コード例 #1
0
ファイル: network.py プロジェクト: lyuyanyii/CIFAR
def dfpooling(name, inp, window = 2, padding = 0, dx = [0, 1], dy = [0, 1]):
	#inp = ConstProvider([[[[1, 2], [3, 4]]]], dtype = np.float32)
	"""
	Add a new conv&bn to insure that the scale of the feature map is variance 1.
	"""
	ker_shape = window
	stride = window	
	offsetlay = Conv2D(
		name + "conv", inp, kernel_shape = 3, stride = 1, padding = 1,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = ((1) / (3**2 * inp.partial_shape[1]))**0.5),
		nonlinearity = Identity()
		)
	#offsetlay = BN(name + "BN", offsetlay, eps = 1e-9)

	offsetx = Conv2D(
		name + "conv1x", offsetlay, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = (1 / (ker_shape**2 * inp.partial_shape[2]))**0.5),
		nonlinearity = Identity()
		)
	offsety = Conv2D(
		name + "conv1y", offsetlay, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = (1 / (ker_shape**2 * inp.partial_shape[3]))**0.5),
		nonlinearity = Identity()
		)
	offset = Concat([offsetx, offsety], axis = 1)

	ndim = ker_shape**2 * offsetx.partial_shape[2] * offsetx.partial_shape[3] * 2
	offset = FullyConnected(
		name + "offset", offsetx, output_dim = ndim,
		W = G(mean = 0, std = (1 / ndim)**2),
		#W = C(0),
		b = C(0),
		nonlinearity = Identity()
		)
	offsetx = offset[:, :ndim // 2].reshape(offsetx.shape)
	offsety = offset[:, ndim // 2:].reshape(offsety.shape)
	"""
	offsetx = FullyConnected(
		name + "offsetx", offsetx, output_dim = ndim,
		W = G(mean = 0, std = gamma / ndim),
		b = C(0),
		nonlinearity = Identity()
		)
	offsetx = offsetx.reshape(offsety.shape)
	offsety = FullyConnected(
		name + "offsety", offsety, output_dim = ndim,
		W = G(mean = 0, std = gamma / ndim),
		b = C(0),
		nonlinearity = Identity()
		)
	offsety = offsety.reshape(offsetx.shape)
	print(offsety.partial_shape)
	"""

	#offsetx = ZeroGrad(offsetx)
	#offsety = ZeroGrad(offsety)
	outputs = []
	for sx in range(2):
		for sy in range(2):
			if sx == 0:
				ofx = Floor(offsetx)
				bilx = 1 - (offsetx - ofx)
			else:
				ofx = Ceil(offsetx)
				bilx = 1 - (ofx - offsetx)
			if sy == 0:
				ofy = Floor(offsety)
				bily = 1 - (offsety - ofy)
			else:
				ofy = Ceil(offsety)
				bily = 1 - (ofy - offsety)
			"""
			No padding
			padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3])))
			padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1)))
			arg_fea = Concat([padding1, inp, padding1], axis = 2)
			arg_fea = Concat([padding2, arg_fea, padding2], axis = 3)
			"""
			arg_fea = inp

			#one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32)
			one_mat = ConstProvider(1, dtype = np.int32).add_axis(0).broadcast((ofx.shape[2], ofx.shape[3]))
			affx = (Cumsum(one_mat, axis = 0) - 1) * stride
			affy = (Cumsum(one_mat, axis = 1) - 1) * stride

			ofx = ofx + affx.dimshuffle('x', 'x', 0, 1)
			ofy = ofy + affy.dimshuffle('x', 'x', 0, 1)
			one_mat = ConstProvider(np.ones((ker_shape, ofx.partial_shape[2], ofx.partial_shape[3])))
			#ofx[:, :ker_shape, :, :] -= 1
			#ofx[:, ker_shape*2:, :, :] += 1
			ofx += Concat([one_mat * i for i in dx], axis = 0).dimshuffle('x', 0, 1, 2)
			#ofy[:, ::3, :, :] -= 1
			#ofy[:, 2::3, :, :] += 1
			one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3]))
			one_mat = Concat([one_mat * i for i in dy], axis = 0)
			one_mat = Concat([one_mat] * ker_shape, axis = 0)
			ofy += one_mat.dimshuffle('x', 0, 1, 2)
			ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0)
			ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0)

