class Agent: def __init__(self, model, memory=None, memory_size=500, nb_frames=None): assert len( model.get_output_shape_at(0) ) == 2, "Model's output shape should be (nb_samples, nb_actions)." if memory: self.memory = memory else: self.memory = ExperienceReplay(memory_size) if not nb_frames and not model.get_input_shape_at(0)[1]: raise Exception("Missing argument : nb_frames not provided") elif not nb_frames: nb_frames = model.get_input_shape_at(0)[1] elif model.get_input_shape_at( 0 )[1] and nb_frames and model.get_input_shape_at(0)[1] != nb_frames: raise Exception( "Dimension mismatch : time dimension of model should be equal to nb_frames." ) self.model = model self.nb_frames = nb_frames self.frames = None @property def memory_size(self): return self.memory.memory_size @memory_size.setter def memory_size(self, value): self.memory.memory_size = value def reset_memory(self): self.exp_replay.reset_memory() def check_game_compatibility(self, game): #if len(self.model.input_layers_node_indices) != 1: #raise Exception('Multi node input is not supported.') game_output_shape = (1, None) + game.get_frame().shape if len(game_output_shape) != len(self.model.get_input_shape_at(0)): raise Exception( 'Dimension mismatch. Input shape of the model should be compatible with the game.' ) else: for i in range(len(self.model.get_input_shape_at(0))): if self.model.get_input_shape_at(0)[i] and game_output_shape[ i] and self.model.get_input_shape_at( 0)[i] != game_output_shape[i]: raise Exception( 'Dimension mismatch. Input shape of the model should be compatible with the game.' ) if len( self.model.get_output_shape_at(0) ) != 2 or self.model.get_output_shape_at(0)[1] != game.nb_actions: raise Exception( 'Output shape of model should be (nb_samples, nb_actions).') def get_game_data(self, game): frame = game.get_frame() if self.frames is None: self.frames = [frame] * self.nb_frames else: self.frames.append(frame) self.frames.pop(0) return np.expand_dims(self.frames, 0) def clear_frames(self): self.frames = None def train(self, game, nb_epoch=1000, batch_size=50, gamma=0.9, epsilon=[1., .1], epsilon_rate=0.5, reset_memory=False, observe=0, checkpoint=None, total_sessions=0, session_id=1): self.check_game_compatibility(game) ts = int(time.time()) #fn = "gold-{}.csv".format(ts) #fn = "9nyc-250-1000-epr8-heat-adam.csv" #fn = "400-rl-nopool.csv" fn = "3-normal.csv" fn2 = "heat.csv" #advice_type = "OA" advice_type = "OA" meta_advice_type = "HFHA" #meta_feedback_frequency = 0.1 #meta_feedback_frequency = 0.5 #HF!!! meta_feedback_frequency = 0.1 #LF!!! heatmap = [[0] * 20 for i in range(20)] if session_id == 1: advice_type = "OA" if session_id == 2: advice_type = "NA" if session_id == 3: advice_type = "RL" # print(heatmap) # with open("dummyheat.csv",'a') as f2: # csvWriter = csv.writer(f2,delimiter=',') # csvWriter.writerows(heatmap) # if ( session_id >= 3 and session_id < 5 ): # print("Switching to HFLA") # meta_advice_type = "HFLA" # #meta_feedback_frequency = 0.1 # elif ( session_id >= 5 and session_id < 7 ): # print("Switching to LFHA") # meta_feedback_frequency = 0.1 # meta_advice_type = "LFHA" # elif ( session_id >= 7 and session_id < 9 ): # print("Switching to LFLA") # meta_advice_type = "LFLA" # elif ( session_id >= 9 and session_id < 11 ): # advice_type = "OA" # print("Switching to NA HFLA") # meta_advice_type = "HFLA" # meta_feedback_frequency = 0.5 # elif ( session_id >= 11 and session_id < 13 ): # print("Switching to NA HFLA") # meta_advice_type = "HFLA" # #meta_feedback_frequency = 0.1 # elif ( session_id >= 13 and session_id < 15 ): # print("Switching to NA LFHA") # meta_feedback_frequency = 0.1 # meta_advice_type = "LFHA" # elif ( session_id >= 15 and session_id < 17 ): # print("Switching to NA LFLA") # meta_advice_type = "LFLA" # if ( session_id >= 2 and session_id < 3 ): # meta_feedback_frequency = 0.1 # print("Switching to LFHA") # advice_type = "OA" # meta_advice_type = "LFHA" # meta_feedback_frequency = 0.1 # elif ( session_id >= 3 and session_id < 4 ): # advice_type = "NA" # print("Switching to NA LFHA") # meta_feedback_frequency = 0.1 # meta_advice_type = "LFHA" # elif ( session_id >= 4 and session_id < 5 ): # print("Switching to NA LFLA") # meta_feedback_frequency = 0.1 # advice_type = "NA" # meta_advice_type = "LFLA" # elif ( session_id >= 5 and session_id < 6 ): # advice_type = "OA" # print("Switching to OA HFHA") # meta_advice_type = "HFHA" # meta_feedback_frequency = 0.5 # elif ( session_id >= 6 and session_id < 7 ): # advice_type = "NA" # meta_feedback_frequency = 0.5 # print("Switching to NA HFHA") # meta_advice_type = "HFHA" # meta_feedback_frequency = 0.5 # elif ( session_id >= 7 and session_id < 8 ): # advice_type = "NA" # print("Switching to NA HFLA") # meta_feedback_frequency = 0.5 # meta_advice_type = "HFLA" # elif ( session_id >= 8 and session_id < 9 ): # advice_type = "OA" # meta_feedback_frequency = 0.5 # print("Switching to OA HFLA") # meta_advice_type = "HFLA" # if ( session_id >= 4 and session_id < 7 ): # #print("Switching to LFLA") # advice_type = "RL" # #meta_advice_type = "LFLA" # elif ( session_id >= 7 and session_id < 10 ): # # with open("1RLheat.csv",'a') as f2: # # csvWriter = csv.writer(f2,delimiter=',') # # csvWriter.writerows(heatmap) # # heatmap = [ [0]*20 for i in range(20)] # advice_type = "NA" # #print("Switching to LFHA") # #meta_feedback_frequency = 0.1 # #meta_advice_type = "LFHA" # elif ( session_id >= 10 ): # # with open("1NAheat.csv",'a') as f2: # # csvWriter = csv.writer(f2,delimiter=',') # # csvWriter.writerows(heatmap) # # heatmap = [ [0]*20 for i in range(20)] # #print("Switching to LFLA") # #meta_advice_type = "LFLA" # advice_type = "NA" # with open(fn,'w') as f: # f.write('session_id,advice_type,time,epoch,frames,score,win_perc,loss'+'\n') # f.flush() # f.close() with open(fn,'a') as f: with open(fn, 'a') as f: total_frames = 0 #f.write('session_id,advice_type,time,epoch,frames,score,win_perc,loss'+'\n') #f.flush() if