def dfpooling(name, inp, window = 2, padding = 0, dx = [0, 1], dy = [0, 1]): #inp = ConstProvider([[[[1, 2], [3, 4]]]], dtype = np.float32) """ Add a new conv&bn to insure that the scale of the feature map is variance 1. """ ker_shape = window stride = window offsetlay = Conv2D( name + "conv", inp, kernel_shape = 3, stride = 1, padding = 1, output_nr_channel = ker_shape**2, W = G(mean = 0, std = ((1) / (3**2 * inp.partial_shape[1]))**0.5), nonlinearity = Identity() ) #offsetlay = BN(name + "BN", offsetlay, eps = 1e-9) offsetx = Conv2D( name + "conv1x", offsetlay, kernel_shape = ker_shape, stride = stride, padding = padding, output_nr_channel = ker_shape**2, W = G(mean = 0, std = (1 / (ker_shape**2 * inp.partial_shape[2]))**0.5), nonlinearity = Identity() ) offsety = Conv2D( name + "conv1y", offsetlay, kernel_shape = ker_shape, stride = stride, padding = padding, output_nr_channel = ker_shape**2, W = G(mean = 0, std = (1 / (ker_shape**2 * inp.partial_shape[3]))**0.5), nonlinearity = Identity() ) offset = Concat([offsetx, offsety], axis = 1) ndim = ker_shape**2 * offsetx.partial_shape[2] * offsetx.partial_shape[3] * 2 offset = FullyConnected( name + "offset", offsetx, output_dim = ndim, W = G(mean = 0, std = (1 / ndim)**2), #W = C(0), b = C(0), nonlinearity = Identity() ) offsetx = offset[:, :ndim // 2].reshape(offsetx.shape) offsety = offset[:, ndim // 2:].reshape(offsety.shape) """ offsetx = FullyConnected( name + "offsetx", offsetx, output_dim = ndim, W = G(mean = 0, std = gamma / ndim), b = C(0), nonlinearity = Identity() ) offsetx = offsetx.reshape(offsety.shape) offsety = FullyConnected( name + "offsety", offsety, output_dim = ndim, W = G(mean = 0, std = gamma / ndim), b = C(0), nonlinearity = Identity() ) offsety = offsety.reshape(offsetx.shape) print(offsety.partial_shape) """ #offsetx = ZeroGrad(offsetx) #offsety = ZeroGrad(offsety) outputs = [] for sx in range(2): for sy in range(2): if sx == 0: ofx = Floor(offsetx) bilx = 1 - (offsetx - ofx) else: ofx = Ceil(offsetx) bilx = 1 - (ofx - offsetx) if sy == 0: ofy = Floor(offsety) bily = 1 - (offsety - ofy) else: ofy = Ceil(offsety) bily = 1 - (ofy - offsety) """ No padding padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3]))) padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1))) arg_fea = Concat([padding1, inp, padding1], axis = 2) arg_fea = Concat([padding2, arg_fea, padding2], axis = 3) """ arg_fea = inp #one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32) one_mat = ConstProvider(1, dtype = np.int32).add_axis(0).broadcast((ofx.shape[2], ofx.shape[3])) affx = (Cumsum(one_mat, axis = 0) - 1) * stride affy = (Cumsum(one_mat, axis = 1) - 1) * stride ofx = ofx + affx.dimshuffle('x', 'x', 0, 1) ofy = ofy + affy.dimshuffle('x', 'x', 0, 1) one_mat = ConstProvider(np.ones((ker_shape, ofx.partial_shape[2], ofx.partial_shape[3]))) #ofx[:, :ker_shape, :, :] -= 1 #ofx[:, ker_shape*2:, :, :] += 1 ofx += Concat([one_mat * i for i in dx], axis = 0).dimshuffle('x', 0, 1, 2) #ofy[:, ::3, :, :] -= 1 #ofy[:, 2::3, :, :] += 1 one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3])) one_mat = Concat([one_mat * i for i in dy], axis = 0) one_mat = Concat([one_mat] * ker_shape, axis = 0) ofy += one_mat.dimshuffle('x', 0, 