コード例 #1
0
def main():

    TTA2_preprocess = [preprocess, preprocess_hflip]
    TTA10_preprocess = [preprocess_tencrop]
    TTA12_preprocess = [preprocess, preprocess_hflip, preprocess_tencrop]
    id = 0
    print("testing {}.....".format(ckp_path))

    for trans in TTA10_preprocess:
        print("id is: {}".format(id))
        test_dataset = McDataset(test_root, test_source, transform=trans)

        test_loader = DataLoader(test_dataset,
                                 batch_size,
                                 shuffle=False,
                                 pin_memory=False)
        print("test loading....")
        model = get_model('senet154', pretrained=False)
        # model.cuda()
        model = torch.nn.DataParallel(model).cuda()
        checkpoint = load_checkpoint(ckp_path)
        model.load_state_dict(checkpoint['state_dict'])
        tester = TenCropTester(model)
        # if id == 2:
        #     tester = TenCropTester(model)
        # else:
        #     tester = BaseTester(model)

        pred = tester.extract(test_loader)
        np.save("./rst/prob_dense{}.npy".format(id), pred)
        id += 1
コード例 #2
0
def main():

    # tta_preprocess = [preprocess, preprocess_hflip]
    tta_preprocess = [preprocess_tencrop]
    id = 0
    print("testing {}.....".format(ckp_path))

    for trans in tta_preprocess:
        print("id is: {}".format(id))
        test_dataset = McDataset(test_root, test_source, transform=trans)

        test_loader = DataLoader(test_dataset,
                                 batch_size,
                                 shuffle=False,
                                 pin_memory=False)
        print("test loading....")
        model = models.__dict__[arch]()
        model = FineTuneModel(model, arch, 128)
        # model.cuda()
        model = torch.nn.DataParallel(model).cuda()
        checkpoint = load_checkpoint(ckp_path)
        model.load_state_dict(checkpoint['state_dict'])
        # tester = BaseTester(model)
        tester = TenCropTester(model)
        pred = tester.extract(test_loader)
        np.save("./rst/prob_dense{}.npy".format(id), pred)
        id += 1
コード例 #3
0
def main():
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    test_dataset = McDataset(
        test_root,
        test_source,
        transforms.Compose([
            transforms.Resize(image_size),
            transforms.CenterCrop(input_size),
            transforms.ToTensor(),
            normalize,
        ]))

    test_loader = DataLoader(test_dataset, batch_size, shuffle=False, pin_memory=False)

    model = models.__dict__[arch]()
    model = FineTuneModel(model, arch, 128)
    # model.cuda()
    model = torch.nn.DataParallel(model).cuda()
    checkpoint = load_checkpoint(ckp_path)
    model.load_state_dict(checkpoint['state_dict'])
    tester = BaseTester(model)
    pred = tester.extract(test_loader)
    np.save("./rst/prob_dense.npy", pred)
def main():
    global args, best_prec1, min_loss
    args = parser.parse_args()

    rank, world_size = dist_init(args.port)
    print("world_size is: {}".format(world_size))
    assert (args.batch_size % world_size == 0)
    assert (args.workers % world_size == 0)
    args.batch_size = args.batch_size // world_size
    args.workers = args.workers // world_size

    # create model
    print("=> creating model '{}'".format("inceptionv4"))
    print("save_path is: {}".format(args.save_path))

    image_size = 341
    input_size = 299
    model = get_model('inceptionv4', pretrained=True)
    # print("model is: {}".format(model))
    model.cuda()
    model = DistModule(model)