type(epsilon) in {tuple, list}: delta = ((epsilon[0] - epsilon[1]) / (nb_epoch * epsilon_rate)) final_epsilon = epsilon[1] epsilon = epsilon[0] else: final_epsilon = epsilon model = self.model nb_actions = model.get_output_shape_at(0)[-1] win_count = 0 rolling_win_window = [] max_obs_loss = -99999999999999999 m_loss = -99999999 for epoch in range(nb_epoch): lastAdviceStep = 0 adviceGiven = 0 adviceAttempts = 0 modelActions = 0 print(heatmap) loss = 0. game.reset() self.clear_frames() if reset_memory: self.reset_memory() game_over = False S = self.get_game_data(game) savedModel = False while not game_over: a = 0 if advice_type == "RL": if np.random.random() < epsilon or epoch < observe: a = int(np.random.randint(game.nb_actions)) #print("Random Action") else: q = model.predict( S ) #use the prediction confidence to determine whether to ask the player for help qs = model.predict_classes(S) #a = int(np.argmax(qs[0])) #highest_conf = np.amax(q) #print("Game Grid: {}".format(game.get_grid())) #print("Highest MSE Confidence = {}".format(highest_conf)) #a = int(np.argmax(q[0])) a = int(np.argmax(qs[0])) if advice_type == "OA": if np.random.random() < epsilon or epoch < observe: a = int(np.random.randint(game.nb_actions)) #print("Random Action") else: q = model.predict( S ) #use the prediction confidence to determine whether to ask the player for help qs = model.predict_classes(S) #print(qs) #print(q) highest_loss = abs(np.amax(q)) #added ABS lowest_loss = abs(np.amin(q)) #print(highest_loss) #print("HighestLoss:{}".format(highest_loss)) if highest_loss > max_obs_loss and highest_loss != 0: max_obs_loss = highest_loss #print("MaxLoss:{}".format(highest_loss)) #inn = highest_loss / max_obs_loss relative_cost = np.power( lowest_loss / max_obs_loss, 0.5) #print("RelCostA:{}".format(relative_cost)) if relative_cost < 1e-20: relative_cost = 1e-20 relative_cost = -1 / (np.log(relative_cost) - 1) #print("RelCostB:{}".format(relative_cost)) confidence_score_max = 1 confidence_score_min = 0.01 feedback_chance = confidence_score_min + ( confidence_score_max - confidence_score_min) * relative_cost if feedback_chance < 0.01: feedback_chance = 0.01 #if feedback_chance < 0.1: giveAdvice = False if (random.random() < meta_feedback_frequency): giveAdvice = True adviceAttempts = adviceAttempts + 1 if (relative_cost <= 0.25 and game.stepsTaken >= (lastAdviceStep + 10)) or giveAdvice == False: #print("HC: {}".format(max_obs_loss)) modelActions = modelActions + 1 #print("Highest Loss: {} RC: {} POS: Q0:{}".format(highest_loss, relative_cost, q[0])) a = int(np.argmax(qs[0])) else: if random.random() < .5 and ( meta_advice_type == "HFLA" or meta_advice_type == "LFLA"): lastAdviceStep = game.stepsTaken a = int(np.random.randint(game.nb_actions)) adviceGiven = adviceGiven + 1 #print("Taking BAD Player Action") else: lastAdviceStep = game.stepsTaken adviceGiven = adviceGiven + 1 x = game.location[0] z = game.location[1] yaw = game.location[2] a = -1 #print(yaw) if z <= 6: if x < 12: #print("Segment1") if yaw == 270: a = 0 if yaw == 180: a = 1 if yaw == 90: a = 3 if yaw == 0: a = 2 elif x > 15: #print("Segment2") if yaw == 90: a = 0 if yaw == 180: a = 2 if yaw == 0: a = 1 if yaw == 270: a = 3 else: #print("Segment3") if yaw == 0: a = 0 if yaw == 270: a = 1 if yaw == 90: a = 2 if yaw == 180: a = 3 elif (x >= 7) and ((z == 7) or (z == 8) or (z == 9) or (z == 10) or (z == 11) or (z == 12)): #print("Segment4") if yaw == 90: a = 0 if yaw == 180: a = 2 if yaw == 0: a = 1 if yaw == 270: a = 3 elif ((x < 7) and (x > 3)) and ( (z == 7) or (z == 8) or (z == 9) or (z == 10) or (z == 11) or (z == 12)): if yaw == 0: a = 0 if yaw == 270: a = 1 if yaw == 90: a = 2 if yaw == 180: a = 3 elif ((x < 3)) and ((z == 7) or (z == 8) or (z == 9) or (z == 10) or (z == 11) or (z == 12)): if yaw == 0: a = 2 if yaw == 270: a = 0 if yaw == 180: a = 1 if yaw == 90: a = 3 elif (z == 14) or (z == 15): if yaw == 0: a = 0 if yaw == 270: a = 1 if yaw == 90: a = 2 if yaw == 180: a = 3 elif (z == 17) or (z == 16): #print("Segment6") if yaw == 270: a = 0 if yaw == 180: a = 1 if yaw == 0: a = 2 if yaw == 90: a = 3 elif (z > 17): #print("Segment6") if yaw == 270: a = 2 if yaw == 180: a = 0 if yaw == 0: a = 3 if yaw == 90: a = 1 else: a = int( np.random.randint(game.nb_actions)) if a == -1: a = int( np.random.randint(game.nb_actions)) # if z < 6 and x < 13: # print("Segment1") # if yaw == 270: # a = 0 # else: # a = 1 # elif z < 8 and x >= 13: # print("Segment2") # if yaw == 0: # a = 0 # else: # a = 1 # elif z >= 8 and x == 13: # print("Segment3") # if yaw == 90: # a = 0 # else: # a = 1 # elif z >= 8 and z<= 17 and x < 6: # print("Segment4") # if yaw == 0: # a = 0 # else: # a = 1 # elif z > 18 and x < 18: # print("Segment5") # if yaw == 270: # a = 0 # else: # a = 1 # else: # a = int(np.argmax(q[0])) #print("Game Grid: {}".format(game.get_grid())) #print("Highest MSE Confidence = {}".format(highest_conf)) if advice_type == "NA": if np.random.random() < epsilon or epoch < observe: a = int(np.random.randint(game.nb_actions)) game.play(a) heatmap[game.location[0]][ game.location[1]] = heatmap[game.location[0]][ game.location[1]] + 1 #f2.write('{},{},{},{}\n'.format(advice_type,game.location[0],game.location[1],1 )) #f2.flush() r = game.get_score() S_prime = self.get_game_data(game) game_over = game.is_over() transition = [S, a, r, S_prime, game_over] self.memory.remember(*transition) S = S_prime #print("Random Action") else: q = model.predict( S ) #use the prediction confidence to determine whether to ask the player for help qs = model.predict_classes(S) highest_loss = abs(np.amax(q)) #added ABS lowest_loss = abs(np.amin(q)) #print("HighestLoss:{}".format(highest_loss)) if highest_loss > max_obs_loss and highest_loss != 0: max_obs_loss = highest_loss #print("MaxLoss:{}".format(highest_loss)) #inn = highest_loss / max_obs_loss relative_cost = np.power( lowest_loss / max_obs_loss, 0.5) #print("RelCostA:{}".format(relative_cost)) if relative_cost < 1e-20: relative_cost = 1e-20 relative_cost = -1 / (np.log(relative_cost) - 1) #print("RelCostB:{}".format(relative_cost)) confidence_score_max = 1 confidence_score_min = 0.01 feedback_chance = confidence_score_min + ( confidence_score_max - confidence_score_min) * relative_cost #feedback_chance = random.random() #print("Feedback Chance: {}".format(feedback_chance)) if feedback_chance < 0.01: feedback_chance = 0.01 #if feedback_chance > meta_feedback_frequency: #if feedback_chance < 0.1: #print(relative_cost) giveAdvice = False if (random.random() < meta_feedback_frequency): giveAdvice = True adviceAttempts = adviceAttempts + 1 if (relative_cost <= 0.25 and game.stepsTaken >= (lastAdviceStep + 10)) or giveAdvice == False: #print("Taking Model Action") #print("HC: {}".format(max_obs_loss)) #print("Confidence: {} RC: {}".format(feedback_chance, relative_cost)) modelActions = modelActions + 1 #a = int(np.argmin(q[0])) a = int(np.argmax(qs[0])) game.play(a) heatmap[game.location[0]][ game.location[1]] = heatmap[ game.location[0]][game.location[1]] + 1 #f2.write('{},{},{},{}\n'.format(advice_type,game.location[0],game.location[1],1 )) #f2.flush() r = game.get_score() S_prime = self.get_game_data(game) game_over = game.is_over() transition = [S, a, r, S_prime, game_over] self.memory.remember(*transition) S = S_prime else: #print("Taking Player Action") if random.random() < .5 and ( meta_advice_type == "HFLA" or meta_advice_type == "LFLA"): a = int(np.random.randint(game.nb_actions)) adviceGiven = adviceGiven + 1 game.play(a) heatmap[game.location[0]][game.location[ 1]] = heatmap[game.location[0]][ game.location[1]] + 1 lastAdviceStep = game.stepsTaken #f2.write('{},{},{},{}\n'.format(advice_type,game.location[0],game.location[1],1 )) #f2.flush() r = game.get_score() S_prime = self.get_game_data(game) game_over = game.is_over() transition = [S, a, r, S_prime, game_over] self.memory.remember(*transition) S = S_prime if game_over == False: #game.play(checkForBestMove(game.location[0],game.location[1],game.location[2])) a = int( np.random.randint(game.nb_actions)) game.play(a) heatmap[game.location[0]][ game.location[1]] = heatmap[ game.location[0]][ game.location[1]] + 1 #f2.write('{},{},{},{}\n'.format(advice_type,game.location[0],game.location[1],1 )) #f2.flush() r = game.get_score() S_prime = self.get_game_data(game) game_over = game.is_over() transition = [ S, a, r, S_prime, game_over ] self.memory.remember(*transition) S = S_prime # if game_over == False: # game.play(checkForBestMove(game.location[0],game.location[1],game.location[2])) # heatmap[game.location[0]][game.location[1]] = heatmap[game.location[0]][game.location[1]] + 1 # #f2.write('{},{},{},{}\n'.format(advice_type,game.location[0],game.location[1],1 )) # #f2.flush() # r = game.get_score() # S_prime = self.get_game_data(game) # game_over = game.is_over() # transition = [S, a, r, S_prime, game_over] # self.memory.remember(*transition) # S = S_prime #print("Taking BAD Player Action") else: adviceGiven = adviceGiven + 1 lastAdviceStep = game.stepsTaken x = game.location[0] z = game.location[1] yaw = game.location[2] #print(x) #print(z) a = -1 #print(yaw) if z <= 6: if x < 12: #print("Segment1") if yaw == 270: a = 0 if yaw == 180: a = 1 if yaw == 90: a = 3 if yaw == 0: a = 2 elif x > 15: #print("Segment2") if yaw == 90: a = 0 if yaw == 180: a = 2 if yaw == 0: a = 1 if yaw == 270: a = 3 else: #print("Segment3") if yaw == 0: a = 0 if yaw == 270: a = 1 if yaw == 90: a = 2 if yaw == 180: a = 3 elif (x >= 7) and ((z == 7) or (z == 8) or (z == 9) or (z == 10) or (z == 11) or (z == 12)): #print("Segment4") if yaw == 90: a = 0 if yaw == 180: a = 2 if yaw == 0: a = 1 if yaw == 270: a = 3 elif ((x < 7) and (x > 3)) and ( (z == 7) or (z == 8) or (z == 9) or (z == 10) or (z == 11) or (z == 12)): if yaw == 0: a = 0 if yaw == 270: a = 1 if yaw == 90: a = 2 if yaw == 180: a = 3 elif ((x < 3)) and ((z == 7) or (z == 8) or (z == 9) or (z == 10) or (z == 11) or (z == 12)): if yaw == 0: a = 2 if yaw == 270: a = 0 if yaw == 180: a = 1 if yaw == 90: a = 3 elif (z == 14) or (z == 15): if yaw == 0: a = 0 if yaw == 270: a = 1 if yaw == 90: a = 2 if yaw == 180: a = 3 elif (z == 17) or (z == 16): #print("Segment6") if yaw == 270: a = 0 if yaw == 180: a = 1 if yaw == 0: a = 2 if yaw == 90: a = 3 elif (z > 17): #print("Segment6") if yaw == 270: a = 2 if yaw == 180: a = 0 if yaw == 0: a = 3 if yaw == 90: a = 1 else: a = int( np.random.randint(game.nb_actions)) if a == -1: a = int( np.random.randint(game.nb_actions)) # #print(yaw) # if z < 6 and x < 13: # #print("Segment1") # if yaw == 270: # a = 0 # else: # a = 1 # elif z < 8 and x >= 13: # #print("Segment2") # if yaw == 0: # a = 0 # else: # a = 1 # elif z >= 8 and x == 13: # #print("Segment3") # if yaw == 90: # a = 0 # else: # a = 1 # elif z >= 8 and z<= 17 and x < 6: # #print("Segment4") # if yaw == 0: # a = 0 # else: # a = 1 # elif z > 18 and x < 18: # #print("Segment5") # if yaw == 270: # a = 0 # else: # a = 1 # else: # a = int(np.argmax(q[0])) #Play an extra 2 times (for NA friction) game.play(a) heatmap[game.location[0]][ game.location[1]] = heatmap[ game.location[0]][game.location[1]] + 1 #f2.write('{},{},{},{}\n'.format(advice_type,game.location[0],game.location[1],1 )) #f2.flush() r = game.get_score() S_prime = self.get_game_data(game) game_over = game.is_over() transition = [S, a, r, S_prime, game_over] self.memory.remember(*transition) S = S_prime if game_over == False: game.play( checkForBestMove( game.location[0], game.location[1], game.location[2])) heatmap[game.location[0]][game.location[ 1]] = heatmap[game.location[0]][ game.location[1]] + 1 #f2.write('{},{},{},{}\n'.format(advice_type,game.location[0],game.location[1],1 )) #f2.flush() r = game.get_score() S_prime = self.get_game_data(game) game_over = game.is_over() transition = [S, a, r, S_prime, game_over] self.memory.remember(*transition) S = S_prime # if game_over == False: # game.play(checkForBestMove(game.location[0],game.location[1],game.location[2])) # heatmap[game.location[0]][game.location[1]] = heatmap[game.location[0]][game.location[1]] + 1 # #f2.write('{},{},{},{}\n'.format(advice_type,game.location[0],game.location[1],1 )) # #f2.flush() # r = game.get_score() # S_prime = self.get_game_data(game) # game_over = game.is_over() # transition = [S, a, r, S_prime, game_over] # self.memory.remember(*transition) # S = S_prime if game_over == False: if advice_type != "NA": game.play(a) heatmap[game.location[0]][ game.location[1]] = heatmap[game.location[0]][ game.location[1]] + 1 #f2.write('{},{},{},{}\n'.format(advice_type,game.location[0],game.location[1],1 )) #f2.flush() r = game.get_score() S_prime = self.get_game_data(game) game_over = game.is_over() transition = [S, a, r, S_prime, game_over] self.memory.remember(*transition) S = S_prime if epoch >= observe: batch = self.memory.get_batch(model=model, batch_size=batch_size, gamma=gamma) if batch: inputs, targets = batch mtob = model.train_on_batch(inputs, targets) if mtob > m_loss: m_loss = mtob loss += float(mtob) #print( "LOSS: {} CULM_LOSS: {}".format(mtob,loss)) if checkpoint and (savedModel == False) and ( (epoch + 1 - observe) % checkpoint == 0 or epoch + 1 == nb_epoch): #model.save_weights('weights.dat') print("Checkpoint... saving model..") if advice_type == "OA": model.save('oa_model.h5') if advice_type == "NA": model.save('na_model.h5') if advice_type == "RL": model.save('rl_model.h5') # model_json = model.to_json() # with open("model.json", "w") as json_file: # json_file.write(model_json) # #serialize weights to HDF5 # model.save_weights("model.h5") savedModel = True if game.is_won(): win_count += 1 rolling_win_window.insert(0, 1) else: rolling_win_window.insert(0, 0) if epsilon > final_epsilon and epoch >= observe: epsilon -= delta percent_win = 0 cdt = datetime.datetime.now() if sum(rolling_win_window) != 0: percent_win = sum(rolling_win_window) / 4 total_frames = total_frames + game.stepsTaken f.write( '{},{},{},{},{},{},{},{},{},{},{},{},{},{}\n'.format( session_id, advice_type, meta_advice_type, str(cdt), (epoch + 1), total_frames, game.score, percent_win, epsilon, loss, game.stepsTaken, adviceGiven, adviceAttempts, modelActions)) f.flush() print( "Session: {} | Time: {} | Epoch {:03d}/{:03d} | Steps {:.4f} | Epsilon {:.2f} | Score {} | Loss {}" .format(session_id, str(cdt), epoch + 1, nb_epoch, game.stepsTaken, epsilon, game.score, loss)) if len(rolling_win_window) > 4: rolling_win_window.pop() time.sleep(1.0) if advice_type == "OA": with open("{}OAheatxtues.csv".format(session_id), 'w+') as f2: csvWriter = csv.writer(f2, delimiter=',') csvWriter.writerows(heatmap) #heatmap = [ [0]*20 for i in range(20)] if advice_type == "RL": with open("{}RLheatxtues.csv".format(session_id), 'w+') as f2: csvWriter = csv.writer(f2, delimiter=',') csvWriter.writerows(heatmap) #heatmap = [ [0]*20 for i in range(20)] if advice_type == "NA": with open("{}NAheatxtues.csv".format(session_id), 'w+') as f2: csvWriter = csv.writer(f2, delimiter=',') csvWriter.writerows(heatmap) #heatmap = [ [0]*20 for i in range(20)] def play(self, game, nb_epoch=10, epsilon=0., visualize=False): self.check_game_compatibility(game) model = self.model win_count = 0 frames = [] for epoch in range(nb_epoch): print("Playing") game.reset() self.clear_frames() S = self.get_game_data(game) if visualize: frames.append(game.draw()) game_over = False while not game_over: if np.random.rand() < epsilon: print("random") action = int(np.random.randint(0, game.nb_actions)) else: q = model.predict(S)[0] possible_actions = game.get_possible_actions() q = [q[i] for i in possible_actions] action = possible_actions[np.argmax(q)] print(action) game.play(action) S = self.get_game_data(game) if visualize: frames.append(game.draw()) game_over = game.is_over() if game.is_won(): win_count += 1 print("Accuracy {} %".format(100. * win_count / nb_epoch)) #Visualizing/printing images is currently super slow if visualize: if 'images' not in os.listdir('.'): os.mkdir('images') for i in range(len(frames)): plt.imshow(frames[i], interpolation='none') plt.savefig("images/" + game.name + str(i) + ".png")
class Agent: def __init__(self, model, memory=None, memory_size=100, nb_frames=None): assert len( model.output_shape ) == 2, "Model's output shape should be (nb_samples, nb_actions)." if memory: self.memory = memory else: self.memory = ExperienceReplay(memory_size) if not nb_frames and not model.input_shape[1]: raise Exception("Missing argument : nb_frames not provided") elif not nb_frames: nb_frames = model.input_shape[1] elif model.input_shape[ 1] and nb_frames and model.input_shape[1] != nb_frames: raise Exception( "Dimension mismatch : time dimension of model should be equal to nb_frames." ) self.model = model self.nb_frames = nb_frames # model input shape, 24 self.frames = None @property def memory_size(self): return self.memory.memory_size @memory_size.setter def memory_size(self, value): self.memory.memory_size = value def reset_memory(self): self.exp_replay.reset_memory() def check_game_compatibility(self, game): game_output_shape = (1, None) + game.get_frame().shape #game_output_shape = (None, game.get_frame().shape) if len(game_output_shape) != len(self.model.input_shape): raise Exception( 'Dimension mismatch. Input shape of the model should be compatible with the game.' ) else: for i in range(len(self.model.input_shape)): if self.model.input_shape[i] and game_output_shape[ i] and self.model.input_shape[i] != game_output_shape[ i]: raise Exception( 'Dimension mismatch. Input shape of the model should be compatible with the game.' ) if len(self.model.output_shape ) != 2 or self.model.output_shape[1] != game.nb_actions: raise Exception( 'Output shape of model should be (nb_samples, nb_actions).') def get_game_data(self, game): # returns scaled frame = game.get_frame() # candidate to return scaled if self.frames is None: self.frames = [frame] * self.nb_frames else: self.frames.append(frame) self.frames.pop(0) return np.expand_dims(self.frames, 0) def clear_frames(self): self.frames = None def train(self, game, nb_epoch=1000, batch_size=50, gamma=0.9, epsilon=[1., .1], epsilon_rate=0.5, reset_memory=False, observe=0, checkpoint=None): self.check_game_compatibility(game) if type(epsilon) in {tuple, list}: delta = ((epsilon[0] - epsilon[1]) / (nb_epoch * epsilon_rate)) final_epsilon = epsilon[1] epsilon = epsilon[0] else: final_epsilon = epsilon save = Save() model = self.model nb_actions = model.output_shape[-1] win_count = 0 for epoch in range(nb_epoch): loss = 0. q = np.zeros(3) game.reset() self.clear_frames() if reset_memory: self.reset_memory() game_over = False S = self.get_game_data(game) # S must be scaled i = 0 while not game_over: i = i + 1 if np.random.random() < epsilon or epoch < observe: a = int(np.random.randint(game.nb_actions)) print('>'), else: # S must be scaled q = model.predict(S) # ! a = int(np.argmax(q[0])) game.play(a) r = game.get_score(a) S_prime = self.get_game_data(game) # S_prime must be scaled game_over = game.is_over() # S, a, S_prime, must be scaled # reward, game over is not scaled in catch/snake transition = [S, a, r, S_prime, game_over] # ! self.memory.remember(*transition) S = S_prime if epoch >= observe: batch = self.memory.get_batch(model=model, batch_size=batch_size, gamma=gamma) if batch: inputs, targets = batch # scaled loss += float(model.train_on_batch(inputs, targets)) #if checkpoint and ((epoch + 1 - observe) % checkpoint == 0 or epoch + 1 == nb_epoch): #model.save_weights('4kweights.dat') save.log(game, epoch) if game.is_won(): win_count += 1 if epsilon > final_epsilon and epoch >= observe: epsilon -= delta print(' ') print( "Epoch {:03d}/{:03d} | Loss {:.4f} | Epsilon {:.2f} | Win count {} | loss Avg {:.4f}" .format(epoch + 1, nb_epoch, loss, epsilon, win_count, loss / i)) if ((epoch % 10) == 0): save.save_model(model, Config.f_model) save.log_epoch(loss, win_count, loss / i) def play(self, game, nb_epoch=10, epsilon=0., visualize=True): self.check_game_compatibility(game) model = self.model win_count = 0 frames = [] save = Save() for epoch in range(nb_epoch): game.reset() self.clear_frames() S = self.get_game_data(game) # S must be scaled if visualize: frames.append(game.draw()) game_over = False while not game_over: if np.random.rand() < epsilon: print("random") action = int(np.random.randint(0, game.nb_actions)) else: # S must be scaled q = model.predict(S)[0] # ! possible_actions = game.get_possible_actions() q = [q[i] for i in possible_actions] action = possible_actions[np.argmax(q)] game.play(action) S = self.get_game_data(game) ''' if visualize: frames.append(game.draw()) game_over = game.is_over() ''' save.log(game, nb_epoch) if game.is_won(): win_count += 1 print("Accuracy {} %".format(100. * win_count / nb_epoch)) '''
class Agent: def __init__(self, model, memory=None, memory_size=1000, nb_frames=None): assert len(model.output_shape) == 2, "Model's output shape should be (nb_samples, nb_actions)." if memory: self.memory = memory else: self.memory = ExperienceReplay(memory_size) if not nb_frames and not model.input_shape: raise Exception("Missing argument : nb_frames not provided") elif not nb_frames: nb_frames = model.input_shape[1] elif model.input_shape[1] and nb_frames and model.input_shape[1] != nb_frames: raise Exception("Dimension mismatch : time dimension of model should be equal to nb_frames.") self.model = model self.nb_frames = nb_frames self.frames = None @property def memory_size(self): return self.memory.memory_size @memory_size.setter def memory_size(self, value): self.memory.memory_size = value def reset_memory(self): self.exp_replay.reset_memory() def check_game_compatibility(self, game): game_output_shape = (1, None) + game.get_frame().shape if len(game_output_shape) != len(self.model.input_shape): raise Exception('Dimension mismatch. Input shape of the model should be compatible with the game.') else: for i in range(len(self.model.input_shape)): if self.model.input_shape[i] and game_output_shape[i] and self.model.input_shape[i] != game_output_shape[i]: raise Exception('Dimension mismatch. Input shape of the model should be compatible with the game.') if len(self.model.output_shape) != 2 or self.model.output_shape[1] != game.nb_actions: raise Exception('Output shape of model should be (nb_samples, nb_actions).') def get_game_data(self, game): frame = game.get_frame() if self.frames is None: self.frames = [frame] * self.nb_frames else: self.frames.append(frame) self.frames.pop(0) return np.expand_dims(self.frames, 0) def clear_frames(self): self.frames = None def action_count(self, game): #print "game.get_action_count: ", game.get_action_count return game.get_action_count # SET WHICH RUNS TO PRINT OUT HERE ***************************************************************** def report_action(self, game): return ((self.action_count(game) % self.report_freq) == 0) # and ((self.action_count(game) % self.report_freq) < 20) #% 10000) == 0 # def train(self, game, nb_epoch=1000, batch_size=50, gamma=0.9, epsilon=[1., .1], epsilon_rate=0.5, reset_memory=False, id=""): txt_store_path = "./txtstore/run_1000e_b50_15r_reg_lr1/junk/" printing = False record_weights = False self.max_moves = game.get_max_moves() self.report_freq = self.max_moves #50 '''fo_A = open(txt_store_path + "A.txt", "rw+") fo_G = open(txt_store_path + "G.txt", "rw+") fo_Gb = open(txt_store_path + "Gb.txt", "rw+") fo_I = open(txt_store_path + "I.txt", "rw+") fo_Q = open(txt_store_path + "Q.txt", "rw+") fo_R = open(txt_store_path + "R.txt", "rw+") fo_S = open(txt_store_path + "S.txt", "rw+") fo_T = open(txt_store_path + "T.txt", "rw+") fo_W = open(txt_store_path + "W.txt", "rw+") fo_Wb = open(txt_store_path + "Wb.txt", "rw+")''' self.check_game_compatibility(game) if type(epsilon) in {tuple, list}: delta = ((epsilon[0] - epsilon[1]) / (nb_epoch * epsilon_rate)) final_epsilon = epsilon[1] epsilon = epsilon[0] else: final_epsilon = epsilon model = self.model nb_actions = model.output_shape[-1] win_count = 0 scores = np.zeros((nb_epoch,self.max_moves/self.report_freq)) losses = np.zeros((nb_epoch,self.max_moves/self.report_freq)) for epoch in range(nb_epoch): #ipdb.set_trace(context=9) # TRACING HERE ********************************************* loss = 0. game.reset() self.clear_frames() if reset_memory: self.reset_memory() game_over = False S = self.get_game_data(game) no_last_S = True plot_showing = False while not game_over: if np.random.random() < epsilon: a = int(np.random.randint(game.nb_actions)) #if (self.action_count(game) % 100000) == 0: '''if self.report_action(game): if printing: print "random", q = model.predict(S)''' q = model.predict(S) expected_action = (a == int(np.argmax(q[0]))) else: expected_action = True q = model.predict(S) #print q.shape #print q[0] # ************************************** CATCHING NANS '''if (q[0,0] != q[0,0]): ipdb.set_trace(context=9) # TRACING HERE ********************************************* ''' a = int(np.argmax(q[0])) #if (self.action_count(game) % 100000) == 0: prob = epsilon/game.nb_actions if expected_action: prob = 1 - epsilon + prob game.play(a, self.report_action(game)) r = game.get_score() #ipdb.set_trace(context=9) # TRACING HERE ********************************************* # PRINTING S HERE ****************************************************************** ''' if plot_showing: plt.clf() plt.imshow(np.reshape(S,(6,6))) plt.draw() plt.show(block=False) plot_showing = True print "hi" ''' # PRINTING S HERE ****************************************************************** S_prime = self.get_game_data(game) '''if self.report_action(game): if printing: print "S: ", S #if no_last_S: # last_S = S # no_last_S = False #else: # print "dS:", S - last_S # print " ==> Q(lS):", model.predict(last_S) #print print " ==> Q(S): ", q, " ==> A: ", a, " ==> R: %f" % r #print " ==> Q(S'):", model.predict(S_prime) #print fo_S.seek(0,2) np.savetxt(fo_S, S[0], fmt='%4.4f') # fo_Q.seek(0,2) np.savetxt(fo_Q, q, fmt='%4.4f') # fo_A.seek(0,2) fo_A.write(str(a)+"\n") #savetxt(fo, S[0], fmt='%4.4f') # fo_R.seek(0,2) fo_R.write(str(r)+"\n") ''' #ipdb.set_trace(context=9) # TRACING HERE ********************************************* #last_S = S game_over = game.is_over() transition = [S, a, r, S_prime, game_over, prob] self.memory.remember(*transition) S = S_prime batch = self.memory.get_batch(model=model, batch_size=batch_size, gamma=gamma, ruql=True) #, print_it=False) #self.report_action(game)) if batch: inputs, targets, probs = batch #print("model.total_loss: ", model.total_loss) '''if record_weights: weights_pre = model.get_weights() # GOT WEIGHTS ************************* #print "weights_pre" #print weights_pre if self.report_action(game): fo_W.seek(0,2) np.savetxt(fo_W, weights_pre[0], fmt='%4.4f') # fo_W.write("\n") fo_Wb.seek(0,2) np.savetxt(fo_Wb, weights_pre[1], fmt='%4.4f') # fo_Wb.write("\n")''' #output = model.train_on_batch(inputs, targets) #loss += float(output[0]) #model.train_on_batch(inputs, targets)) '''print "myAgent" print 'inputs: ', type(inputs), "; ", inputs.shape print 'targets: ', type(targets), "; ", targets.shape print 'probs: ', type(probs), "; ", probs.shape''' loss += float(model.train_on_batch(inputs, targets, probs=probs)) #if self.report_action(game): # #print output # #fo_G.seek(0,2) # #np.savetxt(fo_G, output[1], fmt='%4.4f') # # #fo_G.write("\n") # #fo_Gb.seek(0,2) # #np.savetxt(fo_Gb, output[2], fmt='%4.4f') # # #fo_Gb.write("\n") #weights_post = model.get_weights() # GOT WEIGHTS ******************************** #print "weights_post" #print weights_post #ipdb.set_trace() # TRACING HERE ********************************************* #print("action_count PRE: ", action_count) if self.report_action(game): action_count = self.action_count(game) #print("action_count/self.report_freq: ", action_count/self.report_freq) #print("action_count: ", action_count) #print("self.report_freq: ", self.report_freq) #print("scores so far: ", scores) #print("scores.shape: ", scores.shape)''' while (action_count/self.report_freq > scores.shape[1]): scores = np.append(scores, np.zeros((nb_epoch,1)), 1) losses = np.append(losses, np.zeros((nb_epoch,1)), 1) scores[epoch, action_count/self.report_freq-1] = game.get_total_score() losses[epoch, action_count/self.report_freq-1] = loss #print ("running a batch (of %d): 1: %d; 2: %d" % (len(batch), batch[0].size, \ # batch[1].size)) #print "memory size: ", self.memory_size #print "using memory\n", inputs, "; tgt: ", targets #fo_I.seek(0,2) #np.savetxt(fo_I, inputs[0], fmt='%4.4f') # #fo_T.seek(0,2) #np.savetxt(fo_T, targets, fmt='%4.4f') # #fo_T.write("\n") if game.is_won(): win_count += 1 if epsilon > final_epsilon: epsilon -= delta if (epoch % 50) == 0: print("Epoch {:03d}/{:03d} | Loss {:.4f} | Epsilon {:.2f} | Win count {}".format(epoch + 1, nb_epoch, loss, epsilon, win_count)) pickle.dump(scores, open(txt_store_path + "score" + id + ".p", "wb" ) ) pickle.dump(losses, open(txt_store_path + "loss" + id + ".p", "wb" ) ) ''' fo_A.close() fo_G.close() fo_Gb.close() fo_I.close() fo_Q.close() fo_R.close() fo_S.close() fo_T.close() fo_W.close() fo_Wb.close()''' average_taken_over = 10 last_col = self.max_moves/self.report_freq -1 fo_log = open("log.txt", "rw+") fo_log.seek(0,2) average_score = np.mean(scores[-average_taken_over:nb_epoch, last_col]) average_error = np.mean(losses[-average_taken_over:nb_epoch, last_col]) fo_log.write("\n{:20}|{:^12}|{:^10}|{:^10}|{:^6}|{:^12}|{:^12}|{:^12}{:^6}{:^6}|{:^10}|{:^20}|{:^10}|{:^6}".format(" ", "game moves", "avg score", "error", "WC", "epochs", "batch