			def DeformReshape(inp, ker_shape):
				inp = inp.reshape(inp.shape[0], ker_shape, ker_shape, inp.shape[2], inp.partial_shape[3])
				inp = inp.dimshuffle(0, 3, 1, 4, 2)
				inp = inp.reshape(inp.shape[0], inp.shape[1] * inp.shape[2], inp.shape[3] * inp.shape[4])
				return inp

			ofx = DeformReshape(ofx, ker_shape)
			ofy = DeformReshape(ofy, ker_shape)
			bilx = DeformReshape(bilx, ker_shape)
			bily = DeformReshape(bily, ker_shape)

			of = ofx * arg_fea.partial_shape[2] + ofy
			arg_fea = arg_fea.reshape(arg_fea.shape[0], arg_fea.shape[1], -1)
			of = of.reshape(ofx.shape[0], -1)
			of = of.dimshuffle(0, 'x', 1)
			#of = Concat([of] * arg_fea.partial_shape[1], axis = 1)
			of = of.broadcast((of.shape[0], arg_fea.shape[1], of.shape[2]))
			arx = Linspace(0, arg_fea.shape[0], arg_fea.shape[0], endpoint = False)
			arx = arx.add_axis(1).add_axis(2).broadcast(of.shape)
			ary = Linspace(0, arg_fea.shape[1], arg_fea.shape[1], endpoint = False)
			ary = ary.add_axis(0).add_axis(2).broadcast(of.shape)
			of = of.add_axis(3)
			arx = arx.add_axis(3)
			ary = ary.add_axis(3)
			idxmap = Astype(Concat([arx, ary, of], axis = 3), np.int32)
			"""
			sample = []
			for i in range(arg_fea.partial_shape[0]):
				for j in range(arg_fea.partial_shape[1]):
					sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0))
			sample = Concat(sample, axis = 0)
			"""
			sample = IndexingRemap(arg_fea, idxmap).reshape(inp.shape[0], inp.shape[1], bilx.shape[1], -1)
			bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			sample *= bilx * bily
			
			outputs.append(sample)
	
	output = outputs[0]
	for i in outputs[1:]:
		output += i
	
	return Pooling2D(name, output, window = 2, mode = "AVERAGE")
コード例 #2
0
ファイル: network.py プロジェクト: lyuyanyii/CIFAR
def dfconv(inp, chl, isrelu, ker_shape = 3, stride = 1, padding = 1, dx = [-1, 0, 1], dy = [-1, 0, 1]):
	inp = Conv2D(
		name + "conv", inp, kernel_shape = 3, stride = 1, padding = 1,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = ((1) / (ker_shape**2 * inp.partial_shape[1]))**0.5),
		nonlinearity = Identity()
		)
	inp = BN(name + "BN", inp, eps = 1e-9)

	global idx
	#idx += 1
	gamma = 0.001
	offsetx = inp.partial_shape[2] * Conv2D(
		"conv{}_offsetx".format(idx + 1), inp, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = gamma / (ker_shape**2 * inp.partial_shape[2])),
		nonlinearity = Identity()
		)
	offsety = inp.partial_shape[3] * Conv2D(
		"conv{}_offsety".format(idx + 1), inp, kernel_shape = ker_shape, stride = stride, 
		padding = padding,
		output_nr_channel = ker_shape**2,
		W = G(mean = 0, std = gamma / (ker_shape**2 * inp.partial_shape[3])),
		nonlinearity = Identity()
		)

	outputs = []
	for sx in range(2):
		for sy in range(2):
			if sx == 0:
				ofx = Floor(offsetx)
				bilx = offsetx - ofx
			else:
				ofx = Ceil(offsetx)
				bilx = ofx - offsetx
			if sy == 0:
				ofy = Floor(offsety)
				bily = offsety - ofy
			else:
				ofy = Ceil(offsety)
				bily = ofy - offsety

			"""
			No padding
			padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3])))
			padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1)))
			arg_fea = Concat([padding1, inp, padding1], axis = 2)
			arg_fea = Concat([padding2, arg_fea, padding2], axis = 3)
			"""
			arg_fea = inp