    # optionally resume from a checkpoint
    if args.load_path:
        if args.resume_opt:
            best_prec1, start_epoch = load_state(args.load_path,
                                                 model,
                                                 optimizer=optimizer)
        else:
            # print('load weights from', args.load_path)
            load_state(args.load_path, model)

    cudnn.benchmark = True

    # Data loading code
    normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    train_dataset = McDataset(
        args.train_root, args.train_source,
        transforms.Compose([
            transforms.Resize(image_size),
            transforms.RandomCrop(input_size),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            ColorAugmentation(),
            normalize,
        ]))
    val_dataset = McDataset(
        args.val_root, args.val_source,
        transforms.Compose([
            transforms.Resize(image_size),
            transforms.CenterCrop(input_size),
            transforms.ToTensor(),
            normalize,
        ]))

    train_sampler = DistributedSampler(train_dataset)
    val_sampler = DistributedSampler(val_dataset)

    train_loader = DataLoader(train_dataset,
                              batch_size=args.batch_size,
                              shuffle=False,
                              num_workers=args.workers,
                              pin_memory=False,
                              sampler=train_sampler)

    val_loader = DataLoader(val_dataset,
                            batch_size=args.batch_size,
                            shuffle=False,
                            num_workers=args.workers,
                            pin_memory=False,
                            sampler=val_sampler)

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss()

    lr = 0
    patience = 0
    for epoch in range(args.start_epoch, args.epochs):
        # adjust_learning_rate(optimizer, epoch)
        train_sampler.set_epoch(epoch)

        if epoch == 1:
            lr = 0.00003
        if patience == 2:
            patience = 0
            checkpoint = load_checkpoint(args.save_path + '_best.pth.tar')
            model.load_state_dict(checkpoint['state_dict'])
            print("Loading checkpoint_best.............")
            # model.load_state_dict(torch.load('checkpoint_best.pth.tar'))
            lr = lr / 10.0

        if epoch == 0:
            lr = 0.001
            for name, param in model.named_parameters():
                # print("name is: {}".format(name))
                if (name not in last_layer_names):
                    param.requires_grad = False
            optimizer = torch.optim.RMSprop(filter(lambda p: p.requires_grad,
                                                   model.parameters()),
                                            lr=lr)
            # optimizer = torch.optim.Adam(
            #     filter(lambda p: p.requires_grad, model.parameters()), lr=lr)
        else:
            for param in model.parameters():
                param.requires_grad = True
            optimizer = torch.optim.RMSprop(model.parameters(),
                                            lr=lr,
                                            weight_decay=0.0001)
            # optimizer = torch.optim.Adam(
            #     model.parameters(), lr=lr, weight_decay=0.0001)
        print("lr is: {}".format(lr))
        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        val_prec1, val_losses = validate(val_loader, model, criterion)
        print("val_losses is: {}".format(val_losses))
        # remember best prec@1 and save checkpoint
        if rank == 0:
            # remember best prec@1 and save checkpoint
            if val_losses < min_loss:
                is_best = True
                save_checkpoint(
                    {
                        'epoch': epoch + 1,
                        'arch': 'inceptionv4',
                        'state_dict': model.state_dict(),
                        'best_prec1': best_prec1,
                        'optimizer': optimizer.state_dict(),
                    }, is_best, args.save_path)
                # torch.save(model.state_dict(), 'best_val_weight.pth')
                print(
                    'val score improved from {:.5f} to {:.5f}. Saved!'.format(
                        min_loss, val_losses))

                min_loss = val_losses
                patience = 0
            else:
                patience += 1
        if rank == 1 or rank == 2 or rank == 3 or rank == 4 or rank == 5 or rank == 6 or rank == 7:
            if val_losses < min_loss:
                min_loss = val_losses
                patience = 0
            else:
                patience += 1
        print("patience is: {}".format(patience))
        print("min_loss is: {}".format(min_loss))
    print("min_loss is: {}".format(min_loss))
コード例 #5
0
def main():
    global args, config, best_prec1
    args = parser.parse_args()

    with open(args.config) as f:
        config = yaml.load(f)

    config = EasyDict(config['common'])
    config.save_path = os.path.dirname(args.config)

    rank, world_size = dist_init()

