コード例 #1
0
ファイル: traps.py プロジェクト: yossef-khaled/LC-3
def _PUTS():
    """output a word string"""
    i = reg_read(Registers.R0)
    ch = mem_read(i)
    while chr(
            ch) != '\0':  # check if the char is not null then print this char
        sys.stdout.write(ch)
        i += 1
        ch = mem_read(i)
    sys.stdout.flush()  # equal to fflush() in c
コード例 #2
0
def _LDI(instruction):
    # Destenation Register.
    DR = (instruction >> 9) & 0x7
    # the value of what called an offset (embedded within the instruction code).
    PCoffset = sign_extend(instruction & 0X1ff, 9)
    # the address of the address of the desired data.
    address = reg_read(Registers.PC) + PCoffset
    # write the data (its address is explained in the previous line) in the register (DR).
    reg_write(DR, mem_read(mem_read(address)))
    # store the sign of the last excuted instruction data (which is in the DR).
    update_flags(DR)
コード例 #3
0
def _PUTS():
    """output a word string"""
    for i in range(reg_read(Registers.R0), 2**16):
        ch = mem_read(i)
        if ch == 0:  # check if the char is not null then print this char
            break
        sys.stdout.write(chr(ch))
    sys.stdout.flush()  # equal to fflush() in c
コード例 #4
0
def _STI(instruction):
    # Source Register (the register containing the data).
    SR = (instruction >> 9) & 0x7
    # the value of what called an offset (embedded within the instruction code).
    PCoffset = sign_extend(instruction & 0x1ff, 9)
    # the address of the address that the data will be stored at.
    address = reg_read(Registers.PC) + PCoffset
    # write the data (stored in the SR) into the memory (the address is explained in the previous line).
    mem_write(mem_read(address), reg_read(SR))
コード例 #5
0
def _PUTSP():
    """output a byte string"""
    for i in range(reg_read(Registers.R0), 2**16):
        c = mem_read(i)
        if c == 0:
            break
        sys.stdout.write(chr(c & 0xFF))
        char = c >> 8
        if char:
            sys.stdout.write(chr(char))
    sys.stdout.flush()
コード例 #6
0
def _PUTSP():
    """output a byte string"""
    for i in range(Registers.R0, (2**16)):
        c = mem_read(ushort(i))
        if chr(c) == '\0':
            break
        sys.stdout.write(chr(c & 0xFF))
        char = c >> 8
        if char:
            sys.stdout.write(chr(char))
    sys.stdout.flush()
コード例 #7
0
ファイル: lc3.py プロジェクト: yossef-khaled/LC-3
def main():
    reg_write(Registers.PC, PC_START)
    rom = read_Rom_file(input('Enter filename: '))
    load_image(rom)

    try:
        while True:
            pc = reg_read(Registers.PC)
            instruction = mem_read(pc)
            execute(instruction)
    except Halt:  # TODO
        print('Halted.')
コード例 #8
0
def _LDR(instruction):
    """load register"""
    # compute the index of distination register
    dis_reg = (instruction >> 9) & 0x0007
    # compute the index of BaseR register
    BaseR = (instruction >> 6) & 0x0007
    # compute and extention offset6 value
    offset6 = sign_extend(instruction & 0x003F, 6)
    # compute memory addresse
    mem_addresse = reg_read(BaseR) + offset6
    # read the memory storage value
    value = mem_read(mem_addresse)
    # write value to distination register
    reg_write(dis_reg, value)
    # update flags
    update_flags(dis_reg)
コード例 #9
0
def main():
    if len(sys.argv) < 2:
        print('Usage: python3 lc3.py [obj-file]')
        exit(2)

    reg_write(Registers.PC, PC_START)
    read_Rom_file(sys.argv[1])

    try:
        while True:
            pc = reg_read(Registers.PC)
            instruction = mem_read(pc)
            # increment PC by #1.
            reg_write(Registers.PC, reg_read(Registers.PC) + 1)
            execute(instruction)
    except Halt:  # TODO
        print('Halted.')
コード例 #10
0
def _LD(instruction):
    """load"""
    DR = (instruction >> 9) & 0x7
    pc_offset = sign_extend(instruction & 0x1ff, 9)
    reg_write(DR, mem_read(reg_read(Registers.PC) + pc_offset))
    update_flags(DR)
コード例 #11
0
ファイル: traps.py プロジェクト: yossef-khaled/LC-3
def _OUT():
    """output a character"""
    sys.stdout.write(chr(mem_read(reg_read(Registers.R0))))
    sys.stdout.flush()
コード例 #12
0
    def process_step(self, external_input, memory, read_vectors,
                     previous_weights):
        """ 
            NTM.process(external_input, read_vector, previous_weights) -> new_memory, new_read_vectors, new_weights, output

            the main method of this entire program. Processes the data with a NTM.