size", "epsiln frm", ".. to", ".. by", "lr", "desciption", "timer", "reg")) fo_log.write("\n{:<20}|{:^12d}|{:^10.2f}|{:^10.2f}|{:^6d}|".format(time.strftime("%d/%m/%Y %H:%M"), self.max_moves, \ average_score, average_error, win_count)) #average_taken_over, fo_log.close() def play(self, game, nb_epoch=1, epsilon=0., visualize=False): self.check_game_compatibility(game) model = self.model win_count = 0 frames = [] for epoch in range(nb_epoch): game.reset() self.clear_frames() S = self.get_game_data(game) if visualize: frames.append(game.draw()) game_over = False while not game_over: if np.random.rand() < epsilon: print("random") action = int(np.random.randint(0, game.nb_actions)) else: q = model.predict(S) action = int(np.argmax(q[0])) game.play(action) S = self.get_game_data(game) if visualize: frames.append(game.draw()) game_over = game.is_over() if game.is_won(): win_count += 1 print("Accuracy {} %".format(100. * win_count / nb_epoch)) if visualize: if 'images' not in os.listdir('.'): os.mkdir('images') for i in range(len(frames)): plt.imshow(frames[i], interpolation='none') plt.savefig("images/" + game.name + str(i) + ".png")
class Agent: def __init__(self, model, memory=None, memory_size=1000, nb_frames=None): assert len( model.output_shape ) == 2, "Model's output shape should be (nb_samples, nb_actions)." if memory: self.memory = memory else: self.memory = ExperienceReplay(memory_size) if not nb_frames and not model.input_shape: raise Exception("Missing argument : nb_frames not provided") elif not nb_frames: nb_frames = model.input_shape[1] elif model.input_shape[ 1] and nb_frames and model.input_shape[1] != nb_frames: raise Exception( "Dimension mismatch : time dimension of model should be equal to nb_frames." ) self.model = model self.nb_frames = nb_frames self.frames = None @property def memory_size(self): return self.memory.memory_size @memory_size.setter def memory_size(self, value): self.memory.memory_size = value def reset_memory(self): self.exp_replay.reset_memory() def check_game_compatibility(self, game): game_output_shape = (1, None) + game.get_frame().shape if len(game_output_shape) != len(self.model.input_shape): raise Exception( 'Dimension mismatch. Input shape of the model should be compatible with the game.' ) else: for i in range(len(self.model.input_shape)): if self.model.input_shape[i] and game_output_shape[ i] and self.model.input_shape[i] != game_output_shape[ i]: raise Exception( 'Dimension mismatch. Input shape of the model should be compatible with the game.' ) if len(self.model.output_shape ) != 2 or self.model.output_shape[1] != game.nb_actions: raise Exception( 'Output shape of model should be (nb_samples, nb_actions).') def get_game_data(self, game): frame = game.get_frame() if self.frames is None: self.frames = [frame] * self.nb_frames else: self.frames.append(frame) self.frames.pop(0) return np.expand_dims(self.frames, 0) def clear_frames(self): self.frames = None def train(self, game, nb_epoch=1000, batch_size=50, gamma=0.9, epsilon=[1., .1], epsilon_rate=0.5, reset_memory=False): self.check_game_compatibility(game) if type(epsilon) in {tuple, list}: delta = ((epsilon[0] - epsilon[1]) / (nb_epoch * epsilon_rate)) final_epsilon = epsilon[1] epsilon = epsilon[0] else: final_epsilon = epsilon model = self.model nb_actions = model.output_shape[-1] win_count = 0 for epoch in range(nb_epoch): loss = 0. game.reset() self.clear_frames() if reset_memory: self.reset_memory() game_over = False S = self.get_game_data(game) while not game_over: if np.random.random() < epsilon: a = int(np.random.randint(game.nb_actions)) else: q = model.predict(S) a = int(np.argmax(q[0])) game.play(a) r = game.get_score() S_prime = self.get_game_data(game) game_over = game.is_over() transition = [S, a, r, S_prime, game_over] self.memory.remember(*transition) S = S_prime inputs, targets = self.memory.get_batch(model=model, batch_size=batch_size, gamma=gamma) loss += model.train_on_batch(inputs, targets)[0] if game.is_won(): win_count += 1 if epsilon > final_epsilon: epsilon -= delta print( "Epoch {:03d}/{:03d} | Loss {:.4f} | Epsilon {:.2f} | Win count {}" .format(epoch + 1, nb_epoch, loss, epsilon, win_count)) def play(self, game, nb_epoch=10, epsilon=0., visualize=True): self.check_game_compatibility(game) model = self.model win_count = 0 frames = [] for epoch in range(nb_epoch): game.reset() self.clear_frames() S = self.get_game_data(game) if visualize: frames.append(game.draw()) game_over = False while not game_over: if np.random.rand() < epsilon: print("random") action = int(np.random.randint(0, game.nb_actions)) else: q = model.predict(S) action = int(np.argmax(q[0])) game.play(action) S = self.get_game_data(game) if visualize: frames.append(game.draw()) game_over = game.is_over() if game.is_won(): win_count += 1 print("Accuracy {} %".format(100. * win_count / nb_epoch)) if visualize: if 'images' not in os.listdir('.'): os.mkdir('images') for i in range(len(frames)): plt.imshow(frames[i], interpolation='none') plt.savefig("images/" + game.name + str(i) + ".png")