    # create model
    bn_group_size = config.model.kwargs.bn_group_size
    bn_var_mode = config.model.kwargs.get('bn_var_mode', 'L2')
    if bn_group_size == 1:
        bn_group = None
    else:
        assert world_size % bn_group_size == 0
        bn_group = simple_group_split(world_size, rank,
                                      world_size // bn_group_size)

    config.model.kwargs.bn_group = bn_group
    config.model.kwargs.bn_var_mode = (link.syncbnVarMode_t.L1 if bn_var_mode
                                       == 'L1' else link.syncbnVarMode_t.L2)
    model = model_entry(config.model)
    if rank == 0:
        print(model)

    model.cuda()

    if config.optimizer.type == 'FP16SGD' or config.optimizer.type == 'FusedFP16SGD':
        args.fp16 = True
    else:
        args.fp16 = False

    if args.fp16:
        # if you have modules that must use fp32 parameters, and need fp32 input
        # try use link.fp16.register_float_module(your_module)
        # if you only need fp32 parameters set cast_args=False when call this
        # function, then call link.fp16.init() before call model.half()
        if config.optimizer.get('fp16_normal_bn', False):
            print('using normal bn for fp16')
            link.fp16.register_float_module(link.nn.SyncBatchNorm2d,
                                            cast_args=False)
            link.fp16.register_float_module(torch.nn.BatchNorm2d,
                                            cast_args=False)
            link.fp16.init()
        model.half()

    model = DistModule(model, args.sync)

    # create optimizer
    opt_config = config.optimizer
    opt_config.kwargs.lr = config.lr_scheduler.base_lr
    if config.get('no_wd', False):
        param_group, type2num = param_group_no_wd(model)
        opt_config.kwargs.params = param_group
    else:
        opt_config.kwargs.params = model.parameters()

    optimizer = optim_entry(opt_config)

    # optionally resume from a checkpoint
    last_iter = -1
    best_prec1 = 0
    if args.load_path:
        if args.recover:
            best_prec1, last_iter = load_state(args.load_path,
                                               model,
                                               optimizer=optimizer)
        else:
            load_state(args.load_path, model)

    cudnn.benchmark = True

    # Data loading code
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    # augmentation
    aug = [
        transforms.RandomResizedCrop(config.augmentation.input_size),
        transforms.RandomHorizontalFlip()
    ]

    for k in config.augmentation.keys():
        assert k in [
            'input_size', 'test_resize', 'rotation', 'colorjitter', 'colorold'
        ]
    rotation = config.augmentation.get('rotation', 0)
    colorjitter = config.augmentation.get('colorjitter', None)
    colorold = config.augmentation.get('colorold', False)

    if rotation > 0:
        aug.append(transforms.RandomRotation(rotation))

    if colorjitter is not None:
        aug.append(transforms.ColorJitter(*colorjitter))

    aug.append(transforms.ToTensor())

    if colorold:
        aug.append(ColorAugmentation())

    aug.append(normalize)

    # train
    train_dataset = McDataset(config.train_root,
                              config.train_source,
                              transforms.Compose(aug),
                              fake=args.fake)

    # val
    val_dataset = McDataset(
        config.val_root, config.val_source,
        transforms.Compose([
            transforms.Resize(config.augmentation.test_resize),
            transforms.CenterCrop(config.augmentation.input_size),
            transforms.ToTensor(),
            normalize,
        ]), args.fake)

    train_sampler = DistributedGivenIterationSampler(
        train_dataset,
        config.lr_scheduler.max_iter,
        config.batch_size,
        last_iter=last_iter)
    val_sampler = DistributedSampler(val_dataset, round_up=False)

    train_loader = DataLoader(train_dataset,
                              batch_size=config.batch_size,
                              shuffle=False,
                              num_workers=config.workers,
                              pin_memory=True,
                              sampler=train_sampler)

    val_loader = DataLoader(val_dataset,
                            batch_size=config.batch_size,
                            shuffle=False,
                            num_workers=config.workers,
                            pin_memory=True,
                            sampler=val_sampler)