            @param external_input: a batchsize x input_size matrix that represents the data for this timestep
            @param memory: a batchsize x N x M memory 3-tensor from the previous timestep
            @param read_vector: a self.read_heads x batchsize x N 3-tensor that represents all of the read vectors produced by read heads
            @param previous_weights: a 1 + self.read_heads x batchsize x M 3-tensor that represents all of the weightings produced by all heads in the previous timestep
        """

        # concatenated_read_vector -> batchsize x self.slot_size * read_vector
        concatenated_read_vector = T.concatenate(
            [read_vectors[head] for head in range(len(self.read_heads))],
            axis=1)

        # concatenated_input -> batchsize x self.slot_size * read_vector + external_input_length
        concatenated_input = T.concatenate(
            [concatenated_read_vector, external_input], axis=1)

        # controller_output -> batchsize x self.controller_size
        controller_output = T.nnet.relu(
            self.controller.forward(concatenated_input))

        # Represents NTM's actual output for this timestep
        # ntm_output -> batchsize x self.output_size
        ntm_output = T.dot(controller_output, self.output_weight)

        # let's get reading out of the way first
        for head in range(len(self.read_heads)):
            key, shift, sharpen, strengthen, interpolation = self.read_heads[
                head].produce(controller_output)

            # preprocess the values in preparation for mem_focus
            # key -> batchsize x 1 x N
            # strengthen -> batchsize x 1 (already good)
            key = key.dimshuffle([0, 'x', 1])

            # Focus by content + strengthen
            # preliminary_weight -> batchsize x M
            preliminary_weight = mem_focus(memory, key, strengthen)

            # Focus by location
            interpolated_weight = interpolation * preliminary_weight + (
                1 - interpolation) * previous_weights[head]

            # Shift
            # Both arguments are batchsize x M, first being weighting, second being shift

            shifted_weight = focus_shift(interpolated_weight, shift,
                                         self.memory_slots)

            # Sharpen
            # We added broadcasted the second axis of sharpen, remember? :))))))))))))))))))))))))))
            # sharpened_weight -> batchsize x M
            sharpened_weight = shifted_weight**sharpen

            # Normalize
            # T.sum(...) -> batchsize x 1
            final_weight = sharpened_weight / (T.sum(
                sharpened_weight, axis=1, keepdims=True) + SMALL_CONSTANT)

            # read, read, read!
            # read_vec -> batchsize x N x 1, so we gotta flatten to batchsize x N
            read_vec = mem_read(memory, final_weight)
            read_vectors = T.set_subtensor(read_vectors[head],
                                           T.flatten(read_vec, outdim=2))

            previous_weights = T.set_subtensor(previous_weights[head],
                                               final_weight)

        # let's write now!
        key, add, erase, shift, sharpen, strengthen, interpolation = self.write_head.produce(
            controller_output)

        # preprocess the values in preparation for mem_focus
        # key -> batchsize x 1 x N
        # strengthen -> batchsize x 1 (already_good)

        key = key.dimshuffle([0, 'x', 1])

        # Focus by content + strengthen
        # preliminary_weight -> batchsize x M
        preliminary_weight = mem_focus(memory, key, strengthen)

        # Focus by location
        interpolated_weight = interpolation * preliminary_weight + (
            1 - interpolation) * previous_weights[-1]

        # Shift
        shifted_weight = focus_shift(interpolated_weight, shift,
                                     self.memory_slots)

        # Sharpen
        sharpened_weight = shifted_weight**sharpen

        # Normalize
        # T.sum(...) -> batchsize x 1
        final_weight = sharpened_weight / (
            T.sum(sharpened_weight, axis=1, keepdims=True) + SMALL_CONSTANT)

        previous_weights = T.set_subtensor(previous_weights[-1], final_weight)

        # preprocess the values in preparation for mem_write
        # weighting -> batchsize x 1 x M
        # erase_vector -> batchsize x N x 1
        # add_vector -> batchsize x N x 1
        final_weight = final_weight.dimshuffle([0, 'x', 1])
        erase = erase.dimshuffle([0, 1, 'x'])
        add = add.dimshuffle([0, 1, 'x'])

        new_memory = mem_write(memory, final_weight, erase, add)

        # phew, almost done!
        return new_memory, read_vectors, previous_weights, ntm_output