3 = RNG(seed=222, device="xpu0")
    out1 = m1.beta(2, 1, size=(100, ))
    out1_ = m1.uniform(size=(100, ))
    out2 = m2.beta(2, 1, size=(100, ))
    out3 = m3.beta(2, 1, size=(100, ))

    np.testing.assert_allclose(out1.numpy(), out2.numpy(), atol=1e-6)
    assert out1.device == "xpu0" and out2.device == "xpu1"
    assert not (out1.numpy() == out3.numpy()).all()
    assert not (out1.numpy() == out1_.numpy()).all()

    alpha = Tensor([[2, 3, 4], [9, 10, 11]], dtype=np.float32, device="xpu0")
    beta = Tensor([0.5, 1, 1.5], dtype=np.float32, device="xpu0")
    expected_mean = (alpha / (alpha + beta)).numpy()
    expected_std = (F.sqrt(alpha * beta / (F.pow(alpha + beta, 2) *
                                           (alpha + beta + 1)))).numpy()
    out = m1.beta(alpha=alpha, beta=beta, size=(20, 30))
    out_shp = out.shape
    if isinstance(out_shp, tuple):
        assert out_shp == (20, 30, 2, 3)
    else:
        assert all(out.shape.numpy() == np.array([20, 30, 2, 3]))
    assert (np.abs(out.mean(axis=(0, 1)).numpy() - expected_mean) /
            expected_std).mean() < 0.1
    assert (np.abs(np.std(out.numpy(), axis=(0, 1)) -
                   expected_std)).mean() < 0.1
コード例 #5
0
ファイル: test_rng.py プロジェクト: mozre/MegEngine
def test_GammaRNG():
    m1 = RNG(seed=111, device="xpu0")
    m2 = RNG(seed=111, device="xpu1")
    m3 = RNG(seed=222, device="xpu0")
    out1 = m1.gamma(2, size=(100, ))
    out1_ = m1.uniform(size=(100, ))
    out2 = m2.gamma(2, size=(100, ))
    out3 = m3.gamma(2, size=(100, ))

    np.testing.assert_allclose(out1.numpy(), out2.numpy(), atol=1e-6)
    assert out1.device == "xpu0" and out2.device == "xpu1"
    assert not (out1.numpy() == out3.numpy()).all()
    assert not (out1.numpy() == out1_.numpy()).all()

    shape = Tensor([[2, 3, 4], [9, 10, 11]], dtype=np.float32, device="xpu0")
    scale = Tensor([0.5, 1, 1.5], dtype=np.float32, device="xpu0")
    expected_mean = (shape * scale).numpy()
    expected_std = (F.sqrt(shape) * scale).numpy()
    out = m1.gamma(shape=shape, scale=scale, size=(20, 30, 40))
    out_shp = out.shape
    if isinstance(out_shp, tuple):
        assert out_shp == (20, 30, 40, 2, 3)
    else:
        assert all(out.shape.numpy() == np.array([20, 30, 40, 2, 3]))
    assert (np.abs(out.mean(axis=(0, 1)).numpy() - expected_mean) /
            expected_std).mean() < 0.1
    assert (np.abs(np.std(out.numpy(), axis=(0, 1)) -
                   expected_std)).mean() < 0.1
コード例 #6
0
ファイル: test_rng.py プロジェクト: mozre/MegEngine
def test_NormalRNG():
    m1 = RNG(seed=111, device="xpu0")
    m2 = RNG(seed=111, device="xpu1")
    m3 = RNG(seed=222, device="xpu0")
    out1 = m1.normal(size=(100, ))
    out1_ = m1.uniform(size=(100, ))
    out2 = m2.normal(size=(100, ))
    out3 = m3.normal(size=(100, ))

    np.testing.assert_allclose(out1.numpy(), out2.numpy(), atol=1e-6)
    assert out1.device == "xpu0" and out2.device == "xpu1"
    assert not (out1.numpy() == out3.numpy()).all()
    assert not (out1.numpy() == out1_.numpy()).all()

    mean = -1
    std = 2
    out = m1.normal(mean=mean, std=std, size=(20, 30, 40))
    out_shp = out.shape
    if isinstance(out_shp, tuple):
        assert out_shp == (20, 30, 40)
    else:
        assert all(out.shape.numpy() == np.array([20, 30, 40]))
    assert np.abs(out.mean().numpy() - mean) / std < 0.1
    assert np.abs(np.std(out.numpy()) - std) < 0.1
コード例 #7
0
ファイル: test_rng.py プロジェクト: mozre/MegEngine
def test_UniformRNG():
    m1 = RNG(seed=111, device="xpu0")
    m2 = RNG(seed=111, device="xpu1")
    m3 = RNG(seed=222, device="xpu0")
    out1 = m1.uniform(size=(100, ))
    out1_ = m1.uniform(size=(100, ))
    out2 = m2.uniform(size=(100, ))
    out3 = m3.uniform(size=(100, ))

    np.testing.assert_allclose(out1.numpy(), out2.numpy(), atol=1e-6)
    assert out1.device == "xpu0" and out2.device == "xpu1"
    assert not (out1.numpy() == out3.numpy()).all()
    assert not (out1.numpy() == out1_.numpy()).all()

    low = -234
    high = 123
    out = m1.uniform(low=low, high=high, size=(20, 30, 40))
    out_shp = out.shape
    if isinstance(out_shp, tuple):
        assert out_shp == (20, 30, 40)
    else:
        assert all(out.shape.numpy() == np.array([20, 30, 40]))
    assert np.abs(out.mean().numpy() - ((low + high) / 2)) / (high - low) < 0.1