    config.lr_scheduler['optimizer'] = optimizer.optimizer if isinstance(
        optimizer, FP16SGD) else optimizer
    config.lr_scheduler['last_iter'] = last_iter
    lr_scheduler = get_scheduler(config.lr_scheduler)

    if rank == 0:
        tb_logger = SummaryWriter(config.save_path + '/events')
        logger = create_logger('global_logger', config.save_path + '/log.txt')
        logger.info('args: {}'.format(pprint.pformat(args)))
        logger.info('config: {}'.format(pprint.pformat(config)))
    else:
        tb_logger = None

    if args.evaluate:
        if args.fusion_list is not None:
            validate(val_loader,
                     model,
                     fusion_list=args.fusion_list,
                     fuse_prob=args.fuse_prob)
        else:
            validate(val_loader, model)
        link.finalize()
        return

    train(train_loader, val_loader, model, optimizer, lr_scheduler,
          last_iter + 1, tb_logger)

    link.finalize()
コード例 #6
0
def main():
    global args, best_prec1, timer
    args = parser.parse_args()
    rank, world_size = dist_init(args.port)
    assert (args.batch_size % world_size == 0)
    assert (args.workers % world_size == 0)
    args.batch_size = args.batch_size // world_size
    args.workers = args.workers // world_size

    # step1: create model
    print("=> creating model '{}'".format(args.arch))
    if args.arch.startswith('inception_v3'):
        print('inception_v3 without aux_logits!')
        image_size = 341
        input_size = 299
        model = models.__dict__[args.arch](aux_logits=False)
    elif args.arch.startswith('ir18'):
        image_size = 640
        input_size = 448
        model = IR18()
    else:
        image_size = 256
        input_size = 224
        model = models.__dict__[args.arch]()

    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        if os.path.isfile(args.pretrained):
            print("=> loading pretrained_model '{}'".format(args.pretrained))
            pretrained_model = torch.load(args.pretrained)
            model.load_state_dict(pretrained_model['state_dict'], strict=False)
            print("=> loaded pretrained_model '{}'".format(args.pretrained))
        else:
            print("=> no checkpoint found at '{}'".format(args.pretrained))
    model.cuda()
    model = DistModule(model)

    # step2: define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss()

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # step3: Data loading code
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_dataset = McDataset(
        args.train_root,
        args.train_source,
        transforms.Compose([
            transforms.RandomResizedCrop(input_size),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            # ColorAugmentation(),
            # normalize,
        ]))
    val_dataset = McDataset(
        args.val_root,
        args.val_source,
        transforms.Compose([
            transforms.Resize(image_size),
            transforms.CenterCrop(input_size),
            transforms.ToTensor(),
            # normalize,
        ]))

    train_sampler = DistributedSampler(train_dataset)
    val_sampler = DistributedSampler(val_dataset)

    train_loader = DataLoader(train_dataset,
                              batch_size=args.batch_size,
                              shuffle=False,
                              num_workers=args.workers,
                              pin_memory=False,
                              sampler=train_sampler)

    val_loader = DataLoader(val_dataset,
                            batch_size=args.batch_size,
                            shuffle=False,
                            num_workers=args.workers,
                            pin_memory=False,
                            sampler=val_sampler)

    if args.evaluate:
        validate(val_loader, model, criterion)
        return
    timer = Timer(
        len(train_loader) + len(val_loader), args.epochs - args.start_epoch)
    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch)
        train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        if rank == 0:
            # remember best prec@1 and save checkpoint
            is_best = prec1 > best_prec1
            best_prec1 = max(prec1, best_prec1)
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'best_prec1': best_prec1,
                    'optimizer': optimizer.state_dict(),
                }, is_best, args.save_path)
            print('* Best Prec 1: {best:.3f}'.format(best=best_prec1))
コード例 #7
0
ファイル: train.py プロジェクト: jingyi1997/mnist
def main():