			#one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32)
			one_mat = ConstProvider(1, dtype = np.int32).add_axis(0).broadcast((ofx.partial_shape[2], ofx.partial_shape[3]))
			affx = (Cumsum(one_mat, axis = 0) - 1) * stride
			affy = (Cumsum(one_mat, axis = 1) - 1) * stride

			ofx = ofx + affx.dimshuffle('x', 'x', 0, 1)
			ofy = ofy + affy.dimshuffle('x', 'x', 0, 1)
			one_mat = ConstProvider(np.ones((ker_shape, ofx.partial_shape[2], ofx.partial_shape[3])))
			#ofx[:, :ker_shape, :, :] -= 1
			#ofx[:, ker_shape*2:, :, :] += 1
			ofx += Concat([one_mat * i for i in dx], axis = 0).dimshuffle('x', 0, 1, 2)
			#ofy[:, ::3, :, :] -= 1
			#ofy[:, 2::3, :, :] += 1
			one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3]))
			one_mat = Concat([one_mat * i for i in dy], axis = 0)
			one_mat = Concat([one_mat] * ker_shape, axis = 0)
			ofy += one_mat.dimshuffle('x', 0, 1, 2)
			ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0)
			ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0)

			def DeformReshape(inp, ker_shape):
				inp = inp.reshape(inp.shape[0], ker_shape, ker_shape, inp.shape[2], inp.shape[3])
				inp = inp.dimshuffle(0, 3, 1, 4, 2)
				inp = inp.reshape(inp.shape[0], inp.shape[1] * inp.shape[2], inp.shape[3] * inp.shape[4])
				return inp

			ofx = DeformReshape(ofx, ker_shape)
			ofy = DeformReshape(ofy, ker_shape)
			bilx = DeformReshape(bilx, ker_shape)
			bily = DeformReshape(bily, ker_shape)

			of = ofx * arg_fea.shape[2] + ofy
			arg_fea = arg_fea.reshape(arg_fea.shape[0], arg_fea.shape[1], -1)
			of = of.reshape(ofx.shape[0], -1)
			of = of.dimshuffle(0, 'x', 1)
			#of = Concat([of] * arg_fea.partial_shape[1], axis = 1)
			of = of.broadcast((of.shape[0], arg_fea.shape[1], of.shape[2]))
			arx = Linspace(0, arg_fea.shape[0], arg_fea.shape[0], endpoint = False)
			arx = arx.add_axis(1).add_axis(2).broadcast(of.shape)
			ary = Linspace(0, arg_fea.shape[1], arg_fea.shape[1], endpoint = False)
			ary = ary.add_axis(0).add_axis(2).broadcast(of.shape)
			of = of.add_axis(3)
			arx = arx.add_axis(3)
			ary = ary.add_axis(3)
			idxmap = Astype(Concat([arx, ary, of], axis = 3), np.int32)
			"""
			sample = []
			for i in range(arg_fea.partial_shape[0]):
				for j in range(arg_fea.partial_shape[1]):
					sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0))
			sample = Concat(sample, axis = 0)
			"""
			sample = IndexingRemap(arg_fea, idxmap).reshape(inp.shape[0], inp.shape[1], bilx.shape[1], -1)
			bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
			sample *= bilx * bily
			
			outputs.append(sample)
	
	output = outputs[0]
	for i in outputs[1:]:
		output += i
	
	return conv_bn(output, ker_shape, 3, 0, chl, isrelu)
コード例 #3
0
def dfpooling(name, inp, window=2, padding=0, dx=[0, 1], dy=[0, 1]):
    #inp = ConstProvider([[[[1, 2], [3, 4]]]], dtype = np.float32)

    ker_shape = window
    stride = window
    gamma = 0.1
    offsetx = gamma * inp.partial_shape[2] * Conv2D(name + "offsetx",
                                                    inp,
                                                    kernel_shape=ker_shape,
                                                    stride=stride,
                                                    padding=padding,
                                                    output_nr_channel=ker_shape
                                                    **2,
                                                    W=C(0),
                                                    nonlinearity=Identity())
    offsety = gamma * inp.partial_shape[3] * Conv2D(name + "offsety",
                                                    inp,
                                                    kernel_shape=ker_shape,
                                                    stride=stride,
                                                    padding=padding,
                                                    output_nr_channel=ker_shape
                                                    **2,
                                                    W=C(0),
                                                    nonlinearity=Identity())
    outputs = []
    for sx in range(2):
        for sy in range(2):
            if sx == 0:
                ofx = Floor(offsetx)
                bilx = offsetx - ofx + Equal(Floor(offsetx), Ceil(offsetx))
            else:
                ofx = Ceil(offsetx)
                bilx = ofx - offsetx
            if sy == 0:
                ofy = Floor(offsety)
                bily = offsety - ofy + Equal(Floor(offsety), Ceil(offsety))
            else:
                ofy = Ceil(offsety)
                bily = ofy - offsety
            """
			No padding
			padding1 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], 1, inp.partial_shape[3])))
			padding2 = ConstProvider(np.zeros((inp.partial_shape[0], inp.partial_shape[1], inp.partial_shape[2] + 2, 1)))
			arg_fea = Concat([padding1, inp, padding1], axis = 2)
			arg_fea = Concat([padding2, arg_fea, padding2], axis = 3)
			"""
            arg_fea = inp