class Agent: def __init__(self, game, mode=SIMPLE, nb_epoch=10000, memory_size=1000, batch_size=50, nb_frames=4, epsilon=1., discount=.9, learning_rate=.1, model=None): self.game = game self.mode = mode self.target_model = None self.rows, self.columns = game.field_shape() self.nb_epoch = nb_epoch self.nb_frames = nb_frames self.nb_actions = game.nb_actions() if mode == TEST: print('Training Mode: Loading model...') self.model = load_model(model) elif mode == SIMPLE: print('Using Plain DQN: Building model...') self.model = self.build_model() elif mode == DOUBLE: print('Using Double DQN: Building primary and target model...') self.model = self.build_model() self.target_model = self.build_model() self.update_target_model() # Trades off the importance of sooner versus later rewards. # A factor of 0 means it rather prefers immediate rewards # and it will mostly consider current rewards. A factor of 1 # will make it strive for a long-term high reward. self.discount = discount # The learning rate or step size determines to what extent the newly # acquired information will override the old information. A factor # of 0 will make the agent not learn anything, while a factor of 1 # would make the agent consider only the most recent information self.learning_rate = learning_rate # Use epsilon-greedy exploration as our policy. # Epsilon determines the probability for choosing random actions. # This factor will decrease linear by the number of epoches. So we choose # a random action by the probability 'eps'. Without this policy the network # is greedy and it will it settles with the first effective strategy it finds. # Hence, we introduce certain randomness. # Epislon reaches its minimum at 1/2 of the games epsilon_end = self.nb_epoch - (self.nb_epoch / 2) self.policy = EpsGreedyPolicy(self.model, epsilon_end, self.nb_actions, epsilon, .1) # Create new experience replay memory. Without this optimization # the training takes extremely long even on a GPU and most # importantly the approximation of Q-values using non-linear # functions, that is used for our NN, is not very stable. self.memory = ExperienceReplay(self.model, self.target_model, self.nb_actions, memory_size, batch_size, self.discount, self.learning_rate) self.frames = None def build_model(self): model = Sequential() model.add(Conv2D(32, (2, 2), activation='relu', input_shape=(self.nb_frames, self.rows, self.columns), data_format="channels_first")) model.add(Conv2D(64, (2, 2), activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Flatten()) model.add(Dropout(0.1)) model.add(Dense(512, activation='relu')) model.add(Dense(self.nb_actions)) model.compile(Adam(), 'MSE') return model def update_target_model(self): self.target_model.set_weights(self.model.get_weights()) def get_frames(self): frame = self.game.get_state() if self.frames is None: self.frames = [frame] * self.nb_frames else: self.frames.append(frame) self.frames.pop(0) # Expand frames to match the input shape for the CNN (4D) # 1D = # batches # 2D = # frames per batch # 3D / 4D = game board return np.expand_dims(self.frames, 0) def clear_frames(self): self.frames = None def print_stats(self, data, y_label, x_label='Epoch', marker='-'): data = np.array(data) x, y = data.T p = np.polyfit(x, y, 3) fig = plt.figure() plt.plot(x, y, marker) plt.plot(x, np.polyval(p, x), 'r:') plt.xlabel(x_label) plt.ylabel(y_label) words = y_label.split() file_name = '_'.join(map(lambda x: x.lower(), words)) path = './plots/{name}_{size}x{size}_{timestamp}' fig.savefig(path.format(size=self.game.grid_size, name=file_name, timestamp=int(time()))) def train(self, update_freq=10): total_steps = 0 max_steps = self.game.grid_size**2 * 3 loops = 0 nb_wins = 0 cumulative_reward = 0 duration_buffer = [] reward_buffer = [] steps_buffer = [] wins_buffer = [] for epoch in range(self.nb_epoch): loss = 0. duration = 0 steps = 0 self.game.reset() self.clear_frames() done = False # Observe the initial state state_t = self.get_frames() start_time = time() while(not done): # Explore or Exploit action = self.policy.select_action(state_t, epoch) # Act on the environment _, reward, done, is_victory = self.game.act(action) state_tn = self.get_frames() cumulative_reward += reward steps += 1 total_steps += 1 if steps == max_steps and not done: loops += 1 done = True # Build transition and remember it (Experience Replay) transition = [state_t, action, reward, state_tn, done] self.memory.remember(*transition) state_t = state_tn # Get batch of batch_size samples # A batch generally approximates the distribution of the input data # better than a single input. The larger the batch, the better the # approximation. However, larger batches take longer to process. batch = self.memory.get_batch() if batch: inputs, targets = batch loss += float(self.model.train_on_batch(inputs, targets)) if self.game.is_victory(): nb_wins += 1 if done: duration = utils.get_time_difference(start_time, time()) if self.mode == DOUBLE and self.target_model is not None and total_steps % (update_freq) == 0: self.update_target_model() current_epoch = epoch + 1 reward_buffer.append([current_epoch, cumulative_reward]) duration_buffer.append([current_epoch, duration]) steps_buffer.append([current_epoch, steps]) wins_buffer.append([current_epoch, nb_wins]) summary = 'Epoch {:03d}/{:03d} | Loss {:.4f} | Epsilon {:.2f} | Time(ms) {:3.3f} | Steps {:.2f} | Wins {} | Loops {}' print(summary.format(current_epoch, self.nb_epoch, loss, self.policy.get_eps(), duration, steps, nb_wins, loops)) # Generate plots self.print_stats(reward_buffer, 'Cumulative Reward') self.print_stats(duration_buffer, 'Duration per Game') self.print_stats(steps_buffer, 'Steps per Game') self.print_stats(wins_buffer, 'Wins') path = './models/model_{mode}_{size}x{size}_{epochs}_{timestamp}.h5' mode = 'dqn' if self.mode == SIMPLE else 'ddqn' self.model.save(path.format(mode=mode, size=self.game.grid_size, epochs=self.nb_epoch, timestamp=int(time()))) def play(self, nb_games=5, interval=.7): nb_wins = 0 accuracy = 0 summary = '{}\n\nAccuracy {:.2f}% | Game {}/{} | Wins {}' for epoch in range(nb_games): self.game.reset() self.clear_frames() done = False state_t = self.get_frames() self.print_state(summary, state_t[:,-1], accuracy, epoch, nb_games, nb_wins, 0) while(not done): q = self.model.predict(state_t) action = np.argmax(q[0]) _, _, done, is_victory = self.game.act(action) state_tn = self.get_frames() state_t = state_tn if is_victory: nb_wins += 1 accuracy = 100. * nb_wins / nb_games self.print_state(summary, state_t[:,-1], accuracy, epoch, nb_games, nb_wins, interval) def print_state(self, summary, state, accuracy, epoch, nb_games, nb_wins, interval): utils.clear_screen() print(summary.format(state, accuracy, epoch + 1, nb_games, nb_wins)) sleep(interval)