    global  writer, best_prec1
      

    if not os.path.exists('{}/checkpoints'.format(args.ckpt)):
         os.makedirs('{}/checkpoints'.format(args.ckpt))
    if not os.path.exists('{}/images'.format(args.ckpt)):
         os.makedirs('{}/images'.format(args.ckpt))
    if not os.path.exists('{}/logs'.format(args.ckpt)):
         os.makedirs('{}/logs'.format(args.ckpt))
    if not os.path.exists('{}/plots'.format(args.ckpt)):
         os.makedirs('{}/plots'.format(args.ckpt))
    if os.path.exists('{}/runs'.format(args.ckpt)):
         shutil.rmtree('{}/runs'.format(args.ckpt))
    os.makedirs('{}/runs'.format(args.ckpt))


    logger = create_logger('global_logger', '{}/logs/{}.txt'.format(args.ckpt,time.time()))
    logger.info('{}'.format(args))
    writer = SummaryWriter('{}/runs'.format(args.ckpt))
    
    #net = nn.parallel.distributed.DistributedDataParallel(net)
    
    # build dataset
    data_dir = args.data_dir
    data_list = args.data_list
    
    val_data_dir = args.val_data_dir
    val_data_list = args.val_data_list

    
    train_dataset = McDataset(data_dir, data_list)
    
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.bs, shuffle=True,
        num_workers=1, pin_memory=True, collate_fn=fast_collate)

    val_dataset = McDataset(val_data_dir, val_data_list)

    val_loader = torch.utils.data.DataLoader(
        val_dataset, batch_size=args.bs, shuffle=True,
        num_workers=4, pin_memory=True, collate_fn=fast_collate)

    # create model
    
    print("=> creating model '{}'".format(args.net))
    net = model.Net(classnum=args.classnum, feature_dim=2, head=args.loss_type, radius=args.radius, sample_feat=args.sample_feat) 
    net = net.cuda()
    print(net)
    
    # build optimizer
    optimizer = torch.optim.SGD(net.parameters(), lr=args.base_lr, momentum=0.9, weight_decay=5e-4)
 
    if args.loss_type == 'a-softmax':
        criterion = model.AngleLoss(LambdaMax=args.LambdaMax, gamma=args.gamma, power=args.power).cuda()
    if args.loss_type == 'softmax' or args.loss_type == 'gaussian':
        criterion = torch.nn.CrossEntropyLoss()
  
    start_epoch = 0
    best_prec1 = 0
    # optionally resume from a pretrained model
    
    if args.evaluate:
        model_path = os.path.join(args.ckpt, 'checkpoints', args.evaluate)
        checkpoint = torch.load(model_path)
        epoch  = int(checkpoint['epoch'])
        net.load_state_dict(checkpoint['state_dict'])
        val_feat, val_target, prec1 = validate(net, val_loader, criterion, epoch)
        print('Prec1: {}'.format(prec1))
        return  


    if args.resume:
        model_path = os.path.join(args.ckpt, 'checkpoints', args.resume)
        checkpoint = torch.load(model_path)
        start_epoch = int(checkpoint['epoch'])
        best_prec1 = float(checkpoint['best_prec1'])
        net.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
    if args.pretrained:
        start_epoch = 0

    ## start training 
    net.train()
    freq = args.print_freq
    end = time.time()
    
    for epoch in range(start_epoch,args.epochs):
        train_feat, train_target, train_prec1 = train(net, epoch, train_loader, args, criterion, optimizer)
        val_feat, val_target, prec1 = validate(net, val_loader, criterion, epoch)
        #pdb.set_trace()
        if (epoch+1) % args.vis_freq == 0:
           visualize(train_feat, train_target, val_feat, val_target, epoch, args, train_prec1, prec1)
        is_best = prec1>best_prec1
        best_prec1 = max(prec1, best_prec1)
        save_checkpoint({
               'epoch': epoch+1,
               'state_dict': net.state_dict(),
               'optimizer': optimizer.state_dict(),
               'best_prec1': best_prec1
        },args, is_best)
    print('Best Prec1: {}'.format(best_prec1))
    writer.close()