            #one_mat = ConstProvider(np.ones((inp.partial_shape[2], inp.partial_shape[3])), dtype = np.int32)
            one_mat = ConstProvider(1, dtype=np.int32).add_axis(0).broadcast(
                (ofx.partial_shape[2], ofx.partial_shape[3]))
            affx = (Cumsum(one_mat, axis=0) - 1) * stride
            affy = (Cumsum(one_mat, axis=1) - 1) * stride

            ofx = ofx + affx.dimshuffle('x', 'x', 0, 1)
            ofy = ofy + affy.dimshuffle('x', 'x', 0, 1)
            one_mat = ConstProvider(
                np.ones(
                    (ker_shape, ofx.partial_shape[2], ofx.partial_shape[3])))
            #ofx[:, :ker_shape, :, :] -= 1
            #ofx[:, ker_shape*2:, :, :] += 1
            ofx += Concat([one_mat * i for i in dx],
                          axis=0).dimshuffle('x', 0, 1, 2)
            #ofy[:, ::3, :, :] -= 1
            #ofy[:, 2::3, :, :] += 1
            one_mat = ones((1, ofx.partial_shape[2], ofx.partial_shape[3]))
            one_mat = Concat([one_mat * i for i in dy], axis=0)
            one_mat = Concat([one_mat] * ker_shape, axis=0)
            ofy += one_mat.dimshuffle('x', 0, 1, 2)
            ofx = Max(Min(ofx, arg_fea.partial_shape[2] - 1), 0)
            ofy = Max(Min(ofy, arg_fea.partial_shape[3] - 1), 0)

            def DeformReshape(inp, ker_shape):
                inp = inp.reshape(inp.partial_shape[0], ker_shape, ker_shape,
                                  inp.partial_shape[2], inp.partial_shape[3])
                inp = inp.dimshuffle(0, 3, 1, 4, 2)
                inp = inp.reshape(inp.partial_shape[0],
                                  inp.partial_shape[1] * inp.partial_shape[2],
                                  inp.partial_shape[3] * inp.partial_shape[4])
                return inp

            ofx = DeformReshape(ofx, ker_shape)
            ofy = DeformReshape(ofy, ker_shape)
            bilx = DeformReshape(bilx, ker_shape)
            bily = DeformReshape(bily, ker_shape)

            of = ofx * arg_fea.partial_shape[2] + ofy
            arg_fea = arg_fea.reshape(arg_fea.partial_shape[0],
                                      arg_fea.partial_shape[1], -1)
            of = of.reshape(ofx.partial_shape[0], -1)
            of = of.dimshuffle(0, 'x', 1)
            #of = Concat([of] * arg_fea.partial_shape[1], axis = 1)
            of = of.broadcast((of.partial_shape[0], arg_fea.partial_shape[1],
                               of.partial_shape[2]))
            arx = Linspace(0,
                           arg_fea.partial_shape[0],
                           arg_fea.partial_shape[0],
                           endpoint=False)
            arx = arx.add_axis(1).add_axis(2).broadcast(of.shape)
            ary = Linspace(0,
                           arg_fea.partial_shape[1],
                           arg_fea.partial_shape[1],
                           endpoint=False)
            ary = ary.add_axis(0).add_axis(2).broadcast(of.shape)
            of = of.add_axis(3)
            arx = arx.add_axis(3)
            ary = ary.add_axis(3)
            idxmap = Astype(Concat([arx, ary, of], axis=3), np.int32)
            """
			sample = []
			for i in range(arg_fea.partial_shape[0]):
				for j in range(arg_fea.partial_shape[1]):
					sample.append(arg_fea[i][j].ai[of[i][j]].dimshuffle('x', 0))
			sample = Concat(sample, axis = 0)
			"""
            sample = IndexingRemap(arg_fea,
                                   idxmap).reshape(inp.partial_shape[0],
                                                   inp.partial_shape[1],
                                                   bilx.partial_shape[1], -1)
            bilx = bilx.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
            bily = bily.dimshuffle(0, 'x', 1, 2).broadcast(sample.shape)
            sample *= bilx * bily

            outputs.append(sample)

    output = outputs[0]
    for i in outputs[1:]:
        output += i

    return Pooling2D(name, output, window=2, mode="AVERAGE")