1, 2) ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0) ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0) def DeformReshape(inp, ker_shape): inp = inp.reshape(inp.shape[0], ker_shape, ker_shape, inp.shape[2], inp.partial_shape[3]) inp = inp.dimshuffle(0, 3, 1, 4, 2) inp = inp.reshape(inp.shape[0], inp.shape[1] * inp.shape[2], inp.shape[3] * inp.shape[4]) return inp ofx = DeformReshape(ofx, ker_shape) ofy = DeformReshape(ofy, ker_shape) bilx = DeformReshape(bilx, ker_shape) bily = DeformReshape(bily, ker_shape) of = ofx * arg_fea.partial_shape[2] + ofy arg_fea = arg_fea.reshape(arg_fea.shape[0], arg_fea.shape[1], -1) of = of.reshape(ofx.shape[0], -1) of = of.dimshuffle(0, 'x', 1) #of = Concat([of] * arg_fea.partial_shape[1], axis = 1) of = of.broadcast((of.shape[0], arg_fea.shape[1], of.shape[2])) arx = Linspace(0, arg_fea.shape[0], arg_fea.shape[0], endpoint = False) arx = arx.add_axis(1).add_axis(2).broadcast(of.shape) ary = Linspace(0, arg_fea.shape[1], arg_fea.shape[1], endpoint = False) ary = ary.add_axis(0).add_axis(2).broadcast(of.shape) of = of.add_axis(3) arx = arx.add_axis(3) ary = ary.add_axis(3) idxmap = Astype(Concat([arx, ary, of], axis = 3), np.int32) """ sample = [] for i in range(arg_fea.partial_shape[0]): for j in range(arg_fea.partial_shape[1]): sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0)) sample = Concat(sample, axis = 0) """ sample = IndexingRemap(arg_fea, idxmap).reshape(inp.shape[0], inp.shape[1], bilx.shape[1], -1) bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape) bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape) sample *= bilx * bily outputs.append(sample) output = outputs[0] for i in outputs[1:]: output += i return Pooling2D(name, output, window = 2, mode = "AVERAGE")
def dfconv(inp, chl, isrelu, ker_shape = 3, stride = 1, padding = 1, dx = [-1, 0, 1], dy = [-1, 0, 1]): inp = Conv2D( name + "conv", inp, kernel_shape = 3, stride = 1, padding = 1, output_nr_channel = ker_shape**2, W = G(mean = 0, std = ((1) / (ker_shape**2 * inp.partial_shape[1]))**0.5), nonlinearity = Identity() ) inp = BN(name + "BN", inp, eps = 1e-9) global idx #idx += 1 gamma = 0.001 offsetx = inp.partial_shape[2] * Conv2D( "conv{}_offsetx".format(idx + 1), inp, kernel_shape = ker_shape, stride = stride, padding = padding, output_nr_channel = ker_shape**2, W = G(mean = 0, std = gamma / (ker_shape**2 * inp.partial_shape[2])), nonlinearity = Identity() ) offsety = inp.partial_shape[3] * Conv2D( "conv{}_offsety".format(idx + 1), inp, kernel_shape = ker_shape, stride = stride, padding = padding, output_nr_channel = ker_shape**2, W = G(mean = 0, std = gamma / (ker_shape**2 * inp.partial_shape[3])), nonlinearity = Identity() ) outputs = [] for sx in range(2): for sy in range(2): if sx == 0: ofx = Floor(offsetx) bilx = offsetx - ofx else: ofx = Ceil(offsetx) bilx = ofx - offsetx if sy == 0: ofy = Floor(offsety) bily = offsety - ofy else: ofy = Ceil(offsety) bily = ofy - offsety """ No padding padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3]))) padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1))) arg_fea = Concat([padding1, inp, padding1], axis = 2) arg_fea = Concat([padding2, arg_fea, padding2], axis = 3) """ arg_fea = inp #one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32) one_mat = ConstProvider(1, dtype = np.int32).add_axis(0).broadcast((ofx.partial_shape[2], ofx.partial_shape[3])) affx = (Cumsum(one_mat, axis = 0) - 1) * stride affy = (Cumsum(one_mat, axis = 1) - 1) * stride ofx = ofx + affx.dimshuffle('x', 'x', 0, 1) ofy = ofy + affy.dimshuffle('x', 'x', 0, 1) one_mat = ConstProvider(np.ones((ker_shape, ofx.partial_shape[2], ofx.partial_shape[3]))) #ofx[:, :ker_shape, :, :] -= 1 #ofx[:, ker_shape*2:, :, :] += 1 ofx += Concat([one_mat * i for i in dx], axis = 0).dimshuffle('x', 0, 1, 2) #ofy[:, ::3, :, :] -= 1 #ofy[:, 2::3, :, :] += 1 one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3])) one_mat = Concat([one_mat * i for i in dy], axis = 0) one_mat = Concat([one_mat] * ker_shape, axis = 0) ofy += one_mat.dimshuffle('x', 0, 1, 2) ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0) ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0) def DeformReshape(inp, ker_shape): inp = inp.reshape(inp.shape[0], ker_shape, ker_shape, inp.shape[2], inp.shape[3]) inp = inp.dimshuffle(0, 3, 1, 4, 2) inp = inp.reshape(inp.shape[0], inp.shape[1] * inp.shape[2], inp.shape[3] * inp.shape[4]) return inp ofx = DeformReshape(ofx, ker_shape) ofy = DeformReshape(ofy, ker_shape) bilx = DeformReshape(bilx, ker_shape) bily = DeformReshape(bily, ker_shape) of = ofx * arg_fea.shape[2] + ofy arg_fea = arg_fea.reshape(arg_fea.shape[0], arg_fea.shape[1], -1) of = of.reshape(ofx.shape[0], -1) of = of.dimshuffle(0, 'x', 1) #of = Concat([of] * arg_fea.partial_shape[1], axis = 1) of = of.broadcast((of.shape[0], arg_fea.shape[1], of.shape[2])) arx = Linspace(0, arg_fea.shape[0], arg_fea.shape[0], endpoint = False) arx = arx.add_axis(1).add_axis(2).broadcast(of.shape) ary = Linspace(0, arg_fea.shape[1], arg_fea.shape[1], endpoint = False) ary = ary.add_axis(0).add_axis(2).broadcast(of.shape) of = of.add_axis(3) arx = arx.add_axis(3) ary = ary.add_axis(3) idxmap = Astype(Concat([arx, ary, of], axis = 3), np.int32) """ sample = [] for i in range(arg_fea.partial_shape[0]): for j in range(arg_fea.partial_shape[1]): sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0)) sample = Concat(sample, axis = 0) """ sample = IndexingRemap(arg_fea, idxmap).reshape(inp.shape[0], inp.shape[1], bilx.shape[1], -1) bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape) bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape) sample *= bilx * bily outputs.append(sample) output = outputs[0] for i in outputs[1:]: output += i return conv_bn(output, ker_shape, 3, 0, chl, isrelu)
def dfpooling(name, inp, window=2, padding=0, dx=[0, 1], dy=[0, 1]): #inp = ConstProvider([[[[1, 2], [3, 4]]]], dtype = np.float32) ker_shape = window stride = window gamma = 0.1 offsetx = gamma * inp.partial_shape[2] * Conv2D(name + "offsetx", inp, kernel_shape=ker_shape, stride=stride, padding=padding, output_nr_channel=ker_shape **2, W=C(0), nonlinearity=Identity()) offsety = gamma * inp.partial_shape[3] * Conv2D(name + "offsety", inp, kernel_shape=ker_shape, stride=stride, padding=padding, output_nr_channel=ker_shape **2, W=C(0), nonlinearity=Identity()) outputs = [] for sx in range(2): for sy in range(2): if sx == 0: ofx = Floor(offsetx) bilx = offsetx - ofx + Equal(Floor(offsetx), Ceil(offsetx)) else: ofx = Ceil(offsetx) bilx = ofx - offsetx if sy == 0: ofy = Floor(offsety) bily = offsety - ofy + Equal(Floor(offsety), Ceil(offsety)) else: ofy = Ceil(offsety) bily = ofy - offsety """ No padding padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3]))) padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1))) arg_fea = Concat([padding1, inp, padding1], axis = 2) arg_fea = Concat([padding2, arg_fea, padding2], axis = 3) """ arg_fea = inp #one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32) one_mat = ConstProvider(1, dtype=np.int32).add_axis(0).broadcast( (ofx.partial_shape[2], ofx.partial_shape[3])) affx = (Cumsum(one_mat, axis=0) - 1) * stride affy = (Cumsum(one_mat, axis=1) - 1) * stride ofx = ofx + affx.dimshuffle('x', 'x', 0, 1) ofy = ofy + affy.dimshuffle('x', 'x', 0, 1) one_mat = ConstProvider( np.ones( (ker_shape, ofx.partial_shape[2], ofx.partial_shape[3]))) #ofx[:, :ker_shape, :, :] -= 1 #ofx[:, ker_shape*2:, :, :] += 1 ofx += Concat([one_mat * i for i in dx], axis=0).dimshuffle('x', 0, 1, 2) #ofy[:, ::3, :, :] -= 1 #ofy[:, 2::3, :, :] += 1 one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3])) one_mat = Concat([one_mat * i for i in dy], axis=0) one_mat = Concat([one_mat] * ker_shape, axis=0) ofy += one_mat.dimshuffle('x', 0, 1, 2) ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0) ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0) def DeformReshape(inp, ker_shape): inp = inp.reshape(inp.partial_shape[0], ker_shape, ker_shape, inp.partial_shape[2], inp.partial_shape[3]) inp = inp.dimshuffle(0, 3, 1, 4, 2) inp = inp.reshape(inp.partial_shape[0], inp.partial_shape[1] * inp.partial_shape[2], inp.partial_shape[3] * inp.partial_shape[4]) return inp ofx = DeformReshape(ofx, ker_shape) ofy = DeformReshape(ofy, ker_shape) bilx = DeformReshape(bilx, ker_shape) bily = DeformReshape(bily, ker_shape) of = ofx * arg_fea.partial_shape[2] + ofy arg_fea = arg_fea.reshape(arg_fea.partial_shape[0], arg_fea.partial_shape[1], -1) of = of.reshape(ofx.partial_shape[0], -1) of = of.dimshuffle(0, 'x', 1) #of = Concat([of] * arg_fea.partial_shape[1], axis = 1) of = of.broadcast((of.partial_shape[0], arg_fea.partial_shape[1], of.partial_shape[2])) arx = Linspace(0, arg_fea.partial_shape[0], arg_fea.partial_shape[0], endpoint=False) arx = arx.add_axis(1).add_axis(2).broadcast(of.shape) ary = Linspace(0, arg_fea.partial_shape[1], arg_fea.partial_shape[1], endpoint=False) ary = ary.add_axis(0).add_axis(2).broadcast(of.shape) of = of.add_axis(3) arx = arx.add_axis(3) ary = ary.add_axis(3) idxmap = Astype(Concat([arx, ary, of], axis=3), np.int32) """ sample = [] for i in range(arg_fea.partial_shape[0]): for j in range(arg_fea.partial_shape[1]): sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0)) sample = Concat(sample, axis = 0) """ sample = IndexingRemap(arg_fea, idxmap).reshape(inp.partial_shape[0], inp.partial_shape[1], bilx.partial_shape[1], -1) bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape) bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape) sample *= bilx * bily outputs.append(sample) output = outputs[0] for i in outputs[1:]: output += i return Pooling2D(name, output, window=2, mode="AVERAGE")